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Purpose: Quantitative Muscle MRI (qMRI) is a valuable and non-invasive tool to

assess disease involvement and progression in neuromuscular disorders being

able to detect even subtle changes in muscle pathology. The aim of this study

is to evaluate the feasibility of using a conventional short-tau inversion recovery

(STIR) sequence to predict fat fraction (FF) and water T2 (wT2) in skeletal muscle

introducing a radiomic workflow with standardized feature extraction combined

with machine learning algorithms.

Methods: Twenty-five patients with facioscapulohumeral muscular dystrophy

(FSHD) were scanned at calf level using conventional STIR sequence and qMRI

techniques. We applied and compared three di�erent radiomics workflows (WF1,

WF2, WF3), combined with seven Machine Learning regression algorithms (linear,

ridge and lasso regression, tree, random forest, k-nearest neighbor and support

vector machine), on conventional STIR images to predict FF and wT2 for six

calf muscles.

Results: The combination of WF3 and K-nearest neighbor resulted to be the best

predictor model of qMRI parameters with a mean absolute error about ± 5 pp for

FF and ± 1.8 ms for wT2.

Conclusion: This pilot study demonstrated the possibility to predict qMRI

parameters in a cohort of FSHD subjects starting from conventional

STIR sequence.
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1. Introduction

Muscle Magnetic Resonance Imaging (mMRI) has been

increasingly used over the last years as a powerful diagnostic

tool to evaluate disease involvement and progression in several

neuromuscular disorders (1–3). mMRI is able to demonstrate

selective patterns of damage distribution both in terms of fat

replacement and muscular edema (4, 5). Facioscapulohumeral

muscular dystrophy (FSHD) is a genetic muscle disorders that

causes a slowly progressive and asymmetric weakness of the

facioscapulohumeral, abdominal, paraspinal, and lower leg muscles

(6–9) both in pediatric and adult patients. mMRI of FSHD

has relied on acquisition of conventional sequences such as T1-

weighted (T1w) and short-tau inversion recovery (STIR) sequences

that are able to foster the qualitative detection of anatomical

changes in muscles size or shape, particularly related to fat

replacement and muscle edema (or edema –like) (10, 11), revealing

a widespread involvement both in upper girdle and lower limbs

(12, 13). The use of mMRI enabled to propose a peculiar model

for FSHD disease evolution, highlighting how patients undergo a

muscle-selective involvement with an early hyperintense signal on

STIR sequence related to edema/inflammation, followed by fatty

replacement of single muscles, particularly evident on T1w images

(14). Recently, the use of STIR signal intensity as a longitudinal

marker of inflammation suppression in FSHD has been questioned

because an incremental STIR signal has been reported in FSHD

patients during the immunosuppressive treatment period (15).

As per other neuromuscular diseases, semi-quantitative visual

scales have been applied to support and improve the evaluation

of morphological changes in muscles, e.g., Mercuri and Fischer

scales (16, 17). The recent development and implementation of

quantitative MRI (qMRI) in the field of neuromuscular diseases

allowed to go beyond the conventional and semi-quantitative

approaches, being able to assess quantitative parameters (e.g., the

percentage of fat replacement in the muscle, the so called fat

fraction, FF), that have been correlated both with transcriptome

signatures (DUX4 and PAX7 signatures) and with clinical tests

(e.g., Ricci clinical severity score) (18). Therefore the development

of qMRI techniques improved the non-invasive applicability of

muscle imaging in the diagnostic process and follow-up of muscle

disorders (19). Neither the clinical outcomes nor the conventional

muscle MRI techniques, in fact, are deemed to be sensitive enough

to track muscle changes in slowly progressing diseases (3). qMRI

is considered a valuable tool to monitor even fine changes in

neuromuscular disease evaluation and longitudinal progression

over time because it delivers quantitative information such as

muscles FF and the muscle water T2 (wT2) relaxation time which

is an unspecific marker for disease activity because it is sensitive

to the presence of leaky membranes, muscle fiber necrosis, edema,

inflammation, or denervation (20). Dixon imaging andMulti-Echo

T2 spin-echo sequences are the most commonly used qMRI

methods to compute FF and wT2 (3). Up-to-date qMRI methods

require custom-tailored sequences provided by vendors on the

MRI scanner resulting in high-cost implementations. Recently,

Image Biomarker Standardization Initiative (IBSI, https://ibsi.

readthedocs.io/en/latest/) radiomics proved to be a powerful tool to

extract quantitative information fromMRI images, becoming a new

asset in the diagnostic field (21). It can identify the main patterns of

a disease through the mathematical extraction of pixels intensity

and spatial interrelationships distributions. Radiomics quantifies

textural information that, once dimensionally reduced (22, 23), can

be combined with machine learning (ML) algorithms to predict

neuromuscular quantitative biomarkers such as FF and wT2 with

a good predictive power (24). Standardized features extraction can

also help to overcome possible limitations due to the presence

of fat in the evaluation of wT2 biomarkers through exponential

fitting. However, it is still unclear whether and how radiomics could

be applied on conventional STIR images and combined with ML

algorithms to predict FF and wT2.Moreover, it remains unexplored

whether the predictive power of ML algorithms on conventional

STIR images could be improved through the definition of new

radiomic features as an alternative to the ones provided by

commercial radiomic features extraction software (25).

STIR sequence is most likely available in all MRI centers and

it has a very competitive acquisition time compared to qMRI

sequences. In this study, we aim to investigate whether different

radiomics and machine learning algorithms may be applied to

conventional STIR sequence to predict quantitative parameters in

skeletal muscle.

2. Materials and methods

Twenty-five FSHD patients (10 females, age range: 19–60 y)

and six healthy volunteers (HCs) (5 females, age range: 47–63 y)

were scanned on a 3T MRI scanner (Magnetom Skyra, Siemens

Healthcare, Erlangen, Germany) using integrated spine and body

surface coils. Acquisition volume was centered on the calf with

the last acquired slice located at 6 cm proximally from the upper

limit of the patella. The MRI protocol included 3D 6-point multi-

echo gradient-echo (MEGE) [52 slices, slice thickness = 5.0mm,

distance factor = 20%, resolution = 1 × 1 × 5 mm3, TR/ TE

= 35 ms/1.7–9.2ms, scan time = 15min], multi-echo spin echo

(MESE) [7 slices, TH = 10mm, DF = 300%, resolution = 1.2 ×

1.2 × 10 mm3, TR/TE = 4,100 ms/10.9–185.3ms, 17 echoes, scan

FIGURE 1

Example of axial STIR image of an FSHD subject at calf level. Image

acquired at Neuroradiology Department of IRCCS Mondino

Foundation.
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FIGURE 2

Segmentation flow from MEGE to MESE and STIR images. Automatic segmentation was performed on MEGE slice followed by manual correction for

6 ROIs: Soleus (Red), Medial and Lateral Gastrocnemius (Green, Dark Blue), Anterior Tibialis (Yellow), Extensor Digitorum Longus (Light Blue),

Peroneus Longus (Pink). Then the ROIs were co-registered and manually corrected both on MESE and STIR images.

time= 5.13min] and 2D STIR sequences [50 slices, TH= 5.0mm,

DF = 20%, resolution = 1 × 1 × 5mm3, TR/TE = 4,200/82ms,

TI = 230ms, scan time = 3.40min]. An example of STIR image

is reported in Figure 1. Pre-processing steps have been performed

on STIR images in order to ensure features extraction on an

inter-patients harmonized grayscale values. In particular, all images

were pre-processed by 3DSlicer (26) N4 Bias Field Correction

to correct low frequency intensity non-uniformity in MRI

images, and 3DSlicer Histogram Matching to normalize grayscale

MRI images.

A single slice from the medial calf level of each FSHD patient

was selected from the first echo images of MEGE because of

the higher SNR than the other echoes. Each selected slice was

automatically segmented (27) into six regions of interest (ROIs) for

each calf muscle, i.e. Soleus (S), Medial and Lateral Gastrocnemius

(MG, LG), Anterior Tibialis (TA), Extensor Digitorum Longus

(ELD), Peroneus Longus (Pe). The ROIs were co-registered to the

medial calf slice of MESE and STIR using the linear registration

command ‘flirt’ of FSL software (28). A single trained operator

with 3 years of experience manually corrected each ROIs after

the automatic segmentation of MEGE images and after the co-

registration on MESE and STIR images (Figure 2).

For each subject and each muscle, radiomic features extraction

and ML prediction were performed on the mid-calf slice of

STIR image because it gives a representation of all calf muscles

with a cross sectional area (CSA) wide enough to ensure the

extraction of a robust pixel intensity distribution (29). Fifty

six radiomics features were extracted averaging left and right

side per each muscle. In particular, we extracted 25 first-order

statistical-based features concerning voxels intensity distributions,

e.g., CONVENTIONAL_mean, CONVENTIONAL_std,

CONVENTIONAL_max, CONVENTIONAL_Q1, 26 second-

order statistical-based features highlighting voxels spatial

relationship such as the gray level co-occurrence matrix (GLCM)

features (e.g., GLCM_Correlation, GLCM_Entropy_log10)

and the gray level zone length matrix (GLZLM) features

(e.g. GLZLM_LZE, GLZLM_LGZE, GLZLM_HGZE), 5 shape

related features concerning size and geometric properties (e.g.

SHAPE_Volume(mL), SHAPE_Volume(vx)) (25). Finally, ground

truth FF and wT2 values, which the ML predictions have been

compared to, were calculated by Fatty Riot algorithm (30)

and by EPG signal simulation (two-component model, both

for water and fat) (31, 32) from mid-calf MEGE and MESE

slice, respectively.

2.1. Dataset, dimensionality reduction, and
machine learning algorithms

We compare the performance in predicting calf muscle FF and

wT2 values introducing three different workflows. In particular,
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inspired by Felisaz et al. (24) work, the first workflow predicts

FF and wT2 combining radiomics with LIFEx software (25),

principal component analysis (PCA) (33) and ML regression

models. The second method uses the same features extraction

and ML models of the previous method but explores the use of

a new dimensionality reduction technique (23) as an alternative

to PCA to verify a possible improvement in the prediction of

neuromuscular quantitative parameters. The third method relies

neither on LIFEx features nor on any dimensionality reduction

technique. In particular, two STIR-based features are defined as

markers of muscle fat percentage and muscle inflammation. These

two features are used as predictors in ML models to test whether

there is an improvement in the predictive performance of FF

and wT2.

2.2. Workflow 1

Features extraction was performed using the IBSI standard-

compliant LIFEx software v.7.1.0 with the aim to extract shape

related features, taking into account for size and geometric

properties, first-order statistical-based features, concerning voxels

intensity distributions and second-order statistical-based features

highlighting voxels spatial relationship. In particular, a 2D

extraction was performed on each ROI corresponding to the six

calf muscles (left and right side were averaged). Therefore, we

obtained six datasets associated with each calf muscle. On each

dataset principal component analysis (PCA) (33) dimensional

reduction was performed in order to obtain lower-dimensional

data while preserving as much of the data variation as possible.

Six principal components, which in our case retain about 90%

of the explained variance, were identified and consequently

each data point was projected onto them. For each muscle

dataset we implemented the parametric linear (34), ridge (35)

and Lasso (36) regression and the non-parametric KNN (37),

SVM (38), tree (39), and RF (40) algorithms. A k-fold cross

validation resampling approach with k = 5 was used on the

associated PCA dimensionally reduced dataset. This procedure

guarantees a more realistic performance evaluation of each

machine learning model by fitting the same statistical model

several times on randomly obtained subsets of approximately

equal size.

2.3. Workflow 2

The starting point was the 2D extraction of texture features

from the pre-processed STIR image as described in WF1.

To reduce the dimensionality of the dataset we have used

the concept of information imbalance described in Glielmo

et al. (23). More precisely, performing feature selection or

dimensionality reduction in our case is the same task of finding

the most suitable measure between data points since explicit

features are available. This is because a particular choice of

features naturally gives rise to a different distance function

computed through the Euclidean norm (23). Therefore, we

designed a feature selection algorithm by selecting the subset

of features, which minimizes the information imbalance with

respect to the two targets, the values of the neuromuscular

biomarkers FF and wT2, separately. The definition of information

imbalance 1 used was its estimation on a dataset with N

points (23):

1 (A → B)≈
2
(

rB| rA=1
)

N
(1)

where A is the space consisting in the radiomic feature space

and B is the space associated to FF or wT2 biomarkers, rB

and rA represent the rank of each pair points in the space

B and A, respectively, calculated according to the distance dB
and dA, an euclidean norm defined in the relative space. Thus,

information imbalance quantifies the relative information content

of a distance measure with respect to another using the widespread

idea of local neighborhoods. A low value of 1 (A → B)

means that the combination of certain features can predict a

specific neuromuscular biomarker. Figure 3 shows for Soleum the

FIGURE 3

Optimized information imbalance for blocks of features for the

Soleus muscle. On the y-axis are reported the optimized

information imbalance values, which are calculated using Equation

(1), as a function of subsets of radiomic features (x-axis). (A)

Optimized imbalance with respect to the target biomarker FF (top)

and (B) to the wT2 (bottom).
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minimum information imbalance 1 (A → B) achievable with

a specific subset of radiomics features for the two biomarkers

wT2 and FF. For each muscle, we optimized the information

imbalance with respect to target FF and wT2 separately and

selected the subspace of radiomics features corresponding to

the associated minimum 1. The obtained datasets for each

muscle and each biomarker were used as input for machine

learning algorithms. As in WF1 parametric and non-parametric

algorithms were implemented using the resampling k-folds

cross validation.

2.4. Workflow 3

We defined two STIR-based radiomic features to be used as

an alternative to the conventional textural features of WF1 and

WF2. We use these new features as the only covariates in the

implementation of ML algorithms to test whether the prediction

performance of ML models could be improved over those obtained

by the previously described workflows. Firstly, we applied the same

segmentation method of FSHD patients on the pre-processed STIR

images of each healthy control (HC). In particular, six contiguous

HCs slices of mid-calf region were segmented in order to ensure

a robust pixel statistics of the grayscale intensity distributions.

Then, two reference limits, Upper Limit (UL) and Lower Limit

(LL), were defined as follows. Inspired by Dahlqvist et al. (41),

UL was defined for each calf muscle through the extraction of a

pixel-wise histogram of signal intensity distribution from all slices.

The six muscle-wise UL were set at the mean µ of the associated

pixels-intensity distribution added to 2 standard deviation (S.D.) σ :

ULi=µi+2σi (2)

with i indexing the six calf muscles.

Due to non-uniform fat suppression of STIR sequence, LL was

calculated as a representative value of fat signal intensity. Therefore,

subcutaneous fat (average thickness at medial level of HCs was

about 10.5mm) was manually drawn in HCs slices to ensure the

extraction of LL feature. In particular, from subcutaneous fat ROI

of all slices the pixel-wise histogram of signal intensity distribution

was extracted. Subsequently, the LL was set as the mode of the

distribution. In this way, we could calculate a more realistic fat

intensity representative value, limiting the contribution of blood

vessels present in the subcutaneous fat, which tend to shift themean

value of the associated distribution toward greater value due to the

hyperintesity STIR signal of the blood.

Moreover, the obtained LL and muscle-wise UL coefficients

were set as the reference limits to quantify, for every FSHD patient,

fat infiltration grade (FFG) and muscle edema grade (MEG) by

expressing the number of pixels below LL and above UL as a

percentage of the total pixels in each calf muscle. FFG and MEG

were then used as covariates in ML models to predict FF and

wT2, respectively. Particularly, muscle-wise FFG and MEG values

were separately collected into datasets according to calf muscles

and neuromuscular biomarker and used as input for machine

learning algorithms.

TABLE 1 Workflow 1: Evaluation of ML models predicting performances: mean absolute discrepancy (MAE) between the muscle-wise Fat Fraction gold

standard values from Fatty Riot algorithm and the predicted value through ML algorithms.

Mean absolute discrepancy (MAE)

Muscle LR Ridge Lasso TREE RF KNN SVM

S 0.155 (0.052) 0.139 (0.047) 0.130 (0.042) 0.147 (0.037) 0.137 (0.035) 0.116 (0.064) 0.102 (0.058)

MG 0.284 (0.064) 0.283 (0.059) 0.295 (0.054) 0.276 (0.068) 0.278 (0.073) 0.279 (0.066) 0.276 (0.066)

LG 0.066 (0.074) 0.133 (0.032) 0.139 (0.036) 0.129 (0.027) 0.147 (0.030) 0.137 (0.032) 0.109 (0.034)

TA 0.225 (0.039) 0.220 (0.039) 0.247 (0.051) 0.239 (0.035) 0.205 (0.013) 0.204 (0.030) 0.210 (0.030)

ELD 0.225 (0.028) 0.191 (0.021) 0.235 (0.0334) 0.205 (0.018) 0.189 (0.028) 0.082 (0.010) 0.167 (0.028)

Pe 0.039 (0.02) 0.046 (0.01) 0.043 (0.011) 0.044 (0.017) 0.046 (0.0117) 0.028 (0.011) 0.039 (0.017)

S.D. is reported in round brackets.

TABLE 2 Workflow 2: Evaluation of ML models predicting performances: mean absolute discrepancy (MAE) between the muscle-wise Fat Fraction gold

standard values from Fatty Riot algorithm and the predicted value through ML algorithms.

Mean absolute discrepancy (MAE)

Muscle LR Ridge Lasso TREE RF KNN SVM

S 0.171 (0.090) 0.135 (0.050) 0.130 (0.042) 0.128 (0.053) 0.113 (0.063) 0.072 (0.035) 0.096 (0.054)

MG 0.414 (0.180) 0.271 (0.052) 0.296 (0.053) 0.348 (0.042) 0.295 (0.051) 0.098 (0.033) 0.277 (0.050)

LG 1.133 (1.967) 0.255 (0.253) 0.136 (0.038) 0.121 (0.031) 0.134 (0.058) 0.134 (0.032) 0.115 (0.043)

TA 0.225 (0.039) 0.220 (0.039) 0.247 (0.051) 0.239 (0.035) 0.204 (0.013) 0.204 (0.030) 0.210 (0.030)

ELD 0.225 (0.028) 0.191 (0.021) 0.237 (0.033) 0.205 (0.0178) 0.189 (0.028) 0.082 (0.010) 0.167 (0.028)

Pe 0.039 (0.020) 0.046 (0.009) 0.043 (0.011) 0.044 (0.017) 0.046 (0.012) 0.028 (0.011) 0.039 (0.017)

S.D. is reported in round brackets.
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TABLE 3 Workflow 3: Evaluation of ML models predicting performances: mean absolute discrepancy (MAE) between the muscle-wise Fat Fraction gold

standard values from Fatty Riot algorithm and the predicted value through ML algorithms.

Mean absolute discrepancy (MAE)

Muscle LR Ridge Lasso TREE RF KNN SVM

S 0.130 (0.028) 0.130 (0.031) 0.130 (0.036) 0.137(0.032) 0.148 (0.043) 0.066 (0.031) 0.105 (0.054)

MG 0.312 (0.041) 0.309 (0.034) 0.297 (0.021) 0.286 (0.064) 0.275 (0.047) 0.052 (0.012) 0.316 (0.054)

LG 0.135 (0.030) 0.135 (0.030) 0.134 (0.030) 0.149 (0.018) 0.171 (0.026) 0.061 (0.012) 0.110 (0.023)

TA 0.277 (0.043) 0.273 (0.037) 0.262 (0.035) 0.242 (0.068) 0.235 (0.078) 0.057 (0.012) 0.194 (0.062)

ELD 0.242 (0.040) 0.242 (0.039) 0.240 (0.035) 0.270 (0.051) 0.211 (0.059) 0.048 (0.019) 0.180 (0.051)

Pe 0.045 (0.019) 0.044 (0.019) 0.044 (0.020) 0.048 (0.021) 0.052 (0.020) 0.034 (0.019) 0.040 (0.024)

S.D. is reported in round brackets.

TABLE 4 Workflow 1: Evaluation of ML models predicting performances: mean absolute discrepancy (MAE expressed in ms) between the muscle-wise

water T2 gold standard values from EPG signal simulation algorithm and the predicted value through ML algorithms.

Mean absolute discrepancy (MAE)

Muscle LR Ridge Lasso TREE RF KNN SVM

S 4.21 (0.52) 4.21 (0.55) 3.98 (0.65) 3.33 (1.23) 2.78 (0.68) 3.40 (0.87) 0.32 (0.81)

MG 9.22 (1.90) 9.05 (1.81) 8.80 (1.77) 9.73 (1.68) 9.35 (2.61) 8.72 (2.11) 8.25 (2.61)

LG 6.44 (2.49) 5.71 (1.29) 5.07 (0.39) 5.84 (1.46) 5.71 (1.59) 5.28 (0.730) 4.38 (1.68)

TA 9.30 (2.42) 9.22 (2.38) 9.09 (2.50) 9.34 (3.11) 10.08 (3.48) 9.42 (3.44) 9.22 (2.83)

ELD 9.03 (4.13) 8.83 (3.97) 8.41 (3.59) 7.33 (2.08) 7.83 (3.09) 7.64 (3.05) 6.64 (2.93)

Pe 1.96 (0.472) 1.92 (0.413) 1.83 (0.325) 1.83 (0.384) 1.68 (0.25) 1.81 (0.33) 1.76 (0.20)

S.D. is reported in round brackets.

TABLE 5 Workflow 2: Evaluation of ML models predicting performances: mean absolute discrepancy (MAE expressed in ms) between the muscle-wise

water T2 gold standard values from EPG signal simulation algorithm and the predicted value through ML algorithms.

Mean absolute discrepancy (MAE)

Muscle LR Ridge Lasso TREE RF KNN SVM

S 4.31 (1.20) 3.92 (1.26) 3.85 (1.33) 4.66 (1.07) 3.63 (1.33) 2.36 (0.615) 3.59 (0.87)

MG 10.40 (1.26) 10.40 (1.22) 10.40 (1.18) 8.17 (1.64) 9.05 (2.36) 2.15 (0.34) 8.25 (2.02)

LG 13.23 (4.17) 9.49 (2.28) 4.73 (2.32) 8.08 (2.84) 9.02 (2.45) 6.14 (1.98) 7.90 (2.36)

TA 8.36 (1.07) 7.99 (0.90) 7.70 (0.74) 7.62 (1.19) 7.04 (1.15) 3.28 (1.07) 6.84 (1.23)

ELD 26.19 (47.84) 4.21 (1.43) 5.21 (2.20) 4.21 (1.70) 4.90 (2.01) 2.39 (1.51) 3.67 (2.16)

Pe 2.71 (1.03) 2.24 (0.75) 2.24 (0.82) 2.07 (0.56) 1.97 (0.70) 0.80 (0.38) 1.73 (0.71)

S.D. is reported in round brackets.

TABLE 6 Workflow 3: Evaluation of ML models predicting performances: mean absolute discrepancy (MAE expressed in ms) between the muscle-wise

water T2 gold standard values from EPG signal simulation algorithm and the predicted value through ML algorithms.

Mean absolute discrepancy (MAE)

Muscle LR Ridge Lasso TREE RF KNN SVM

S 1.55 (0.45) 1.36 (0.45) 1.07 (0.45) 1.26 (1.33) 0.81 (1.17) 1.90 (0.58) 0.65 (0.97)

MG 8.46 (2.19) 8.46 (2.15) 8.46 (2.15) 9.26 (2.06) 10.40 (2.19) 2.06 (0.76) 8.00 (2.40)

LG 4.98 (0.69) 4.98 (0.73) 5.03 (0.69) 5.93 (0.90) 5.80 (1.16) 2.58 (0.99) 4.55 (1.57)

TA 9.91(2.58) 9.91 (2.54) 9.91 (2.50) 9.09 (2.91) 9.38 (2.62) 2.79 (1.07) 8.60 (2.66)

ELD 9.65 (3.47) 9.65 (3.47) 9.68 (3.20) 7.68 (2.01) 7.68 (2.05) 1.43 (0.502) 6.71 (2.35)

Pe 1.76 (0.25) 1.75 (0.24) 1.75 (0.24) 1.81 (0.27) 1.89 (0.30) 0.443 (0.15) 1.70 (0.27)

S.D. is reported in round brackets.
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As described in WF1, we implemented both parametric and

non-parametric models using the k-folds cross validation as a

resampling approach. WF3 brought the advantage of testing

the prediction accuracy of neuromuscular biomarkers with two

features that were easy to compute by means of a stand-

alone Python routine, without going through commercial texture

software and any dimensionality reduction techniques.

2.5. ML models performance evaluation

According to the aforementioned workflows, models

performance estimation was performed calculating for each

muscle and for each ML algorithm the mean absolute error (MAE):

MAEj=
6N

i=1|yi−ȳi |

N
(3)

where N is the number of observations, yi is the target value, ȳi
the predicted value, index j is related to the different calf muscles

and index i runs over the observations associated with each muscle.

Furthermore, mean MAE (MAE) was defined as:

MAEj=
65

k=1
MAEj

k
(4)

where the index k runs over the k= 5 folds.

To measure the variability of volume and ground truths

distribution we also calculated the coefficients of variation (CVs)

defined as:

CVi=
σi

µi
(5)

where the index i runs over the muscles, σi andµi are the associated

S.D. and mean of the distributions, respectively. Thus, CVs for

volume and ground truth muscle-wise FF and wT2 quantify the

variability range of ground truth values on which the ML models

were tested.

Moreover, we explored whether MAE prediction shows linear

or monotonic dependency on CV values of muscle volume and

ground truth parameters using Pearson (ρP) and Spearman (ρS)

correlation coefficients.

3. Results

In Tables 1–3 the FF MAE was reported for the three used

workflows (WF1, WF2, and WF3) calculated for each muscle and

from each ML algorithm. Similarly, in Tables 4–6 the MAE was

reported for wT2. Boxplots in Figure 4 show the FF and wT2

MAE distribution per each muscle and workflow (WF 1, 2, and

3). The discrepancy between the ground truth values and ML

predicted values are expressed in percentage points (pp) for FF and

in milliseconds (ms) for wT2, respectively.

As inferred from boxplots in Figure 4, each workflow resulted

in a mean FF and wT2 prediction performance of ± 20 pp and ±

6 ms (averaged values) for the anterior compartment muscles and

of± 15 pp and± 6ms for the posterior compartment, respectively.

FIGURE 4

FF and wT2 boxplots. Muscle-wise boxplots (first quartile (Q1) to

third quartile (Q3) and median value in orange line) (A) for FF (top)

expressed in percentage points (pp) and (B) wT2 (bottom) expressed

in ms. Three boxplots are given for each muscle related to WF 1

(blue), WF 2 (green), WF 3 (red). Highest accuracy is related to red

dots (FF, wT2 boxplots) corresponding to KNN prediction

performances.

Figure 5 shows the mean prediction performance, averaged on all

calf muscles, for each ML algorithm and workflow. KNN algorithm

proved to be the best predictor model when combined with WF3

for FF [MAE± 5pp (S.D.1.8 pp)] and for wT2 [MAE ± 1.8 ms

(S.D.0.7 ms)]. By contrast linear regression (LR) combined with

WF2 showed the worst accuracy in estimating FF [±36 pp (S.D.38.2

pp)] and wT2 [±10.9ms (S.D.9.4)].

Figure 6 reports the CVi for FF and wT2 for each calf muscle.

Similarly, muscle volume CVs account for inter-subject muscle

shape variability. Volume CVs are reported in Figure 7. The

ground truth CVs range from 0.45 to 0.99 for FF and from 0.04

to 0.22 for wT2 whereas volume CVs range from 0.30 to 0.42

(Figures 6, 7).
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FIGURE 5

Algorithm-wise for FF and wT2. (A) FF (top) and (B) wT2 (bottom)

prediction performances averaged on all muscles and showed as a

function of the di�erent implemented ML algorithms. According to

the proposed workflows, a trio of mean prediction accuracy was

defined for each ML model i.e., blue plot (WF1), green plot (WF2),

red plot (WF3).

Table 7 shows no significant correlation between KNN
¯MAE and both CVs of ground truth and volume values. Thus,

KNN prediction seemed to be independent from inter-subject

muscle shape, i.e., CVs volume, and ground truth variability ranges,

i.e., CVs of FF and WT2. Furthermore, the presence of linear

and monotonic correlations was tested even between KNN MAE

and the mean volume of muscles to examine KNN prediction

dependency on different calf muscle size. For our cohort, the

following mean volume values for calf muscles were: S ≈ 1743.1

mm3, MG≈ 987.5 mm3, LG≈ 585.9 mm3, TA≈ 458.4 mm3, ELD

≈ 295.8 mm3, Pe≈ 534.6 mm3. Pearson and Spearman coefficients

did not show any significant correlation neither for MAE FF [ρP
= 0.66 (0.22) and ρS= 0.52 (0.36)] nor for ¯MAE wT2 [ρP = 0.12

(0.83) and ρS= 0.08 (0.87)]. Therefore, KNN prediction seemed to

be independent even from dimension of calf muscles.

FIGURE 6

FF and wT2 gold standard boxplots. Muscle-wise boxplots (first

quartile (Q1) to third quartile (Q3) and median value in orange line)

(A) for FF (top) and (B) wT2 (bottom) gold standard values with CV

listed in the legend.

3.1. Discussion

In this study, we explored the possibility to predict fat

fraction and water T2 of calf muscles in FSHD subjects starting

from a conventional STIR sequence and applying three different

workflows, which combine radiomics, dimensionality reduction

methods and ML models. To the authors’ knowledge, this is the

first attempt to predict qMRI parameters from STIR imaging,

whereas MRI radiomics features extraction from STIR images have

already been exploited to classify disease groups or autoantibodies

in patients with idiopathic inflammatory myopathies (IIMs) with

ML (42). The three applied workflows resulted in a comparable

mean prediction performance about ± 20 pp for FF and about

± 6 ms for wT2 with the exception of LR and KNN models.

KNN, according to the obtained results, turned out to be the

best predictor model both for FF and wT2. More specifically, the
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FIGURE 7

Volume size boxplots. Muscle-wise volume boxplots (first quartile

(Q1) to third quartile (Q3) and median value in orange line).

Muscle-wise mean volume size is reported in round brackets on

x-axis, CV is listed in legend.

algorithm-wise performance highlights the best prediction for the

combination of KNN andWF3 for both FF (±5 pp) and wT2 (± 1.8

ms). The muscle-wise analysis of the prediction performance also

demonstrates a KNN mean prediction performance with almost

no dependency either on the dimension of the muscles and on

inter-subject muscle shape. We investigate these hypotheses by

calculating for each muscle the muscle mean volume and the

volume CVs. Despite the difference both in mean muscle-wise

volume values and in volume CVs, no significant Pearson and

Spearman correlation were found with KNNMAE that was able to

predict wT2 and FF with a mean error of approximately ± 1.8 ms

and± 5 pp, respectively.

Furthermore, the combination of a small sample size and high

CV of ground truth distributions may have negatively affected

the ML training step and consequently compromised prediction

performance. However, KNN parameters prediction seemed to

have no dependency on CV of ground truth values used for training

ML algorithms. In contrast to the good predictive power of KNN,

we found the least performative model being LR combined with

WF2. We surmise that LR + WF2 might be unable to detect

the complex relationship between predictors and target variable

as suggested by the wider error bars. The main limit of the

current study is related to STIR sequence artifacts such as the low-

signal-intensity banding artifacts and high-signal-intensity areas

without proper fat suppression (43) that eventually may affect the

FF prediction. Nevertheless, we used this non-uniform fat signal

component to identify image fat pixels, which were used to extract

conventional radiomics features (WF1, WF2), and to define FFG

feature (WF3). Conversely STIR imaging is particularly suitable

for muscle edema pattern detection (41) which may be easily

detected by radiomic features. Furthermore, this study focused on

the prediction by all WFs of the mean value of FF and wT2. FSHD

TABLE 7 Pearson and Spearman correlation coe�cients between volume

CVs, ground truths CVs and KNNMAE prediction of neuromuscular

parameters.

CV-parameter Pearson Spearman

Vol-FF 0.19 (0.75) 0.10 (0.80)

Vol-wT2 0.75 (0.08) 0.71 (0.08)

FF-FF 0.43 (0.46) 0.58 (0.30)

wT2-wT2 0.65 (0.16) 0.55 (0.25)

P-values are reported in round brackets with a significant level set at p ≤ 0.05. KNN FF

prediction for Pe muscle was not included to evaluate Pearson and Spearman correlations

because it resulted to be an outliers of KNN FFMAE distribution.

is an asymmetric muscular dystrophy, therefore a more in-depth

predictivity analysis that also takes into account the laterality of

ROIs could be a useful tool for an ever-improving predictionmodel.

Moreover, to expand the applicability of the current results, we aim

to conduct further studies enrolling larger cohorts of subjects with

different muscular dystrophies and also exploring other skeletal

muscle districts (e.g., paravertebral muscles).

In conclusion, our study showed that conventional STIR

imaging can potentially be used to predict quantitative muscle

MRI parameters by applying radiomics combined with ML

models. In particular, the KNN algorithm combined with WF3

was the best predictor for both FF and wT2. The proposed

radiomic workflows could contribute to a wider application of a

relatively common imaging technique as STIR to rapidly estimate

quantitative parameters of skeletal muscle, without the need to

acquire long and complex advanced qMRI sequences.
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