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Objective: The study aimed to explore the miRNA and mRNA biomarkers in

post-stroke depression (PSD) and to develop a miRNA–mRNA regulatory network

to reveal its potential pathogenesis.

Methods: The transcriptomic expression profile was obtained from the GEO

database using the accession numbers GSE117064 (miRNAs, stroke vs. control)

and GSE76826 [mRNAs, late-onset major depressive disorder (MDD) vs. control].

Di�erentially expressed miRNAs (DE-miRNAs) were identified in blood samples

collected from stroke patients vs. control using the Linear Models for Microarray

Data (LIMMA) package, while the weighted correlation network analysis (WGCNA)

revealed co-expressed gene modules correlated with the subject group. The

intersection between DE-miRNAs and miRNAs identified by WGCNA was defined

as stroke-related miRNAs, whose target mRNAs were stroke-related genes with

the prediction based on three databases (miRDB, miRTarBase, and TargetScan).

Using the GSE76826 dataset, the di�erentially expressed genes (DEGs) were

identified. OverlappedDEGs between stroke-related genes andDEGs in late-onset

MDD were retrieved, and these were potential mRNA biomarkers in PSD. With the

overlapped DEGs, three machine-learning methods were employed to identify

gene signatures for PSD, which were established with the intersection of gene sets

identified by each algorithm. Based on the gene signatures, the upstream miRNAs

were predicted, and a miRNA–mRNA network was constructed.

Results: Using the GSE117064 dataset, we retrieved a total of 667 DE-miRNAs,

which included 420 upregulated and 247 downregulated ones. Meanwhile,

WGCNA identified twomodules (blue and brown) thatwere significantly correlated

with the subject group. A total of 117 stroke-related miRNAs were identified

with the intersection of DE-miRNAs and WGCNA-related ones. Based on the

miRNA-mRNA databases, we identified a list of 2,387 stroke-related genes, among

which 99 DEGs in MDD were also embedded. Based on the 99 overlapped

DEGs, we identified three gene signatures (SPATA2, ZNF208, and YTHDC1) using

three machine-learning classifiers. Predictions of the three mRNAs highlight four

miRNAs as follows: miR-6883-5p, miR-6873-3p, miR-4776-3p, andmiR-6738-3p.

Subsequently, a miRNA–mRNA network was developed.

Conclusion: The study highlighted gene signatures for PSD with three genes

(SPATA2, ZNF208, and YTHDC1) and four upstream miRNAs (miR-6883-5p,

miR-6873-3p, miR-4776-3p, and miR-6738-3p). These biomarkers could further

our understanding of the pathogenesis of PSD.
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1. Introduction

Post-stroke depression (PSD) is a common complication after

a stroke, affecting up to one-third of stroke survivors (1). It

compromises individual functional recovery, impairs the quality

of life, and increases the burden on the healthcare system (2). It

was observed that depressive symptoms were negatively correlated

with functional recovery (3) and related to higher mortality (4).

However, the pathogenesis of PSD remains elusive to date.

MicroRNAs (miRNAs) are a group of small non-coding

RNAs with downregulative activity on post-transcriptional gene

expression by binding to the 3
′

untranslated regions of target

mRNAs (5, 6). Profiles of miRNA expression could be as useful

as mRNA in diagnosis and prognosis (7). Of note, miRNAs

can be secreted into body fluids, including peripheral blood and

urine, which can be non-invasively accessed for detection (8).

As such, serum miRNAs have been widely studied in various

diseases, including stroke as potential biomarkers (9–12). With

the development of RNA sequencing technology, data sharing,

and machine-learning methods, the identification of feature serum

miRNAs and the construction of related signatures in a large

number of subjects have become practical. According to previous

studies, serum miRNA-based signatures could effectively predict

the risk of strokes in healthy individuals (13) and clinical outcomes

(14, 15) in patients with neurological tumors. Moreover, miRNAs

are functionally involved in numerous biological processes,

including cellular metabolism (16), cell-cycle regulation (17), and

immune response (18). Therefore, we hypothesized that miRNAs

and their target mRNAs could be potential biomarkers implicated

in the pathogenesis of PSD.

With the advancement of the machine-learning methods, the

identification of relevant biomarkers becomes practical in the

big data era. The least absolute shrinkage and selection operator

(LASSO), a regression analysis algorithm, uses regularization to

improve prediction accuracy (19). The support vector machine

(SVM) is a supervised machine-learning technique widely utilized

for both classification and regression (20). Random forest (RF)

is considered the most accepted group classification technique

because of having excellent features such as variable importance

measure and out-of-bag error (21). In this study, we aimed to

explore the miRNA as well as mRNA biomarkers in PSD and

to construct a miRNA–mRNA regulatory network to reveal its

potential pathogenesis using a machine-learning approach.

2. Materials and methods

2.1. Data source

The miRNAs expression profile was obtained from the GEO

database (https://www.ncbi.nlm.nih.gov/geo/) using the accession

number GSE117064, while mRNA expressions of blood samples

from patients with late-onset MDD and controls were embedded

in GSE76826. A total of 1,785 serum samples were incorporated

into the dataset, which consists of 173 samples of patients

with stroke and 1,612 controls. Extraction, detection, and data

processing of serum miRNAs were provided in the previous report

(13). Stroke was diagnosed based on physical and neurological

examinations supplemented with brain imaging data, including

computed tomography and/or magnetic resonance imaging, while

healthy controls were defined as having no history of stroke and

negative on medical checkup in a clinic (13). In GSE76826, there

were 12 blood samples of late-onset MDD and 10 samples of

controls. Late-onset MDD was defined according to the DSM-IV

diagnosis and age of ≥ 50 years (22).

2.2. Di�erential analysis, WGCNA, and
identification of stroke-related genes

The linear models for microarray data (LIMMA) package

(23) in R software was applied to extract differentially expressed

miRNAs (DE-miRNAs) between stroke and control samples. The p-

value was adjusted with the false discovery rate (FDR) (24). An FDR

of< 0.05 and | FC| of> 1 were set as the threshold for DE-miRNAs.

The visualization of differential analysis was presented with a

heatmap and a volcano plot. Using GSE117064, the weighted gene

correlation network analysis (WGCNA) (25, 26) was performed to

construct a co-expression network to identify hub miRNAmodules

using the “WGCNA” package. Filtered miRNAs were employed

to construct a scale-free network by calculating the connection

strength between miRNAs. We assessed the correlation among

miRNA modules as well as their correlations to the clinical group

(stroke vs. control). Subsequently, DE-miRNAs incorporated in the

stroke-related modules were identified as stroke-related miRNAs,

and their target genes were predicted using miRDB (https://mirdb.

org/), miRTarBase (https://mirtarbase.cuhk.edu.cn/~miRTarBase/

miRTarBase_2022/php/index.php), and TargetScan (https://www.

targetscan.org/vert_80/).

2.3. Identification of overlapped DEGs in
post-stroke depression

Overlapped DEGs for post-stroke depression were defined as

aberrantly expressed mRNAs in the blood sample collected from

stroke patients as well as late-onset MDD. In other words, these

overlapped DEGs were implicated in two diseases simultaneously.

Differentially expressed mRNAs (DE-mRNAs) for late-onset MDD

were defined in a similar manner with an FDR of< 0.05 and | FC| of

> 0.5. Among these DE-mRNAs, stroke-related genes were selected

to identify overlapped DEGs for post-stroke depression. With these

overlapped DEGs, the clusterProfiler R package (27) was utilized to

perform the gene ontology (GO) terms and the Kyoto Encyclopedia

of Genes and Genomes (KEGG) pathway enrichment analysis

on the predicted target genes. Three categories were included in

the GO enrichment analysis, i.e., biological process (BP), cellular

component (CC), and molecular function (MF).

2.4. Gene signatures and a miRNA–mRNA
regulatory network for PSD

The least absolute shrinkage and selection operator (LASSO),

random forest (RF), and support vector machine (SVM) algorithms
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FIGURE 1

Di�erential analysis of miRNA expression profiles in stroke vs. control: (A) a volcano plot and (B) a heatmap with top 100 DE-miRNAs.

were utilized to build gene signatures for PSD using the overlapped

DEGs. Gene signatures were established with the intersection of

gene sets identified by each algorithm. The receiver operating

characteristic (ROC) curves were mapped for the identified gene

signatures, where the area under curves (AUCs) was calculated

as an indicator of classification. The AUCs of > 0.8 were

considered excellent classification, while AUCs of > 0.7 were

considered acceptable. By matching miRNA–mRNA pairs in

multiple databases (miRDB, miRTarBase, and TargetScan), the

upstream miRNAs were predicted using the gene signatures for

PSD. Subsequently, a potential miRNA–mRNA regulatory network

for PSD was established.
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FIGURE 2

WGCNA identified two stroke-related miRNA modules: (A) a sample clustering tree; (B) soft threshold determination; (C) cluster dendrogram; (D) a

module-trait correlation heatmap; (E) a scatter plot presenting correlation of module membership vs. gene significance in the blue module; and (F) a

scatter plot presenting correlation of module membership vs. gene significance in the brown module.

3. Results

3.1. Di�erential analysis, WGCNA, and
identification of stroke-related genes

The overall analysis of the study was presented in the

Graphical abstract. Using the LIMMA package, we retrieved

a total of 667 DE-miRNAs, which included 420 upregulated

and 247 downregulated ones. The feature DE-miRNAs

with the absolute value of logFC of >2 were marked

in green in the volcano plot (Figure 1A). Meanwhile, a

heatmap showing the top 100 DE-miRNAs is presented in

Figure 1B. The details of these DE-miRNAs can be found in

Supplementary material 1.

We performed the hierarchical clustering of the samples

(Figure 2A), and the soft-thresholding power was set at 5 with the

cutoff score of Scale-free R2 being 0.9 (Figure 2B). The clustering

dendrograms of the sample identified five modules (Figure 2C)

and their correlations with clinical groups were presented in the

heatmap plot (Figure 2D). Subsequently, we selected the blue

and brown modules with the highest correlation coefficient for

downstream analysis. The scatter plots in Figures 2E, F show

a significant correlation between gene significance and module

memberships in the aforementioned modules, while the details can

be accessed in Supplementary material 2.

Stroke-related miRNAs were identified with the intersection of

DE-miRNAs and modules of interest found in WGCNA, leading

to the identification of 117 miRNAs (Figure 3A). A total of 2,387

target mRNAs were predicted with these stroke-related miRNAs

according to the databases. Thus, these mRNAs were identified as

stroke-related genes.

3.2. Identification of overlapped DEGs in
post-stroke depression

Using mRNA expression profiles in GSE76826, we identified

641 DEGs with 10 samples from late-onset MDD and 12 controls.

To find potential biomarkers in PSD, we intersected stroke-related

genes with DEGs observed in MDD patients. As a result, 99 DEGs

were identified (Figure 3B). The list of the 99 DEGs can be accessed

in Supplementary material 3.

Thereafter, using clusterProfiler in R, GO functional and KEGG

enrichment analyses were performed on the 99 DEGs to further

understand their biological functions. As represented in Figure 3C,

the biological process (BP) was significantly enriched in T cell

differentiation in the thymus, mononuclear cell differentiation,

cellular response to glucose starvation, regulation of striatedmuscle

cell differentiation, regulation of lymphocyte apoptotic process;

the cellular component (CC) was particularly enriched in the

cytoplasmic side of the plasma membrane, cytoplasmic side of

the membrane, nuclear speck, podosome, heterotrimeric G-protein

complex; and molecular function (MF) was mainly enriched in

DNA-binding transcription activator activity, RNA polymerase II-

specific, DNA-binding transcription activator activity, cytokine

receptor binding, platelet-derived growth factor receptor binding,

and mitogen-activated protein (MAP) kinase activity.
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FIGURE 3

Identification of potential DEGs in PSD and enrichment analysis: (A) identification of stroke-related miRNAs; (B) identification of overlapped DEGs in

PSD; (C) GO enrichment analysis; and (D) KEGG pathway analysis.

Furthermore, the KEGG pathway analysis of the 99 DEGs is

shown in Figure 3D. Among all the pathways enriched, the top five

most significant pathways were as follows: sphingolipid signaling

pathway, EGFR tyrosine kinase inhibitor resistance, human

cytomegalovirus infection, FoxO signaling pathway, and MAPK

signaling pathway. Among them, MAPK signaling pathways have

been associated with the pathophysiology of PSD in several

studies (28–30).

The PPI network of the 99 DEGs was constructed by the

STRING online database with high confidence of>0.4 applied. The

disconnected nodes (genes) were removed from the PPI network

(Figure 4A). The network was then presented using the cytoHubba

tool in Cytoscape (Figure 4B); the top 10 hub genes were as follows:

TP53, MAPK14, VEGFA, GPR29, CD40LG, SMAD3, GNAQ,

PTEN, IL7R, and IL6R.

3.3. Selection of feature mRNA by
machine-learning algorithms and
construction of a miRNA–mRNA network

For a further selection of the mRNA features for post-stroke

depression, we used the LASSO algorithm to identify a set of

13 mRNAs (Figure 5A), the SVM algorithm to select a set of 10

mRNAs (Figures 5B, C), and the RF algorithm to select a set of 23

mRNAs (Figure 5D). Specifically, a total of 99 genes were selected

by the SVM algorithm to construct the classification model using a

10-fold cross-validation.When 10 genes were selected, the accuracy

of the model was the highest (Figures 5B, C). The RF algorithm

screened out a total of 99 genes, and the top 23 genes with positive

values of importance were selected (Supplementary material 4).

RF: The RF algorithm screened out a total of 99 genes, and

the top 23 genes with positive values of importance were selected

(datasheet attached). After combining the mRNAs screened out

via the LASSO, SVM, and RF algorithms, three diagnostic mRNAs

(SPATA2, ZNF208, and YTHDC1) were identified for post-stroke

depression (Figure 5E). These genes were also validated using the

ROC curves with AUCs > 0.89 (Figures 6A–C). The prediction

of these genes revealed a panel of four miRNAs, with which the

genes form a miRNA–mRNA regulatory network, as presented in

Figure 6D.

4. Discussion

In the present study, we identified stroke-related genes

through differential analysis, WGCNA, as well as target
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FIGURE 4

Protein–protein interaction (PPI) network using the overlapped DEGs. (A) PPI network based on the STRING database; (B) representation of the

network using Cytoscape.

prediction via miRNAs. Subsequently, 99 overlapped DEGs

were identified in late-onset MDD to reveal potential

biomarkers in PSD. Enrichment analysis revealed that these

genes were implicated in pathways related to sphingolipid

signaling, EGFR tyrosine kinase inhibitor resistance, human

cytomegalovirus infection, FoxO signaling, and MAPK signaling.

Furthermore, three machine-learning algorithms were employed

to explore gene signatures for PSD, which was validated

with the ROC curves. At last, a miRNA–mRNA network

was constructed.

Our study highlighted gene signatures for PSD with three

genes: SPATA2, ZNF208, and YTHDC1. However, there were

no reports on their role in PSD. SPATA2 enables signaling

receptor complex adaptor activity and ubiquitin-specific protease

binding activity (31). SPATA2 is involved in several processes,

including protein deubiquitination, necroptotic process, and

tumor necrosis factor-mediated signaling pathway (32, 33). The

knockdown of SPATA2 leads to the activation of P38MAPK

and NLRP3 inflammasome and the enhancement of NF-κB

signaling, indicating that SPATA2 plays a protective role against

brain inflammation induced by ischemia/reperfusion injury (34).

ZNF208 polymorphisms were observed to be associated with

ischemic stroke in a Chinese Han population (35); however, no

other reports concerning its role in stroke or depression were

reported. An increasing number of studies have shown that

YTHDC1, an important N6-methyladenosine (m6A) reader, plays

a key role in multiple biological functions as well as in disease

progression. It was observed that YTHDC1 could be protective

against ischemic stroke by enhancing Akt phosphorylation

via destabilizing PTEN mRNA (36). Therefore, it could be

a potential therapeutic target for ischemic stroke. With the

gene signatures for PSD, we predicted a list of four miRNAs

(miR-6883-5p, miR-6873-3p, miR-4776-3p, and miR-6738-3p)

based on the databases. Subsequently, a miRNA–mRNA network

was developed, and it could shed light on the pathogenesis

of PSD.

Emerging studies have investigated the role of miRNA–mRNA

networks in the pathogenesis and progression of diseases, such as

HBV-related hepatocellular carcinoma (37), stroke due to atrial

fibrillation (38), and MDD in ovarian cancer patients (39). These

studies revealed potential mechanisms by which the existing

risk factor or disease contributes to the development of specific

complications. In the case of PSD, datasets were exploited to

find overlapped DEGs in stroke and late-onset MDD. Using three

machine-learning classifiers, we further selected three feature genes

and four upstream miRNAs, which could be potential targets

for PSD treatment. To the best of our knowledge, the present

study was the first to depict a miRNA–mRNA network for PSD;

further investigations with a focus on the biological functions

of these miRNAs and mRNAs are necessary. Our study suffered

from a lack of wet lab validation, which may be the major

limitation. However, the role of the miRNAs and mRNAs on PSD

was first reported in our study, which could be of interest to

further studies.
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FIGURE 5

Machine-learning methods identified three hub genes in PSD: (A) 10-fold cross-validation for tuning parameter selection in the LASSO model, where

LASSO identified 13 mRNAs; (B) accuracy of the SVM algorithm; (C) error of the estimate generation for the SVM algorithm; (D) relationship between

model error rate and number of trees for the RF algorithm; and (E) feature selection with the intersection of results from LASSO, SVM, and RF

algorithms.
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FIGURE 6

ROC validation of three hub genes (A) SPATA2, (B) YTHDC1, (C) ZNF208 and construction of a miRNA–mRNA network (D).

5. Conclusion

Our study highlighted gene signatures for PSDwith three genes:

SPATA2, ZNF208, and YTHDC1; their upstream miRNAs were

predicted as follows: miR-6883-5p, miR-6873-3p, miR-4776-3p,

and miR-6738-3p. The miRNA–mRNA network was constructed,

and these biomarkers could further our understanding of the

pathogenesis of PSD.
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