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Progress of autonomic
disturbances in narcolepsy type 1

Ying Wang†, Qingqing Sun†, Qi Tang, Yanan Zhang,

Mingyang Tang, Dong Wang and Zan Wang*

Sleep Center, Department of Neurology, The First Hospital of Jilin University, Changchun, China

Narcolepsy type 1 is a kind of sleep disorder characterized by a specific

loss of hypocretin neurons in the lateral hypothalamus and reduced levels

of hypocretin-1 in the cerebrospinal fluid. Hypocretin deficiency is associated

with autonomic disorders. This article summarizes the autonomic disorders

and possible mechanisms associated with narcolepsy type 1. Patients with

narcolepsy type 1 often have various systemic autonomic symptoms, including

non-dipping blood pressure, reduced heart rate variability, dynamic cerebral

autoregulation impairment, reduced gastric motility and emptying, sleep-related

erectile dysfunction, skin temperature abnormalities, and blunted pupillary light

reflex. Similar findings should strengthen the recognition and intervention of these

disturbances in clinical practice. In addition to hypocretin deficiency, current

evidence also indicates that pharmacological therapy (including psychostimulants

and anti-cataplectic drugs) and comorbidities may contribute to the alterations of

autonomic system observed in narcolepsy type 1.
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1. Introduction

Narcolepsy type 1 (NT1) is a chronic sleep disorder with major clinical manifestations

including excessive daytime sleepiness, cataplexy (a sudden loss of muscle tone triggered by

strong, mainly positive, emotions), sleep paralysis, hypnagogic hallucinations, and nocturnal

sleep disorder (1). Patients can also present with multiple chronic comorbidities including

obesity, depressive disorder, migraine, precocious puberty and other sleep disorders (such

as rapid eye movement sleep behavior disorder and obstructive sleep apnea) (2). The most

significant neuropathological change is the selective and irreversible loss of hypocretin-

producing neurons in the lateral hypothalamus (3). Hypocretin neuropeptides consisted

of hypocretin-1 (hcrt-1) and hypocretin-2 (hcrt-2), and they modulate their actions via

hcrt-1 and hcrt-2 receptors. Patients with NT1 often have low levels of hcrt-1 in the

cerebrospinal fluid.

Hypocretin neurons have widespread projections to different areas involved in

regulating the sleep-wake cycle, energy metabolism, neuroendocrine, body temperature,

and cardiovascular functions, which are associated with changes in the autonomic nervous

system (4). Clinically, autonomic dysfunction often affects visceral organs, vascular smooth

muscle, myocardium, and glands activities (5). However, autonomic symptoms are easily

ignored compared with the typical symptoms in NT1. Here, we review the autonomic

disorders and their possible mechanisms in patients with NT1 (Figure 1).
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FIGURE 1

A framework of autonomic disturbances and possible mechanisms in narcolepsy type 1. BP, blood pressure; HR, heart rate; PLMS, period limb

movements during sleep; HRV, heart rate variability; dCA, dynamic cerebral autoregulation; SRE, sleep-related erection; RBD: rapid eye movement

sleep behavior disorder.

1.1. Autonomic disorders

1.1.1. Cardiovascular system
1.1.1.1. Changes in blood pressure and heart rate

Previous studies suggested that 52% of adults with NT1 and

37% of children with NT1 and other hypersomnia disorders had

the symptoms of orthostatic intolerance, indicating impairment of

cardiovascular autonomic regulation (5, 6). Autonomic disorders

in the cardiovascular systemmay increase the risk of cardiovascular

events and reduce the quality of life of patients with NT1.

Several studies on cardiovascular changes have focused on

daytime wakefulness, different sleep stages, and wake-sleep

transitions. Donadio et al. (7) demonstrated lower heart rate

(HR), blood pressure (BP), and resting muscle sympathetic nerve

activity using direct microneurographic recordings in patients

with NT1 during wakefulness. In contrast, other studies found a

significant increase in HR in patients with NT1 vs. controls during

wakefulness, and the non-rapid eye movement (NREM) and rapid

eye movement (REM) stages (8–10). In addition, it is generally

believed that patients with NT1 are prone to have non-dipping

blood pressure, defined as a nocturnal BP decrease <10% of the

daytime BP (8, 11, 12). Dauvilliers et al. (13) reported a higher

percentage of non-dipping BP inNT1 compared to healthy controls

(31 vs. 3%). Grimaldi et al. (8) observed a significantly increased

systolic BP in 10 untreated patients with NT1 vs. controls during

nighttime REM sleep.

In summary, BP and HR were lower during resting wakefulness

but higher during nighttime sleep in patients with NT1.

Impaired cardiovascular regulation ability is not beneficial for

the maintenance of normal physiological functions. Furthermore,

microarousal and periodic leg movement events during sleep

(PLMS) may affect BP and HR. Two previous studies found that

the amplitude ofmicroarousal and PLMS-relatedHR responses was

significantly reduced in patients with NT1 compared to controls,

suggesting poor cardiac autonomic nervous regulation (14, 15).

1.1.1.2. Measurement of cardiovascular

autonomic disorders

Heart rate variability is widely used to evaluate autonomic

changes, including frequency-domain, time-domain, and

non-linear correction analysis. In the frequency domain, low

frequency (LF) is modulated by both the sympathetic (SNS) and

parasympathetic (PNS) nervous systems, while high frequency

(HF) is only affected by PNS activity.

The LF/HF ratio provides a measure of sympathovagal balance,

which generally increases with high SNS activity and decreases

with high PNS activity (16). Grimaldi et al. (17) studied heart rate

variability in NT1 in the resting supine position and found an
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increased LF/HF ratio favoring enhanced SNS activity. However,

after removing the effect of respiratory frequency on the HF

component, there were no significant differences in the LF/HF ratio

between NT1 and controls during any sleep stage or wakefulness

(9). Silvani et al. (10) observed a significant reduction of cardiac

baroreflex sensitivity and time-frequency index [—square root of

the mean of the sum of the squares of differences between adjacent

normal-to-normal interval (RMSSD)] in NT1 vs. controls during

wakefulness before sleep, which reflect the function of cardiac

PNS modulation.
123I-metaiodobenzylguanidine cardiac scintigraphy is a reliable

method for the objective evaluation of cardiac adrenergic nerve

activity. Barateau et al. found normal cardiac sympathetic

innervation in NT1 by comparing the delayed heart/mediastinum

ratio of patients with NT1 to that in control subjects. However,

the study did not calculate the early heart/mediastinum ratio and

washout rate, with the latter being the most reliable biomarker to

reflect cardiac sympathetic nerve activity (18).

Generally, non-dipping BP and decreased heart rate variability

indicate that the ability of cardiovascular autonomic regulation is

decreased in patients with NT1, making it impossible to better

adapt to the changing environment. As for the increase or decrease

in SNS and PNS during the wake and sleep stages, there are

contradictions between studies, for which possible reasons are the

small sample size, insufficient adjustment of confounding factors,

and lack of standard measurement methods.

1.1.2. Possible mechanisms of cardiovascular
autonomic disorders
1.1.2.1. Hypocretin deficiency

Hypocretin neurons have widespread connectivity with

neurons involved in autonomic control, including the

paraventricular nucleus of the hypothalamus, homonymous

noradrenergic cell groups of the pons, medullary raphe nuclei,

rostral ventrolateral medulla, rostral ventromedial medulla,

nucleus ambiguus, nucleus of the tractus solitarius, and dorsal

motor nucleus of the vagus nerve, which set the foundation for the

involvement of hypocretin in autonomic regulation and autonomic

disturbances in NT1 (4).

Several animal studies have confirmed the involvement of

hypocretin in the regulation of cardiovascular autonomic nervous

activity. Machado et al. (19) observed an increase in BP and

HR by injecting hcrt-1 into the rostral ventromedial medulla

of conscious rats, but no cardiovascular changes were observed

following the injection of saline. Shirasaka et al. (20) also found an

increase in BP, HR, renal sympathetic nerve activity, and plasma

catecholamine levels following intracerebroventricular injection

of hcrt-1 in conscious rats. Two animal studies showed that

hcrt-1 has an activating effect on the cardiovascular sympathetic

nerve, but it is worth noting that hcrt-1 concentration was much

higher under experimental conditions than under physiological

conditions. Iigaya et al. (21) observed a decrease in BP, HR, and

renal sympathetic nerve activity by blocking the hcrt receptor.

Three previous studies also showed decreased BP and HR in

hypocretin gene-deficient or gene-silent animals by gene knockout,

small interfering RNA, and transgenic techniques (22–24).

A clinical study showed that all patients with narcolepsy had

a significantly attenuated HR response to arousals and PLMS,

particularly patients with NT1, and hcrt-1 deficiency could be an

independent predictor of reduced HR response in multivariate

linear regression analysis (15). Donadio et al. (7) demonstrated a

correlation between cerebrospinal fluid hcrt-1 concentration and

HR or muscle sympathetic nerve activity. There is a negative

correlation between the pulse transit time and arterial BP, with

pulse transit time lengthensing if vessels become less stiff due to

a decrease in arterial BP. Vandi studied 27 pediatric patients with

NT1 and found a reduced lengthening of pulse transit time during

total sleep and REM sleep compared with nocturnal wakefulness,

which was more severe in subjects with lower cerebrospinal fluid

levels of hcrt-1 (12).

These results support the direct effect of hcrt-1 on autonomic

regulation. However, other studies have not supported this

conclusion. Barateau et al. (5) reported that a higher “scales for

outcomes in Parkinson’s disease-autonomic” (SCOPA-AUT) score

was not associated with cerebrospinal fluid hcrt-1 levels. In the

same year, another study found that a delayed heart/mediastinum

value was independent of hcrt-1 (18).

1.1.2.2. Pharmacological therapy

Life-long treatment with psychostimulants and anti-cataplectic

drugs can affect the autonomic nervous system of patients

with NT1. Bosco et al. found that patients with NT1 treated

with psychostimulants had higher 24-h diastolic BP and HR

than untreated patients. The prevalence of hypertension was

also significantly higher than that in untreated patients. They

also found that the combination of anti-cataplectic drugs and

psychostimulants showed a synergistic effect on BP (25). The

effects of psychostimulants (such as methylphenidate) and anti-

cataplectic drugs (such as venlafaxine and fluoxetine) on the

autonomic nervous system are related to their sympathomimetic

mechanisms of action, including the promotion of presynaptic

membrane release of monoaminergic transmitters and inhibition

of monoaminergic transmitters reuptake.

1.1.2.3. Comorbidities

Patients with NT1 have a variety of comorbidities such as

obesity, obstructive sleep apnea, PLMS, sleep behavior disorder

during REM, anxiety, and depression, which are all closely

associated with autonomic dysfunction (26–29). Rocchi et al. (30)

demonstrated a significant and positive correlation between body

mass index and systolic BP in the supine resting position at 3

and 10min head-up tilt test; therefore, it is speculated that body

weight plays an important role in cardiovascular sympathetic

tone. Nocturnal sleep fragmentation has been frequently reported

in patients with obstructive sleep apnea, PLMS and REM sleep

behavior disorder, which affects the autonomic nervous system

in NT1 (14, 15, 31, 32). Symptoms of anxiety and depression

have been demonstrated to be common among patients with NT1

(33). Barateau et al. (34) suggested that the severity of depressive

symptoms was associated with autonomic impairment. Research

showed that the component formula of Suanzaoren Tang had anti-

anxiety function by reducing hippocamps 5-hydroxytryptamine

level in rats (35, 36). These results indicate the link between

psychiatric symptoms and autonomic disorders in NT1.
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1.1.3. Central nervous system
Cerebral autoregulation is the ability of the brain to maintain

adequate cerebral blood flow in the presence of changes to blood

or cerebral perfusion pressure. Dynamic cerebral autoregulation

(dCA) is used to study transient changes in cerebral blood

flow (37). dCA is regulated by the autonomic nervous system;

therefore, sympathovagal balance is important to maintain relative

stabilization of cerebral blood flow (38–40). Our previous

study found that dCA was impaired in patients with NT1,

possibly indicating dysfunction of autonomic nerves innervating

cerebral vessels. The hypocretin neurons send projections to

monoaminergic neurons, including dopamine, norepinephrine,

and 5-hydroxytryptamine. A previous study found that hcrt

neurons play critical roles in the sleep/wakefulness pathway by

regulating monoaminergic transmitter levels (41). Norepinephrine

is a sleep autonomic neuromodulating transmitter and 5-

hydroxytryptamine is a vasoactive substance that may have

potential effects on dCA (42–44). Hypocretin and monoaminergic

transmitter reduction or deficiency can lead to impairment of dCA

and autonomic dysfunction in patients with NT1 (45).

1.1.4. Digestive system
It has been reported that 88% of untreated adult patients

with NT1 have gastrointestinal disturbances, including drooling,

early abdominal fullness, constipation, and straining for defecation.

These symptoms may be related to vagal nerve dysfunction

regulated by hcrt-1 (5).

Previous studies mainly focused on animal models. Jin et al.

found that gastric motility and emptying were enhanced by

injecting hcrt-1 into the central nucleus of the amygdala of rats,

which expresses the hcrt-1 receptor. This effect was abolished by

subdiaphragmatic vagotomy. These results show that the amygdala-

vagus-stomach pathway may be involved in regulating gastric

motility through hcrt-1 (46). In addition, many other nuclei are

directly or indirectly involved in the regulation of gastric acid

secretion and gastric motility mediated by hypocretin neurons,

including the paraventricular nucleus of the hypothalamus, raphe

nucleus of the medulla oblongata, ventral tegmental area and

nucleus accumbens (46–48).

1.1.5. Urinary and reproductive system
Barateau et al. found that most patients with NT1 (92%) had

urinary symptoms, especially nocturia and incomplete bladder

emptying (5). Nocturia symptoms may be related to sleep

apnea and nocturnal sleep fragmentation, which improve after

continuous positive pressure ventilation (49).

Sexual dysfunction has been reported in 48% of men (erection

problems) and 81% of women (vaginal lubrication problems)

(5). Sleep-related erection (SRE) often occurs during REM sleep.

The results from a study in rats suggested that SRE is regulated

by the hypothalamus (49). Karacan et al. conducted SRE tests

on 28 patients with NT1 and found that 23 of them who

were receiving methylphenidate and imipramine therapy had 20%

shorter SREs and incomplete erection, and only two of the other

five untreated patients had impaired SRE. These results suggest

that sexual dysfunction may be related to the use of stimulants

and antidepressants (50). In addition, insufficient testosterone

and abnormal hypothalamic-pituitary-gonadal axis activity may be

related to male sexual dysfunction. Joshi et al. (51) reduced the

level of testosterone in the serum by injecting an hcrt-1 receptor

antagonist into adult mice to prove its involvement in sex hormone

synthesis. In a study comparing serum gonadotropin levels inmales

with NT1, pulsatile luteinizing hormone release was diminished

compared to controls, indicating that hcrt-1 is involved in the

regulation of hypothalamic-pituitary-gonadal axis activity (52).

1.2. Other autonomic disorders

1.2.1. Body temperature abnormalities
Up to 87% of patients with NT1 have symptoms related

to abnormal thermoregulation, including daytime hyperhidrosis

during the day and heat intolerance (5). Abnormal sweat gland

function can be assessed using the sudomotor function test. Rocchi

et al. (30) found lower hand sudomotor activity significantly

in patients with NT1, suggesting an impairment in cholinergic

sympathetic activity. However, the results conflict with the clinical

symptoms of hyperhidrosis. Other techniques, such as sympathetic

skin response and quantitative sudomotor axon reflex tests, are

needed to verify this discrepancy.

Previous studies have focused on altered distal and proximal

skin temperatures and their relationship with clinical symptoms

and sleep architecture. Fronczek et al. measured the skin

temperature in 15 untreated patients with NT1 throughout the day

and found an increased distal skin temperature and a decreased

proximal skin temperature, resulting in a higher gradient. This

change is indicative of decreased distal sympathetic vasoconstrictor

tone and increased distal skin blood flow in NT1, which may

ultimately be attributed to hypocretin deficiency (53).

Skin temperature dysfunction in patients withNT1 is associated

with their two core symptoms: excessive daytime sleepiness and

nocturnal sleep disorder. Influencing distal skin temperature

increased daytime alertness and time of wakefulness (53, 54). An

elevated distal-proximal gradient of skin temperature to some

extent lead to an increase in slow wave and REM sleep and a

decrease in wakefulness, which is helpful in improving the quality

of nighttime sleep (55). Vander Heide and colleagues reported

that the greater the distal and distal-proximal gradient of skin

temperature before daytime sleep episodes, the more likely patients

with NT1 were to fall asleep, indicating a strong predictive value of

increased distal and distal-proximal gradients of skin temperature

for daytime sleep episodes in patients with NT1 (56).

1.2.2. Pupillary abnormalities
Pupillomotor symptoms with increased sensitivity to bright

light were observed in 64.2% of patients with NT1 (5). The

pupil size is influenced by the degree of arousal, and hcrt-1 is

an important neurotransmitter that maintains alertness. Pressman

et al. observed that the mean pupillary diameter was significantly

smaller in patients with NT1 compared to controls. Pupil activity

was correlated with pupil diameter in dark conditions, with

maximum pupil size at the highest ratings of alertness and

minimum at the lowest alert level (57). Zhou et al. (58) blunted
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the pupillary response to light by intravitreal injection of an hcrt-

1 receptor antagonist in mice, while enhancing the pupil response

to light by injection of hcrt-1. It is evident that hcrt-1 plays a role

in regulating pupil size and changes, and the clinical symptoms of

pupillary abnormalities may be related to reduced pupil diameter

and a blunted light response.

2. Conclusion

Patients with NT1 often have various clinical autonomic

symptoms, but relevant epidemiological studies are still lacking.

The SCOPA-AUT questionnaire has been validated for Parkinson’s

disease, and the feasibility of the subjective tool to assess the severity

of autonomic symptoms in NT1 needs further investigation.

With more clinical attention being paid to autonomic symptoms,

standard objective measurement methods need to be developed.

In addition, hypocretin reduction or deficiency alone cannot

explain the extent of autonomic disorders in patients with

NT1. Finally, it is generally accepted that prolonged autonomic

disorders could increase the risk of cardiovascular disease in

patients with NT1, and long-term follow-up is necessary in

the future.
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