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Objective: This study aims to establish a radiomics-based machine learning model

that predicts the risk of transient ischemic attack in patients with mild carotid stenosis

(30–50% North American Symptomatic Carotid Endarterectomy Trial) using extracted

computed tomography radiomics features and clinical information.

Methods: A total of 179 patients underwent carotid computed tomography

angiography (CTA), and 219 carotid arteries with a plaque at the carotid bifurcation

or proximal to the internal carotid artery were selected. The patients were divided

into two groups; patients with symptoms of transient ischemic attack after CTA

and patients without symptoms of transient ischemic attack after CTA. Then we

performed random sampling methods stratified by the predictive outcome to obtain

the training set (N = 165) and testing set (N = 66). 3D Slicer was employed to select

the site of plaque on the computed tomography image as the volume of interest. An

open-source package PyRadiomics in Python was used to extract radiomics features

from the volume of interests. The random forest and logistic regression models

were used to screen feature variables, and five classification algorithms were used,

including random forest, eXtreme Gradient Boosting, logistic regression, support

vector machine, and k-nearest neighbors. Data on radiomic feature information,

clinical information, and the combination of these pieces of information were used

to generate the model that predicts the risk of transient ischemic attack in patients

with mild carotid artery stenosis (30–50% North American Symptomatic Carotid

Endarterectomy Trial).

Results: The random forest model that was built based on the radiomics and

clinical feature information had the highest accuracy (area under curve = 0.879; 95%

confidence interval, 0.787–0.979). The combined model outperformed the clinical

model, whereas the combined model showed no significant di�erence from the

radiomics model.

Conclusion: The random forest model constructed with both radiomics and clinical

information can accurately predict and improve discriminative power of computed

tomography angiography in identifying ischemic symptoms in patients with carotid

atherosclerosis. This model can aid in guiding the follow-up treatment of patients at

high risk.
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Introduction

In the United States, 690,000 patients experience ischemic

stroke yearly. Ischemic brain injury is caused by large-

arterial atherosclerosis, cardioembolism, small-vessel disease,

or cryptogenic cirrhosis. Carotid bifurcation plaques in

atherosclerosis are prone to transient ischemic attack (TIA)

and stroke. Among all patients with ischemic stroke, 173,000

(approximately 25%) suffer from atherosclerotic carotid

artery disease (1). Endarterectomy and stenting are used

to treat patients with 70–99% carotid stenosis (2–4), but

moderate stenosis is more common and the main culprit of

the plaques (5).

In addition, <50% of patients with stenosis are more difficult

to treat and suffer from recurrent neurological disorders such

as stroke and TIA (3). According to the 2017 European Society

for Vascular Surgery (ESVS) clinical practice guidelines, patients

with carotid stenosis who had cerebral infarction or TIA in the

past 6 months were divided into symptomatic carotid stenosis

and asymptomatic carotid stenosis groups. Best medical therapy

(BMT) is recommended for patients with asymptomatic carotid

stenosis with <60% stenosis and those with symptomatic carotid

stenosis with <50% stenosis. In the past 5 years, the risk of stroke

in 1,429 patients with 30–49% stenoses randomized to carotid

endarterectomy (CEA) was 22.8%, compared with 25.5% on BMT.

If symptoms persist, despite BMT, it is recommended to undergo

carotid endarterectomy or carotid artery stenting (CEA/CAS)

treatment (3).

Carotid computed tomography angiography (CTA) can

measure carotid lumen stenosis and provide information about

arterial wall calcification. While the stenosis degree provides

crucial information about the disease, it does not determine

the underlying plaque stability or inflammation degree and

the probability of the patient experiencing a second event (6).

Radiomics is a multi-step process that transforms medical images

into high-dimensional structures to comprehensively analyze the

regions of interest and correlate them with clinical, diagnostic,

and prognostic information (7, 8). Standardized radiomics

analysis comprises image acquisition, reconstruction, image

preprocessing and processing, feature extraction, selection, and

classification/regression modeling (6, 9, 10). Radiomics and machine

learning are used to diagnose disease diagnosis and prognosis,

limited to dermatology (11), oncology (12–14), and cardiac diseases

(15). Radiological studies that evaluate carotid disease, especially

in mildly stenotic carotid CTA imaging, are limited. Therefore,

this study aims to identify patients’ CTA region of interest and

clinical information (6). Machine learning methods were used

to establish a model that predicts the risk of TIA events with

carotid artery stenosis by 30–50% and guides patients’ follow-up

treatment plans.

Abbreviations: VOI, Volume of interest; NASCET, North American Symptomatic

Carotid Endarterectomy Trial; RF, Random forest; XGBoost, EXtreme Gradient

Boosting; LR, Logistic regression; SVM, Support vector machine; KNN, k-

nearest neighbors; TIA, Transient ischemic attack; BMT, Best medical therapy;

ESVS, European Society for Vascular Surgery; CEA, Carotid endarterectomy;

CAS, Carotid artery stenting; ML, Machine learning.

Materials and methods

Patients

This study was approved by the ethics committee of The First

Affiliated Hospital of Kunming Medical University (No. 2022-

274). Written informed consent from all subjects (patients) was

waived by the Ethics Committee of The First Affiliated Hospital of

Kunming Medical University, because of the retrospective nature

of the study. The flowchart of the current research protocol was

presented in Figure 1. Nearly 615 patients with carotid artery stenosis

were selected from October 2016 to March 2022. The inclusion

criteria comprised patients undergoing carotid CTA and carotid

artery stenosis of 30–50% with clinical laboratory tests (uric acid,

triglycerides, low-density lipoprotein, homocysteine, and fibrinogen).

The patients were excluded if they had (1) carotid artery dissection

and aneurysm; (2) intracranial vascular disease (e.g., intracranial

atherosclerosis with stenosis <50%, vasculitis, aneurysm); (3)

posterior circulation stroke; (4) intracerebral hemorrhage; (5) other

causes of hemorrhagic stroke (e.g., cardioembolic source and chest

embolism); or (6) patients with other neurological diseases such as

brain tumors and demyelinating diseases.

After the screening process, 179 patients were identified and 219

carotid arteries were included in this study. Follow-up continued

until the outcome occurred or November 2022, whichever came

first. Through follow-up, 34 patients (including 39 carotid arteries)

developed TIA. There were no recurrences of stroke. The patients

were divided into two groups: the symptomatic group: patients

with symptoms of transient ischemic attack after CTA and the

asymptomatic group: patients without symptoms of transient

ischemic attack after CTA (Table 1).

Stenosis was measured according to the North American

Symptomatic Carotid Endarterectomy Trial (NASCET) criteria (3).

The symptoms were defined as patients who were considered

symptomatic after a TIA or ischemic stroke in the ipsilateral cerebral

hemisphere. TIA is defined as brief (24-h) episodes of neurological

dysfunction, such as hemiplegia, sensory disturbances, dysarthria,

speech disturbances, or monocular blindness.

Image acquisition

Carotid computed tomography angiography imaging (Siemens

SOMATOM Definition Flash DSCT) was used to scan the area from

the aorta to the atlas. About 60–80mL of non-ionic contrast agent

Iopromide injection (360 mg/mL) and 50mL of normal saline were

injected from the cubital vein at a flow rate of 5 mL/s. Smart prep

technology was used to observe the density of the targeted region

in the aortic arch, and the scan was administered when the density

reached 150 HU. The scanning parameters were tube voltage (120

kV), automatic tube current modulation technology, layer thickness

(0.625mm), layer spacing (0.625mm), pitch (0.938:1), and rotation

speed (0.5 r/s).

Region of interest segmentation

Soft plaques have attenuation values of <50 HU. A mixed

plaque is one that has attenuation values between 50 and 119 HU.
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FIGURE 1

Flowchart for building a predictive model. (A) The carotid CTA image of a patient. (B) The manual VOI segmentation was performed on an image. (C) The

radiomic features extracted from each VOI. (D) The feature data were selected. (E) The establishment of prediction models. CTA, computed tomography

angiography; VOI, volume of interest; ROC, receiver operating characteristic; AUC, area under curve.

Calcified plaques have attenuation values of >120 HU (16). During

the image examination, window/level (window 900–1,200 HU, level

300–500 HU) to view calcified and non-calcified plaque. The

calcified plaque was easily distinguished from non-calcified plaque

by manually and visually manipulating the window/level. Vascular

luminal contrast enhancement was easily separated visually from

calcified plaque by the manual manipulation of window/level settings

which allowed for optimal plaque component distinction (17). The

manual volume of interest (VOI) segmentation was performed on

all images using the 3D Slicer software package (version 4.11) (18).

The carotid artery with arterial plaque was manually segmented into

the targeted region. The proximal and distal carotid arteries were

divided into normal vessels at least 2 cm away from the plaque.

Figure 2 shows the sample patient images. The VOI of optimal

size was accurately segmented to establish a precise relationship

between the radiomics of carotid plaque and the transient ischemic

attack incident.

Radiomics feature extraction

An open-source package PyRadiomics (version 2.4, https://

pyradiomics.readthedocs.io/) was used to extract the radiomic
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TABLE 1 Stenosis degree and clinical features.

Non-TIA
(n = 180)

TIA
(n = 39)

P-value

Age (years) 65± 9.7 67.4± 10.4 0.181

Sex (%) 0.774

Female 53 (29.4) 13 (33.3)

Male 127 (70.6) 26 (66.7)

Diabetes (%) 0.277

No 146 (81.1) 28 (71.8)

Yes 34 (18.9) 11 (28.2)

Hypertension

(%)

0.814

No 85 (47.2) 17 (43.6)

Yes 95 (52.8) 22 (56.4)

BMI (kg/m∗2) 23.6± 2.6 23.3± 2.7 0.626

Smoking (%) 1.000

No 142 (78.9) 31 (79.5)

Yes 38 (21.1) 8 (20.5)

Antiplatelet

and lipid

lowering (%)

<0.001

No 105 (58.3) 7 (17.9)

Yes 75 (41.7) 32 (82.1)

UA (µmol/L) 362.0± 82.1 321.9± 75.8 0.006

TG (mmol/L) 1.7± 1.0 1.5± 1.4 0.405

LDL (mmol/L) 2.6± 0.8 2.1± 0.7 0.001

Fib (g/L) 3.2± 0.7 3.1± 0.8 0.635

HCY (µmol/L) 13.3± 5.4 15.0± 10.6 0.146

Carotid

stenosis (%)

40.5± 6.4 39.9± 6.5 0.595

BMI, body mass index; UA, uric acid; TG, triglycerides; LDL, low-density lipoprotein; Fib,

fibrinogen; HCY, homocysteine; TIA, transient ischemic attack. The results were compared using

a t-test for continuous variables and a χ2 test for categorical variables. Continuous variables are

shownwithmean± standard deviation (SD). Categorical variables were recorded as percentages.

features. The radiomic features extracted from each volume were

automatically calculated using Pyradiomics in Python. They were

divided into eight groups: (a) first-order features, (b) shape features

(3D), (c) shape features (2D), (d) grayscale co-occurrence matrix

features, (e) grayscale size regions matrix function, (f) grayscale

run-length matrix feature, (g) adjacent grayscale difference matrix

feature, and (h) grayscale dependency matrix feature. A total

of 129 radiomics features were extracted from each patient’s

VOI (19).

Radiomics feature selection

The primary features that significantly impact the occurrence

of TIA were identified by reducing the number of extracted

features. About 129 radiomic features were converted into digital

form through feature data. Seventeen features that could not be

converted into digital form were excluded, and the remaining

112 features were included in the feature set. A feature selection

algorithm based on the RF (20) method was used as the basic

tool, incorporating the features into the importance order from

high to low. Each time a feature was included, the optimal

number of features was determined using the logistic regression

model, and the classification area under curve (AUC) value was

calculated. A total of 112 AUC values were calculated, of which

the numbers of features corresponding to the top three AUC

values were 73, 3, and 9, respectively. The prediction models

were constructed with the features, respectively. The prediction

performance of each model was optimal when 73 features were

included, but it was not parsimonious. When only three features

were included, the prediction performance of the subsequent

prediction model was poor, thus, we chose to include the first

nine features.

Clinical features and combined features
selection

The clinical features included four components, such as routine

blood test data (triglyceride, low-density lipoprotein, homocysteine,

uric acid, and fibrinogen (21–25), which were demonstrated to be

closely related to carotid plaque formation according to previous

studies), demographic data [age, gender and body mass index

(BMI), high blood pressure, diabetes, and smoking (26–31)],

stenosis of the carotid artery, and medication data [antiplatelet

and lipid-lowering drugs (32)]. We performed the same process

as radiomics feature selection. The final result was a model

with better prediction performance when the first two features

were included.

Similarly, as earlier, the radiomics and clinical feature data were

merged into the same dataset, and feature screening was performed.

As a result, the first three important features were selected to build

the model (Figure 3).

Predictive model building and model
validation

Five classification algorithms were used, namely, RF, eXtreme

Gradient Boosting (XGBoost), logistic regression (LR), support

vector machines (SVMs), and k-nearest neighbors (KNNs). The

hyperparameters for each classifier were tuned via a grid search

process to maximize the model’s performance. The two groups of

patients were randomly assigned; 70% to the training set (N = 165)

and 30% to the testing set (N = 66). Due to the limited sample size of

the dataset, the 5-fold cross-validation method was used to train the

training set and the best threshold corresponding to the maximum

Youden’s index was selected in the training set and applied in the

testing set (33, 34). The models were validated in the testing set

(33, 34). The 95% confidence intervals of the training and testing sets

were obtained using bootstrap methods (repeated 1,000 times) (35).

For each of these five different algorithms, the screened radiomics,

clinical, and combined features information mentioned above were

used to construct models, respectively.
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FIGURE 2

The procedure of radiomics segmentation. The VOI in each image was segmented with the green arterial lumen and yellow plaques, and a 3D model was

synthesized. (A) The edges of atherosclerotic plaques were delineated. (B) Atherosclerotic plaques were segmented. (C) The edges of arteries were

delineated. (D) Arteries were segmented. (E) A 3D model was built based on the segmentation of each layer image. (F) Carotid artery CTA corresponding

image of the patient. VOI, volume of interest; CTA, computed tomography angiography.

Statistical analysis

Continuous variables were recorded as mean ± standard

deviation, while categorical variables were recorded as percentages.

The results were compared using a t-test for continuous variables

and a χ
2 test for categorical variables. The percentages of missing

values were as followed: fibrinogen (18.7%) and homocysteine (21.9

%). Missing values were filled with the mean values.

The model prediction performance was determined based on

the accuracy, precision, specificity, and sensitivity test. The receiver

operating characteristic curve (ROC) was constructed, and the

area under the ROC curve (AUC) was presented as the model’s

predictive ability. The Delong test checked the different feature sets in

similar models (6). All statistical analysis procedures were performed

using Python (version 3.7.6). The P < 0.05 was considered to be

statistically significant.

Results

Clinical characteristics

Baseline characteristics and imaging CTA of 615 patients were

initially obtained. Under the specified exclusion conditions, 112

who had carotid dissection and aneurysm, 214 who had intracranial

vascular disease, 68 who had posterior circulation stroke, 26 who had

a cerebral hemorrhage, and 16 who had an ischemic stroke caused

by other etiologies were all excluded. The final study included 179

patients (mean age, 65.4 years; 69.9% males), and a total of 219

carotidarteries were included in the final analysis, of which 39 had

a TIA (Figure 4).

Analysis of clinical features, radiomics
features, and combined features

After we extract and select the feature information, the first

nine features selected for the radiomics mode were maximum

3D diameter, major axis length, maximum 2D diameter (column),

maximum 2D diameter (row), inverse variance, maximal correlation

coefficient, gray level variance, strength, and voxel volume. The first

two features selected for the clinical model were LDL and UA. The

first three features selected for the combined model were maximum

3D diameter, LDL, and UA.

Predictive model evaluation

Overall, the RF model showed good predictive ability, followed

by the XGBoost model, while the remaining three models had poor

predictive performance (Figure 5). The top nine important features
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FIGURE 3

Feature importance in the random forest model. Radiomics features and combined features show only the top 20 features. Clinical features show all

features. (A) The random forest method was used to rank clinical features from high to low importance. (B) The random forest method was used to rank

radiomics features from high to low importance. (C) The random forest method was used to rank combined features from high to low importance. BMI,

body mass index; UA, uric acid; TG, triglycerides; LDL, low-density lipoprotein; Fib, fibrinogen; HCY, homocysteine.

of radiomics data were selected, and the models were constructed

and evaluated in the training and testing sets, respectively, which

showed good diagnostic performance in the training and testing

sets. The best model was RF (training set: AUC = 0.982, 95%CI,

0.973–0.999, ACC = 0.973, precision = 0.878, sensitivity = 0.968,

and specificity = 0.865; testing set: AUC = 0.746, 95%CI, 0.761–

0.979, ACC = 0.787, precision = 0.556, sensitivity = 0.417, and

specificity = 0.926), and the performance of other models is shown

in Table 2. In the machine learning models based on clinical features,

the first two important features were LDL and UA, and the models

were constructed and evaluated in the training and testing sets,

respectively. The best model was XGBoost (training set: AUC

= 0.948, 95%CI, 0.921–0.981, ACC = 0.936, precision = 0.828,

sensitivity= 0.762, and specificity= 0.841; testing set: AUC= 0.765,

95%CI, 0.574–0.847, ACC = 0.727, precision = 0.429, sensitivity

= 0.500, and specificity = 0.852). In the machine learning model

based on combined features, the first three features were maximum

3D diameter, LDL, and UA, respectively, and the best model was

RF (training set: AUC = 0.983, 95%CI, 0.977–0.998, ACC = 0.988,

precision= 0.882, sensitivity= 0.952, and specificity= 0.873; testing

set: AUC = 0.879, 95%CI, 0.787–0.979, ACC = 0.863, precision =

0.778, sensitivity = 0.583, and specificity = 0.963). In conclusion,

the RF model constructed based on radiomics features and clinical

features achieved the best predictive performance. We used the

Delong test (goodness of fit test) to check whether different data

were statistically different on the same model. In the RF model,

the clinical information-based model was not statistically different

from the radiomics-based model (AUC = 0.721 vs. AUC = 0.746,

p = 0.813). However, the combined model outperformed the model

based on clinical information (AUC = 0.879 vs. AUC = 0.721, p =

0.004) (Figure 6). In the XGBoost model, the models established by

the three data types were not statistically different from each other

(Figure 7).

Discussion

In this study, patients with mild carotid stenosis (30%−50%

NASCET) had a cumulative incidence of 17.8% of TIA on the

ipsilateral side of the carotid artery after follow-up. This is slightly

higher than previously reported results (10–15%) (3), possibly

because living above 3,500 meters appears to be associated with a
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FIGURE 4

Patient selection. The flowchart shows the process of enrolling

patients in this study. The original population consisted of 6,314

subjects who had undergone carotid CTA studies, and we first

screened the 615 subjects with mild carotid stenosis. According to the

inclusion and exclusion criteria, we finally enrolled 179 subjects and

included patients with TIA after CTA in the symptomatic group. CTA,

computed tomography angiography; TIA, Transient ischemic attack.

significantly increased risk of ischemic stroke and TIA, which may

be related to polycythemia and other related factors such as increased

blood viscosity (36).

Radiomics refers to the extraction of information from imaging

images, including images that are difficult to identify by the human

eye. Radiomics can capture tissue and lesion characteristics, thus,

radiomics was first used to analyze tumor aggressiveness. One study

predicted axillary lymph node metastasis in breast cancer. The

XGBoost algorithm was used to establish a prediction model, and

its AUC was 0.890 (20). Radiomics can also be used to predict

clinical endpoints such as survival and treatment response. Nazari

et al. predicted the mortality risk of patients with clear cell renal

cell carcinoma within 5 years. They combined radiomics features

with clinical data to establish a predictive model using four machine

learning algorithms, of which the XGBoost model showed the best

performance (AUC was in the range of 0.95∼0.98) (37). Radiomics

signatures can be mined, and in sufficiently large data, radiomics

can be used to discover previously unknown markers and models

of disease development, progression, and response to treatment, as

well as new imaging studies for known diseases’ classification. Liu

et al. classified patients with rectal cancer and predicted the clinical

outcomes of patients (38). Recent studies on radiomics and machine

learning primarily focus on tumor classification or the prediction of

clinical endpoints. According to the literature, there is no relevant

research on the use of machine learning to build a model to predict

the complications of patients with carotid artery stenosis of 30–

50% based on CT imaging and clinical laboratory results; hence,

the motivation for this study apply CT radiomics features combined

FIGURE 5

ROC curves of various models. The area under the ROC curves (AUCs)

of five di�erent machine learning models constructed from radiomics

features, clinical features, and combined features, respectively. (A)

ROC curves of five machine learning models built with clinical

features. (B) ROC curves of five machine learning models built with

radiomics features. (C) ROC curves of five machine learning models

built with combined features. ROC, receiver operating characteristic;

AUC, area under curve; RF, random forest; XGBoost, eXtreme gradient

boosting; LR, logistic regression; SVM, support vector machines; KNN,

k-nearest neighbors.

with clinical features to predict the risk of TIA in patients with mild

carotid stenosis.

In this study, we trained RF, XGBoost, LR, SVM, and KNN

five radiomics group models on carotid artery CTA images to

predict the occurrence of cerebrovascular symptoms in participants.

When we evaluated our results in the testing set, an RF model

based on radiomics and clinical information identified symptomatic

participants with optimal diagnostic accuracy. Furthermore, we

demonstrate that, although the radiomics-based RF model was

not statistically significantly different when compared with the

assessment of clinical characteristics, the combined information-

based RF model could well distinguish between the high-risk and

low-risk groups from participating (AUC= 0.879 vs. AUC= 0.721, p

= 0.004).

In addition to predicting TIA in carotid artery stenosis, this

study can also provide a valuable reference for formulating treatment

plans through prediction. The ESVS issued a set of guidelines

proposing medical therapy as an intervention for asymptomatic

patients with stenosis <60% and symptomatic patients with stenosis

<50%, and subsequently indicated that if symptoms persist, despite

the absence of BMT, it may be reasonable to consider CEA/CAS

(3). Therefore, there remains uncertainty in the treatment plan of

patients with stenosis of 30–49%. If the patient predicts the risk

of TIA in the future through the model, under the premise of

BMT, CEA/CAS surgery can be given a higher priority to avoid

complications. Therefore, we performed radiomics feature analysis

of carotid arteries and their plaques, which have the potential ability
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FIGURE 6

Comparative analysis of ROC in the random forest model. Among the

five models, the random forest model showed the best predictive

performance. The random forest model was constructed with

radiomics features, clinical features, and combined features,

respectively, and the DeLong test was performed. The combined

model was significantly better than the clinical model. (A) A DeLong

test was used to compare the radiomics model and clinical model. P =

0.813. (B) A DeLong test was used to compare the radiomics model

and the combined model. P = 0.098. (C) The DeLong test was used to

compare the clinical model and the combined model. P = 0.004. ROC,

receiver operating characteristic; RF, random forest.

to identify plaques leading to the risk of cerebrovascular events and

have instructive value in guiding and optimizing the management

of patients with mild stenosis. We aim to establish a model with

optimal performance in predicting complications, combining both

radiomics and clinical features. The models built together have

the best predictive performance and are statistically different from

the clinical features model. Traditional CTA imaging can only

provide limited information on carotid plaque characteristics, and

we need more objective methods that rely less on medical expertise

while increasing prediction accuracy. Radiomics has the potential

to be a tool that facilitates accurate phenotyping of abnormalities

based on radiological images (39). A previous study explored

that CT texture features could distinguish between symptomatic

and asymptomatic patients, with AUCs ranging from 0.68 to

0.81 (40). The study used radiomics to acquire extensive data

on stenotic carotid arteries and utilized machine learning (ML)

models to improve diagnostic performance. The results showed that

ML is beneficial for carotid CTA plaque analysis. However, the

assessment of the carotid artery was not performed using clinical

information added to the model. Another study on CTA used

a machine learning model to identify symptomatic participants

using radiology and routine assessment. Routine assessment refers

to the analysis of carotid artery stenosis, plaque length, plaque

thickness, and plaque ulceration, combined with imaging features,

to identify symptomatic participants. The AUC was 0.85 (39).
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FIGURE 7

Comparative analysis of ROC in the XGBoost model. In the XGBoost

model, there were no statistical di�erences in the models based on

clinical features, radiomics features, and combined features. (A) A

DeLong test was used to compare the clinical model and the

radiomics model. P = 0.598. (B) A DeLong test was used to compare

the radiomics model and the combined model. P = 0.676. (C) The

DeLong test was used to compare the clinical model and the

combined model. P = 0.950. ROC, receiver operating characteristic;

RF, random forest.

ML models based on radiomics and clinical features can be an

ideal tool to identify which specific CTA plaque features are

associated with increased TIA risk. Our study uses radiomics features

and clinical laboratory tests (triglycerides, low-density lipoprotein,

homocysteine, etc.) to assess the risk of complications based on

machine learning models.

Although the findings are promising, some limitations must

be addressed. The cases in this study were collected from a

single-center. We included a small number of cases, and the

incidence of cerebral ischemic events in patients with mild carotid

stenosis was relatively low. The number of negative patients was

much larger than that of positive patients, which may bias our

results. To overcome overfitting our model, we calculated all

diagnostic scores using 5-fold cross-validation. Prospective studies

with larger sample sizes are still needed to assess long-term accuracy

and stability. Manual segmentation may also affect parameter

values, while automatic segmentation may reduce inter-observer

variability and improve the feasibility of applying these methods on

larger datasets.

Conclusion

In conclusion, we established five models for predicting ischemic

cerebrovascular events in patients with mild carotid stenosis using

radiomics, clinical data, and combined data based on machine

learning models. After comparison, the random forest model

of the combined data showed the best accuracy and maybe a

more comprehensive and specific prediction model than previously

reported methods. According to the predicted results, patients can

have improved guided treatment plans using the proposed model.
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