AUTHOR=Shah Vrutangkumar V. , Jagodinsky Adam , McNames James , Carlson-Kuhta Patricia , Nutt John G. , El-Gohary Mahmoud , Sowalsky Kristen , Harker Graham , Mancini Martina , Horak Fay B. TITLE=Gait and turning characteristics from daily life increase ability to predict future falls in people with Parkinson's disease JOURNAL=Frontiers in Neurology VOLUME=14 YEAR=2023 URL=https://www.frontiersin.org/journals/neurology/articles/10.3389/fneur.2023.1096401 DOI=10.3389/fneur.2023.1096401 ISSN=1664-2295 ABSTRACT=Objectives

To investigate if digital measures of gait (walking and turning) collected passively over a week of daily activities in people with Parkinson's disease (PD) increases the discriminative ability to predict future falls compared to fall history alone.

Methods

We recruited 34 individuals with PD (17 with history of falls and 17 non-fallers), age: 68 ± 6 years, MDS-UPDRS III ON: 31 ± 9. Participants were classified as fallers (at least one fall) or non-fallers based on self-reported falls in past 6 months. Eighty digital measures of gait were derived from 3 inertial sensors (Opal® V2 System) placed on the feet and lower back for a week of passive gait monitoring. Logistic regression employing a “best subsets selection strategy” was used to find combinations of measures that discriminated future fallers from non-fallers, and the Area Under Curve (AUC). Participants were followed via email every 2 weeks over the year after the study for self-reported falls.

Results

Twenty-five subjects reported falls in the follow-up year. Quantity of gait and turning measures (e.g., number of gait bouts and turns per hour) were similar in future fallers and non-fallers. The AUC to discriminate future fallers from non-fallers using fall history alone was 0.77 (95% CI: [0.50–1.00]). In contrast, the highest AUC for gait and turning digital measures with 4 combinations was 0.94 [0.84–1.00]. From the top 10 models (all AUCs>0.90) via the best subsets strategy, the most consistently selected measures were variability of toe-out angle of the foot (9 out of 10), pitch angle of the foot during mid-swing (8 out of 10), and peak turn velocity (7 out of 10).

Conclusions

These findings highlight the importance of considering precise digital measures, captured via sensors strategically placed on the feet and low back, to quantify several different aspects of gait (walking and turning) during daily life to improve the classification of future fallers in PD.