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Gait and turning characteristics
from daily life increase ability to
predict future falls in people with
Parkinson’s disease
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Patricia Carlson-Kuhta1, John G. Nutt1, Mahmoud El-Gohary2,

Kristen Sowalsky2, Graham Harker1, Martina Mancini1 and

Fay B. Horak1,2

1Department of Neurology, Oregon Health & Science University, Portland, OR, United States, 2APDM

Wearable Technologies, A Clario Company, Portland, OR, United States, 3Department of Electrical and

Computer Engineering, Portland State University, Portland, OR, United States

Objectives:To investigate if digital measures of gait (walking and turning) collected

passively over a week of daily activities in people with Parkinson’s disease

(PD) increases the discriminative ability to predict future falls compared to fall

history alone.

Methods: We recruited 34 individuals with PD (17 with history of falls and 17

non-fallers), age: 68 ± 6 years, MDS-UPDRS III ON: 31 ± 9. Participants were

classified as fallers (at least one fall) or non-fallers based on self-reported falls in

past 6 months. Eighty digital measures of gait were derived from 3 inertial sensors

(Opal® V2 System) placed on the feet and lower back for a week of passive gait

monitoring. Logistic regression employing a “best subsets selection strategy” was

used to find combinations of measures that discriminated future fallers from non-

fallers, and the Area Under Curve (AUC). Participants were followed via email every

2 weeks over the year after the study for self-reported falls.

Results: Twenty-five subjects reported falls in the follow-up year. Quantity of

gait and turning measures (e.g., number of gait bouts and turns per hour) were

similar in future fallers and non-fallers. The AUC to discriminate future fallers from

non-fallers using fall history alone was 0.77 (95% CI: [0.50–1.00]). In contrast, the

highest AUC for gait and turning digital measures with 4 combinations was 0.94

[0.84–1.00]. From the top 10 models (all AUCs>0.90) via the best subsets strategy,

the most consistently selected measures were variability of toe-out angle of the

foot (9 out of 10), pitch angle of the foot during mid-swing (8 out of 10), and peak

turn velocity (7 out of 10).

Conclusions: These findings highlight the importance of considering precise

digital measures, captured via sensors strategically placed on the feet and low

back, to quantify several di�erent aspects of gait (walking and turning) during daily

life to improve the classification of future fallers in PD.
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Introduction

Falls are prevalent in people with Parkinson’s Disease (PD),

occurring in 60.5% of patients per year (1). Moreover, fall history

is a prominent risk factor for recurring falls in PD, with 39% of

patients experiencing recurring falls (1). In addition, people with

PD who experience impairments in gait and turning difficulties are

significantly more likely to fall at home compared to those with

tremor as the primary symptoms (2).

Given the heightened risk of falls in people with PD, it is

important to consider which aspects of gait and turning difficulties

contribute to fall events. Traditionally, clinical assessments such

as the Unified Parkinson’s Disease Rating Scale (UPDRS) are

used to assess disease severity, gait and turning difficulties (3, 4).

Additionally, fall history, as recorded by diary or other self-reports

are implemented to monitor falls. Such outcomes, among others,

have been shown to be predictors of recurring falls in people with

PD (1).

A critical shortcoming of these assessments is the inability to

objectively measure gait and turning abnormalities in the patient’s

everyday environment where falls occur. Furthermore, brief clinical

or laboratory assessments of gait and turning (e.g., straight-ahead

gait and turning) may not accurately reflect functional mobility

of patients in their everyday lives, or capture inherent day-to-

day variations in movement patterns that may be indicative of

functional capacity (5). Therefore, daily life monitoring of gait and

turning could help assess the risk of falling in people with PD,

and provide insight into patient behavior outside of traditional

testing facilities.

Wearable sensors and advanced algorithms allow researchers

to capture objective mobility measures both in the clinic and at

home (6–10) that may improve our understanding of fall risk

in people with PD. It has been shown that environments and

tasks associated with daily living can amplify gait and turning

impairments in people with PD (7–9). Given the ubiquity of falls

and fall recurrence in PD, researchers have worked to identify

digital biomarkers, captured during daily life walking and turning,

that can assist with identifying fall risk and optimize clinical trial

conduct. Several gait and turning metrics obtained from wearable

sensors in laboratory settings and during daily life have been shown

to discriminate between fallers and non-fallers in PD (11–15).

However, it is still unclear which measures, among the high volume

of gait and turning measures calculated from inertial sensors, most

accurately discriminate fallers from non-fallers with PD during

daily life.

The aim of this study was to investigate if digital measures from

different components of gait and turning collected from a week

of daily activities increased discriminative ability to predict future

falls compared to fall history alone. We hypothesize that variability

and turn metrics will best discriminate fallers from non-fallers

during daily life, and will show an increased discriminative ability

to predict future fallers compared to falls history alone. The main

contribution of this study is to show the importance of considering

precise digital measures, captured via sensors strategically placed

on the feet and low back, to quantify several different aspects of gait

(walking and turning) during daily life to improve the classification

of future fallers in PD.

Methods

Participants

Thirty-four people with idiopathic PD participated in the study.

Inclusion criteria were a diagnosis of idiopathic Parkinson’s disease

from movement disorders specialist with the United Kingdom

Parkinson’s disease Society Brain Bank criteria, Hoehn & Yahr

scale of II-IV, and complaints about gait and balance. Exclusion

criteria were the inability to follow protocol instructions, and

other factors affecting gait and balance such as musculoskeletal

disorders, uncorrected vision or vestibular problems, or inability

to stand or walk in the home without an assistive device. The

experimental protocol was approved by the Institutional Review

Board of the Oregon Health & Science University (eIRB #15578).

All the participants provided informed written consent. The

same participants have been used in our previous research work

comparing gait and turning measures in two levodopa states in the

clinic (On vs. Off), and daily life settings (16).

Clinical assessment

Clinical characteristics (including demographic, motor and

cognitive status, and patient-reported outcomes) were assessed

with a comprehensive battery of validated tests. Specifically, we

collected age, sex, height, weight, disease duration, medications,

and the Movement Disorders Society (MDS-revised) Unified

Parkinson’s disease Rating Scale (MDS-UPDRS) (3); the Hoehn

and Yahr Rating Scale; the New Freezing of Gait Questionnaire

(NFoGQ) (17); the Parkinson’s Disease Questionnaire-39 (PDQ-

39); and the Montreal Cognitive Assessment (MoCA) (18).

Falls data collection

Self-reported fall history based on the previous 6 months was

collected and participants were classified as fallers (at least one

fall) or non-fallers based on falls history prior to the study visit.

For future falls, following a week of continuous monitoring of

gait. participants were asked complete a 12-month, fall-monitoring

period immediately after the 1 week of daily life gait data

collection. Participants received bimonthly emails to indicate if

they experienced a fall or near fall during the previous 2 weeks.

If participants failed to respond, a research assistant called them

to ascertain if they had fallen in the previous 2 weeks. A fall was

defined as “an event that results in coming to rest unintentionally

on the ground or other lower level”. Future-fallers were classified as

participants with >1 fall in the 12-month period after daily life gait

data collection. If a fall(s) occurred, we collected number of falls

and nature of injury.

Daily life data collection

Participants were asked to wear 2Opal-instrumented socks, one

on each foot, and an Opal sensor over the lower lumbar area with
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an elastic belt (APDM Wearable Technologies-a Clario Company,

Portland, OR, USA) for a week of continuous monitoring of at least

8 hours/day during daily activities including both on and off states.

The details of the instrumented socks were previously described in

Shah et al. (9). Briefly, instrumented socks incorporated the same

inertial sensors on top of the foot as used in the Opal, with the

battery separated from the sensor and positioned just above the

lateral malleolus. Each Opal sensor includes tri-axial accelerometer,

gyroscope, and magnetometer and was configured to sample at a

rate of 128Hz. The Opal is lightweight (22 g), has a battery life of

12 h, and includes 8 GB of storage, which can record over 30 days

of data.

Participants were asked to remove the sensors at night and

plugged in to recharge the batteries. During the daily activities, data

were continuously collected and stored in the internal memory of

the Opals. Participants were asked to mail back the sensors using a

pre-paid mailing box after completion of a week of data collection.

Once we receive the devices, the raw data were uploaded to a secure

cloud-based database on AmazonWeb Server (AWS), processed on

the same server and calculated gait metrics were then downloaded

to a local computer for further analysis.

Digital gait and turning measures during
daily life

The algorithms used to calculate the measures of gait and

turning were the same for the laboratory and daily life data as were

detailed previously (19). In summary, the daily life algorithm first

searches for possible bouts of walking from inertial sensor data

from the feet using a time-domain approach. Second, individual

steps are combined into potential bouts of walking if the duration

from one step to the next step is less than 2.5 seconds. Finally,

each possible bout that contains at least 3 seconds in duration

and at least 3 steps is processed with the commercial gait analysis

algorithms included in Mobility Lab V2 for prescribed gait tests

(APDM Wearable Technologies, A Clario company) (20). For the

gait measures reported in this paper, we calculated a mean and

variability across all strides over the week of recording and included

only the periods of straight walking. Straight walking were periods

of walking in which the heading angle of the foot during stance

changed by no more than 20 degrees during a single stride and

that did not contain detected turns as determined from the lumbar

sensor (21). For turning measures, we used a previously published

algorithm to detect and characterize each turn (21). Specifically, all

the turns with an amplitude larger than 40 degrees were detected

as a turn and we did not restrict any particular range of turns but

considered all. In total, we derived 52 measures and grouped into

four domains (Lower Body, Lower Trunk, Turning, and Variability)

similar to described in Shah et al. (22).

Statistical analysis

The normality of data was examined by the Shapiro-Wilk

test. For the demographics measures that were non-normally

distributed, the Mann- Whitney U test was used to compare fallers

and non-fallers. Otherwise, independent samples t-test (or Chi-

squared test) was used to examine possible group differences.

To investigate which combination of digital gait and turning

measures discriminate fallers from non-fallers group, we used

logistic regression employing a best subset selection (23). The

best subset selection strategy selects the best model from all

possible subsets according to goodness-of-fit criteria. To assess the

goodness-of-fit, we used the Bayesian Information Criteria (BIC)

(23). We selected the top 15 models based on BIC for two, three,

and finally for four digital outcomemeasures ofmobility (15∗3= 45

models total). Finally, we computed the AreaUnder the ROCCurve

(AUC) using “ROC” function (empirical ROC) in R (24, 25) and

ranked the top 10 models based on the AUC. All statistical analysis

was performed using R Version 1.1.456 software.

Power analysis

We recently showed that variability of the number of steps

during turning was a sensitive metric in predicting falls in the 6

months after the week of continuous monitoring in a group of

healthy elderly fallers (26). Out of 35 healthy elderly participants

(sample of convenience), 7 fell at least once in the 6 months after

the week of continuous monitoring. To determine the number

of subjects needed in this study, we compared the variability of

the number of steps needed to complete a turn by subjects who

experienced one or more falls to variability in the subjects that did

not fall. Given the fallers group mean variability of 0.59 (SD 0.04)

and the non-fallers group mean of 0.54 (SD 0.03), for alpha = 0.05

and a power of 95%, we are adequately powered to separate fallers

and non-fallers with a sample size of 12 subjects per group.

Results

Group characteristics and adherence

From a total of 34 people with PD, 17 were fallers and 17 were

non-fallers based on self-reported fall history. Table 1 compares

the demographic characteristics between non-fallers and fallers.

The demographic and other digital measures mostly followed

the normal distribution and we did not find any multimodal

distribution. There were no significant differences between the

groups for demographic characteristics, smart socks compliance

and activity measures from daily life. After 1-year follow up from

the data collection, out of 34 people, 25 people were fallers and 9

people were non-fallers (see Supplementary Table S1 for number of

past falls and future falls for each subject).

Digital gait and turning measures
separating fallers from non-fallers during
daily life

The AUC to discriminate future fallers from non-fallers using

fall history alone was 0.77 (95% CI: [0.50–1.00]). In contrast,

the highest AUC for gait and turning digital measures with 4

combinations was 0.94 [0.84–1.00]. From the top 10 models (all
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TABLE 1 Participant demographic information for non-faller and faller groups.

Non-fallers (N = 17) Fallers (N = 17) p

Age (yrs) 66.82 (6.61) 68.69 (11.10) 0.29

Disease Duration (yrs) 7.29 (5.6) 9.24 (4.58) 0.14

H and Y ON (#) 2 (0) 2.18 (0.53) 0.164

H and Y OFF (#) 2.06 (0.24) 2.29 (0.59) 0.153

MDS-UPDRS Part III total score ON (#) 29.47 (8.49) 32.65 (9.92) 0.36

MDS-UPDRS Part III total score OFF (#) 43.88 (11.3) 46.18 (10.02) 0.39

MDS-UPDRS Part III PIGD score ON (#) 2.59 (1.42) 3.53 (2.62) 0.34

MDS-UPDRS Part III PIGD score OFF (#) 3.53 (1.66) 5.35 (3.28) 0.09

MoCA total score (#) 26.94 (2.38) 26.88 (2.93) 0.81

LEDD total score (mg/day) 1,541.94 (2,342.53) 1,128.1 (533.18) 0.36

PDQ39 total score (%) 13.91 (7.3) 23.3 (14.82) 0.13

PDQ39 Mobility score (%) 11.91 (12.14) 21.76 (18.68) 0.11

MDS-UPDRS Dyskinesia ON (#) 0.35 (0.49) 0.53 (0.51) 0.31

NFOGQ past month (#) 0.47 (0.51) 0.76 (0.44) 0.08

Activity measures from daily life

Number of days 6.76 (0.56) 6.41 (1.28) 0.31

Total hours of recording 64.57 (8.64) 62.07 (16.02) 0.58

Bouts/hours (#) 7.82 (3.05) 7.65 (4.16) 0.70

Strides/hours (#) 149.87 (60.95) 161.07 (94.82) 0.85

Turns/hours (#) 20.19 (9.33) 21.34 (15.71) 0.97

H and Y, Hoehn and Yahr scale; MDS-UPDRS Part III, Movement Disorders Society-Unified Parkinson’s Disease Rating Scale, motor sub-score; MoCA, Montreal Cognitive Assessment; LEDD,

levodopa equivalent daily dose; PDQ39, Parkinson’s Disease Questionnaire-39; NFOGQ Past Month, First question of NFOGQ for freezing in last month.

AUCs > 0.90) via the best subsets strategy, the most consistently

selected gait measures were variability of toe-out angle of foot (9x),

pitch angle of the foot during mid-swing (8x), and the maximum

average turn velocity (7x) (see Table 2). Figures 1, 2 show the ROC

curves and AUC values for the top 4 fall prediction models selected

via best subsets of gait metrics strategy and using falls history alone.

Considering the definition of the recurrent fallers (n= 20 fallers

and 14 non-fallers), the most consistently selected gait measures

were the pitch angle of the foot during mid-swing (8x), stride

time variability (8x), and foot-strike angle variability (7x) (see

Supplementary Table S2).

Discussion

This study offers preliminary evidence that different aspects

of gait and turning during daily life (specifically, gait, turning,

and variability domains) are important to predict future fallers.

Further, digital measures from different components of gait showed

more discriminative ability to predict future fallers from non-fallers

compared to falls history, alone.

The top ten models incorporating digital gait and turning

measures in this study were able to separate fallers from non-

fallers with an AUC over 0.90 compared to fall history alone,

which yielded an AUC of 0.77. Gait variability was the most

consistent domain selected, with toe out angle variability being the

most common variability measure selected, followed by stride time

variability. These findings are consistent with previous research

showing association between gait variability and fall risk in people

with PD (27–29).

Digital measures of gait and turning have been shown to

have a good predictive value for a fall risk. For an example, Van

Schooten et al. reported an AUC of 0.82 when assessing predictive

value of accelerometry based measures of gait for detecting falls

in 169 older adults (30). In 26 patients with multiple sclerosis,

toe-off angle in daily living has been identified as a significant

predictor of falls in patients with multiple sclerosis, with an AUC

of 0.86 (31). Additionally, an AUC of 0.93 was reported using

clinical and functional characteristics in a multivariate model of

fall prediction in 49 patients with PD (22), while fall classification

accuracies of between 70–80% have been reported using machine

learning models with gait metrics as principal predictors in 251

patients with PD (13). In this study, gait and turning domains

were most consistently selected by best subset selection following

the variability domain. Specifically, pitch angle (dorsiflexion) of

the foot during mid-swing and peak turn velocity were most

prevalent. Pitch angle of the foot is a particularly pertinent

measure for fall risk as it reflects the amount of toe clearance

achieved by the participant during mid swing, and thus may

contribute to trips or stumbles while walking. Additionally, daily

life turning characteristics in people with PD have been shown

to be significantly impaired compared to age-matched controls
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TABLE 2 Combination of digital gait measures that best discriminated future fallers from non-fallers in PD during daily life.

Digital measures of gait and turning AUC

1st 2nd 3rd 4th

Pitch angle of the foot during mid-swing Toe-out angle variability Turn velocity maximum Cadence variability 0.94 (0.84–1)

Pitch angle of the foot during mid-swing Toe-out angle variability Turn velocity Maximum Stride time variability 0.93 (0.82–1)

Pitch angle of the foot during mid-swing Toe-out angle variability Double support variability Stride time variability 0.93 (0.83–0.99)

Pitch angle of the foot during mid-swing Toe-out angle variability Turn velocity maximum Stance time variability 0.93 (0.82–1)

Pitch angle of the foot during mid-swing Turn angle Turn velocity maximum Stride time variability 0.93 (0.82–1)

Pitch angle of the foot during mid-swing Toe-out angle variability Turn velocity maximum – 0.92 (0.81–1)

Pitch angle of the foot during mid-swing Toe-out angle variability Double support variability Stance time variability 0.92 (0.81–0.99)

Pitch angle of the foot at toe-off Toe-out angle variability Turn velocity maximum Cadence variability 0.91 (0.79–1)

Pitch angle of the foot maximum at toe-off Toe-out angle variability Turn velocity maximum Stride time variability 0.91 (0.78–1)

Pitch angle of the foot during mid-swing Toe-out angle variability Trunk transverse range of motion Stride time variability 0.91 (0.78–0.99)

Lower body. Variability. Turning. Lower trunk.

FIGURE 1

ROC plots to predict future falls based on falls history alone (blue

line) and various combinations of gait measures (top 4 from Table 2).

(9, 21, 32–34), and turning is associated with falls in older adults

(35, 36).

Findings from several recent studies highlight gait, variability,

and turning domains in daily life as particularly relevant to

understanding PD disease severity and fall prediction during daily

living. del Din et al. showed that daily-living gait and variability

measures, collected with a wearable sensor, were significantly

different in individuals with PD compared to controls (7), and

thereafter showed that similar domains were significantly different

between fallers with PD compared to non-fallers with PD (11).

Galperin et al. used a wearable sensor for 7 days of daily-

living monitoring of individuals with PD and a history of falls

(37). Their findings showed that daily-living gait and variability

measures accounted for 62% of explained variance in the MDS-

UPDRS- part III scores of fallers with PD, followed by laboratory

measures (30%) and participant demographics/characteristics (7%)

(37). More recently, Shah et al. demonstrated that gait, turning,

FIGURE 2

AUC values to predict future falls based on falls history alone and

various combinations of gait measures (top 4 from Table 2).

and variability measures, captured with wearable sensors during

1 week of continuous home monitoring, were most significant in

distinguishing patients with PD from healthy controls (19). Our

results suggest that turning might be more important in identifying

the patients who are at risk of their first fall, while gait variability

might be more important in identifying the recurrent fallers.

These findings provide support for the collection of digital gait,

variability, and turning markers to objectively assess fall risk of

people with PD during daily life. Notably, three body worn sensors

were required to capture gait, turning, and variability domains

during daily life monitoring. The use of instrumented socks to

capture mobility of each foot represents a novel approach that

may be useful for home monitoring during clinical trials, as they

are less obtrusive for continuous monitoring compared to sensors

strapped to the foot. Moreover, implementing three body worn
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sensors allows for more accurate measurement of gait, variability,

and turning domains compared to a single lumbar sensor, which

neglects to capture foot angle and variability of foot placement.

There are several limitations of the current study. First, we

recommend caution in interpreting the results as the individual

models from this small size study are not yet validated in a separate

cohort. Hence the performance of the models may be optimistic.

Second, future studies with larger cohorts are needed to validate

these preliminary findings. Third, we performed the analysis by

taking the mean of each measure for all the strides over a week

for each subject and thus gave equal weight to each stride. But in

reality, gait speed and othermeasures vary for gait bouts of different

lengths (7, 38–40). Hence, future work will focus on how gait bout

length affects the discriminatory power of the proposed fall models.

Forth, the follow-up period may also affect the ability of fall history

to predict future falls. Finally, test-retest reliability and sensitivity

of the top measures related to disease progression and falls should

be investigated to explore the utility of these digital endpoints for

clinical trials.

Conclusion

Inertial sensors worn on the feet and lumbar level for 7

days provided measures of gait pace, variability and turning that

increased the ability to predict future falls in people with PD,

beyond predictions from fall history alone.
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