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Objectives: It is still a challenge to di�erentiate space-occupying brain lesions such as
tumefactive demyelinating lesions (TDLs), tumefactive primary angiitis of the central
nervous system (TPACNS), primary central nervous system lymphoma (PCNSL), and
brain gliomas. Convolutional neural networks (CNNs) have been used to analyze
complex medical data and have proven transformative for image-based applications.
It can quickly acquire diseases’ radiographic features and correct doctors’ diagnostic
bias to improve diagnostic e�ciency and accuracy. The study aimed to assess the
value of CNN-based deep learning model in the di�erential diagnosis of space-
occupying brain diseases on MRI.

Methods: We retrospectively analyzed clinical and MRI data from 480 patients
with TDLs (n = 116), TPACNS (n = 64), PCNSL (n = 150), and brain gliomas (n
= 150). The patients were randomly assigned to training (n = 240), testing (n =
73), calibration (n = 96), and validation (n = 71) groups. And a CNN-implemented
deep learning model guided by clinical experts was developed to identify the
contrast-enhanced T1-weighted sequence lesions of these four diseases. We utilized
accuracy, sensitivity, specificity, and area under the curve (AUC) to evaluate the
performance of the CNN model. The model’s performance was then compared to
the neuroradiologists’ diagnosis.

Results: The CNN model had a total accuracy of 87% which was higher than senior
neuroradiologists (74%), and the AUC of TDLs, PCNSL, TPACNS and gliomas were 0.92,
0.92, 0.89 and 0.88, respectively.

Conclusion: The CNN model can accurately identify specific radiographic features
of TDLs, TPACNS, PCNSL, and gliomas. It has the potential to be an e�ective auxiliary
diagnostic tool in the clinic, assisting inexperienced clinicians in reducing diagnostic
bias and improving diagnostic e�ciency.

KEYWORDS

convolutional neural network, space-occupying brain lesions, diagnosis, di�erential,
magnetic resonance imaging, tumefactive demyelinating lesions

Frontiers in Neurology 01 frontiersin.org

https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org/journals/neurology#editorial-board
https://www.frontiersin.org/journals/neurology#editorial-board
https://www.frontiersin.org/journals/neurology#editorial-board
https://www.frontiersin.org/journals/neurology#editorial-board
https://doi.org/10.3389/fneur.2023.1107957
http://crossmark.crossref.org/dialog/?doi=10.3389/fneur.2023.1107957&domain=pdf&date_stamp=2023-02-02
mailto:doctorljg@sina.com
mailto:wenjh@bit.edu.cn
mailto:sunchenjing83@hotmail.com
https://doi.org/10.3389/fneur.2023.1107957
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fneur.2023.1107957/full
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org


Miao et al. 10.3389/fneur.2023.1107957

1. Introduction

Non-neoplastic space-occupying brain lesions with an atypical
enhancement pattern, and/or associated mass effect such as
tumefactive demyelinating lesions (TDLs) and tumefactive primary
angiitis of the central nervous system (TPACNS) are often
misdiagnosed with brain tumors in clinical practice, which are usually
large (>2 cm) (1, 2). And the differential diagnosis before treatment is
crucial because their treatment strategies and prognosis are markedly
different (3). Some TDLs and TPACNS that are misdiagnosed as
neoplasms suffer unnecessary surgical intervention or even radiation
treatment, which may cause irreparable brain tissue damage or
radiation encephalopathy with residual impairment. On the other
hand, some brain tumors, such as gliomas and primary central
nervous system lymphoma (PCNSL), which make up about 85% of
all primary brain tumors and are the most common primary CNS
malignant tumors (4), are misdiagnosed as TDLs or TPACNS because
the pathology of the biopsy did not reveal tumor cells due to the early
stage of the disease, the use of corticosteroids prior to the biopsy, or
the failure to access the core of the lesion during the biopsy, resulting
in delayed treatment (5, 6).

MRI is the most intuitive and non-invasive method for
preoperative diagnosis of space-occupying brain diseases (7).
However, due to uneven conditions of hospitals and clinicians’
experience around the country, coupled with the fact that imaging
differential diagnosis is somewhat subjective and lacks meticulous
quantitative indicators, misdiagnosis is still common in clinical
practice. Previous studies have reported that the diagnostic accuracy
of skilled and experienced clinicians between PCNSL and gliomas
ranges from 62.3 to 86.9% (8).

Deep learning, a subfield of machine learning, has been widely
applied in recent years to develop an automated, semi-automatic, or
hybrid model that can accurately and quickly classify and segment
lesions in brain scans (9, 10). Imaging features are automatically
acquired from data, then generated, organized into layers, and
appropriately weighted on their own with high levels of complexity
rather than needing researchers to identify and manually program
certain characteristics (11, 12). Largely for this reason, deep learning
techniques have increased state of the art classification accuracy
by, sometimes, more than 30%, compared to the past decade’s
struggles to achieve gains of <2% (13). Convolutional neural network
(CNN) is an important network structure in deep learning (14).
It is well-known for its weight-sharing network structure, which
reduces the network model’s complexity and the number of weights
to make it more resembling a biological neural network. In CNN,
the picture can be utilized directly as the network’s input, avoiding
the complicated process of feature extraction and data reconstruction
required by conventional recognition algorithms. CNN has also
become the focus of research in the field of image recognition due
to its remarkable invariance to image translation, scale, tilt, and other
forms of deformation (15).

Combining the benefits of clinicians and CNN is anticipated to
increase the classification accuracy of brain lesions (16). Thus, we
put TDLs, TPACNS, PCNSL, and gliomas four space-occupying brain
diseases with the most similar radiographic features together, and
attempted to identify the four types of lesions by an MRI-based deep
learning approach with specialist doctors’ experience in a large data
set. And we aimed to use this CNN model to improve diagnostic
efficiency and accuracy of clinicians.

2. Materials and methods

2.1. Patients and image acquisitions

This study was approved by the ethical committee of our
hospital (HZKY-PJ-2022-22). In total, 480 patients’ data (116 TDLs,
64TPACNS, 150 PCNSL and 150 gliomas) from January 2010 to
January 2021 were collected in our hospital. The whole data set
was randomly separated into four sub-datasets for training, testing,
calibration, and validation of the CNN model and the ratio of
TDLs, TPACNS, PCNSL and gliomas was similar in each sub-dataset.
Sub-dataset 1 (training set): 50% of the entire database cases were
randomly chosen, comprising 58 TDLs, 32 TPACNS, 75 PCNSL, and
75 gliomas patients, for a total of 240 patients for preliminary learning
of the CNN model. Sub-dataset 2 (testing set): 15% of the database’s
patients (17 TDLs, 10 TPACNS, 23 PCNSL, and 23 gliomas, for a
total of 73 patients) were chosen at random as the testing set for the
pre-trained model. Sub-dataset 3 (calibration set): randomly selected
20% of the overall database (23TDLs, 13 TPACNS, 30 PCNSL, and
30 gliomas, total of 96 patients), then selected targeted images as a
calibration set based on test results to enhance its algorithm; Sub-
dataset 4 (validation set): The remaining 15% of the total database
(18 TDLs, 9 TPACNS, 22 PCNSL, and 22 gliomas, 71 patients in total)
were used as the validation set of the improved CNN model.

The inclusion criteria were: (1) TDLs, TPACNS, PCNSL,
or gliomas was proven by histopathology or diagnosed by the
corresponding criteria of diseases (17–20); (2) underwent contrast-
enhanced T1-weighted imaging (CE-T1WI). The exclusion criteria
were: (1) missing clinical information; (2) no data on enhanced MRI;
(3) MR images with obvious artifact.

2.2. MRI acquisition and lesions
segmentation

The MRI was performed on 1.5T and 3T scanners including
Verio (Siemens, Erlangen, Germany) or Signa (GE Healthcare,
Milwaukee, Wisconsin), equipped with an eight-channel head coil.
Dadopentetate dimeglumine was injected intravenously at doses
based on the body weight of patients (0.1 mmol/kg), then the CE-
T1WI images were obtained.

The regions of interest (ROIs): ROIs of these four types of diseases
were manually delineated on CE-T1WI (Figure 1). Then cropped
ROIs in MR images and used the reduced images for the CNN
model training and testing. Each patient was screened for 5–10
continuous slices with clear lesions by a neuroradiologist (with 15
years of experience) and a neurologist (with 10 years of experience)
for computer model learning and testing.

2.3. Statistical analysis

All continuous variables were expressed as the mean ± standard
deviation and the median, and categorical variables were expressed as
the number (percentage), respectively. One-way analysis of variance
(ANOVA) and Pearson’s chi-square tests were used to compare
the group differences with regard to patient age and sex ratio by
SPSS (version 23.0, IBM Corporation, Armonk, NY, USA). P <
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FIGURE 1

Representative MR images of clipped regions of interest (ROIs) for the
four types of diseases. Each row represents a distinct disease, and
each image is from a di�erent patient. (A) ROIs from TDLs. (B) ROIs
from TPACNS. (C) ROIs from PCNSL. (D) ROIs from gliomas.

0.05 was considered statistically significant. The receiver operating
characteristic (ROC) curve was used to show the area under the curve
(AUC), and accuracy to evaluate the performance of the classification
model. The accuracy was used as the main metric for comparisons of
the CNN model and clinicians.

2.4. Algorithm Implementation

2.4.1. Data pre-processing
In order to ensure the randomness of the data at each stage and

the robustness of the algorithm, we randomly divided the whole
data set into four sub-datasets in advance. And we cut the ROIs
from MR images and trained the CNN model with cropped images
to reduce the interference from the rest of the brain tissue. During
the training phase, data enhancement operations such as rotation,
folding, and cropping were done on each batch’s data to achieve
the effect of enlarging the training set via the OpenCV function
library. Each image has a chance of 0.5 for each rotation angle, affine
transformation, image clipping with a certain aspect ratio, and image
folding. This process roughly doubles the quantity of data.

2.4.2. CNN model development
CNN is widely utilized in data classification and has made

significant progress because to its local area perception, sampling

in space or time, and shared weight. However, CNN has some
downsides as well. As the number of network layers increases, the
identification impact first improves but then falls as the gradient
either vanishes or extends. Thus, the residual block was introduced
into CNN as an enhancement. The short-cut residual connection
between continuous convolution layers eliminates the phenomenon
of disappearing gradients and facilitates CNN training by permitting
gradients to flow directly (21).

ResNet-18 is a deep convolutional network with residual
blocks. And it has 18 layers with weight parameters, including
17 convolutional layers and one fully connected layer. In this
study, all MR images are grayscale image, which reduces the
training difficulty of the model and the demand for sample size.
Therefore, we adopted ResNet-18 as the basic network for feature
extraction of MR images and set the number of neurons in the
last layer of the neural network to the number of categories to
be classified (TDLs, TPACNS, PCNSL, and gliomas, respectively).
The convolution layer parameters were obtained by loading the
parameters of ResNet-18 that have been trained on the CIFAR-10
public dataset (22), and the neural network updated the parameters of
the last layers by learning specific downstream tasks (https://github.
com/shaitaiyangmie/train-for-classify).

Due to the limitation of the amount of medical imaging data,
when training a supervised learning model, the training degree of
the neural network model is often restricted and the performance
of the model will be affected. Transfer learning is a novel approach
to solving different but related issues by utilizing existing knowledge
(23). Previous studies have demonstrated that transfer learning can
lessen the necessity of the annotation procedure by reusing deep
learning models trained on a different task and then refining them
using data from the new task (24) and this method has been
widely used in medical image problems by using a pre-trained
model on large datasets, and then fine-tuning it with a small
dataset. Therefore, we combined ResNet-18 with the transfer learning
method, to improve the feature extraction ability of the network in
limited datasets. Then, we used the training data collected for this
study to fine-tune the original model’s parameters and improve the
algorithm’s performance.

When we trained the neural network in the local GPU
environment, the shape of input image was set to 64∗64, the batch
size was set to 64, the Epoch was set to 500, and the Learning Rate
was set to 1e-4. After about 200 Epochs, when the accuracy no
longer increases, the model can be approximately considered to have
reached a state of convergence.

2.4.3. Experts feedback to form a closed loop
Compared with natural images, the amount of medical image

data is relatively scarce, and as the radiographic heterogeneity of
the above diseases is high, the image with similar characteristics
are relatively insufficient, which increases the difficulty of training
deep learning models. Thus, the misdiagnosed images of the CNN
model in the first round of test was collected for the expert panel,
which included a neurologist (with 18 years of experience), a
neurosurgeon (with 20 years of experience), and a neuroradiologist
(with 15 years of experience), to evaluate the weight of different
radiographic characteristics of different diseases in the number.
By adding images from calibration set with similar radiographic
features of misdiagnosed images into the original training data,
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FIGURE 2

Flow chart of the training of the CNN model.

FIGURE 3

Human-computer interface. (A) ROI select interface. (B) Output interface.

and train the model again on the basis of the original model
parameters, to simulate the process of error correction of the expert
guided the CNN model and form a closed-loop mechanism to
improve the algorithm performance through continuous iteration
(Figure 2).

2.4.4. Human-computer interface development
In 2018, Zia et al. proposed a suitable size of moveable rectangular

window to segmented and extract feature of brain neoplasm region
which was used discrete wavelet transformed for feature extraction,
principal component analysis for feature selection and support

vector machine for classification (25). Referring to their concept,
we developed a Python-based user interface and used the PyQt5
function library for functional expansion so that the CNN algorithm
could be used in real clinical auxiliary diagnosis. Users can import
the original image to be predicted into the interface, and when the
image is presented on the interface, they can drag the mouse to
select a rectangle region containing the lesion, then click “prediction”
to identify it. While giving the classification results, the interface
will also display the confidence level of the image picture for
TDLs, TPACNS, PCNSL and gliomas, for reference (Figure 3). The
script for interface building was available online (https://github.com/
shaitaiyangmie/Brain-Imaging-Methods).

Frontiers in Neurology 04 frontiersin.org

https://doi.org/10.3389/fneur.2023.1107957
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org


Miao et al. 10.3389/fneur.2023.1107957

TABLE 1 Clinical characteristics of subjects.

TDLs TPACNS PCNSL Gliomas P-Value

Number of subjects 116 64 150 150

Age (years) 37.29± 14.06 38.45± 14.08 57.60± 13.39 46.87± 16.14 <0.001

Gender 0.661

Male 55 35 90 83

Famale 61 29 60 67

The mean ± standard deviation of age is shown. The P-values are obtained from the comparison between TDLs, TPACNS, PCNSL, and gliomas. TDLs, tumefactive demyelinating lesions; TPACN,
tumefactive primary angiitis of the central nervous system; PCNSL, primary central nervous system lymphoma.

FIGURE 4

The receiver operating characteristic (ROC) curve of the four di�erent diseases. False positive rate (FPR) = 1-specificity, True positive rate (TPR) =
sensitivity.

2.4.5. Compare with neuroradiologists
Two blinded senior neuroradiologists with 15 years of experience

independently identified these four categories of diseases in 71
cases from the validation set. Each neuroradiologist got access to
the whole pictures produced by the various MRI scanners. The

number of cases correctly diagnosed by two senior neuroradiologists
was independently tallied, and their respective correct diagnosis
rates were then computed. Finally, a comparison was made
between the diagnostic precision of neuroradiologists and the
CNN model.
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3. Results

3.1. Subject’ clinical characteristics

Pathological confirmation was obtained for 64 patients with
TPACNS, 150 patients with PCNSL, and 150 patients with gliomas
(including 38 WHO grade II, 54 grade III, and 58 grade IV gliomas),
while 72 of 116 TDLs were pathologically validated and 44 were
clinically identified (17). There were significant differences in age
(P < 0.001) between patients with PCNSL and TDLs, TPACNS,
gliomas, but no significant differences in gender (P= 0.661) (Table 1),
consistent with previous reports (26, 27).

According to clinical data, TDLs, PACNS, PCNSL, and gliomas
are frequently misdiagnosed, and clinicians were predisposed to
consider tumors in the initial diagnosis of space-occupying brain
disorders. The median time between the onset of symptoms and the
final diagnosis was 2 months (1–50 months) for TDLs, 2 months
(0.50–72.00 months) for PACNS, 1 month (0.25–60.00 months) for
PCNSL, and 2 months (0.50–144.00 months) for gliomas. Fifteen
(10%) patients with PCNSL were misdiagnosed with inflammatory
demyelinating disease, and six (4%) of those patients were remained
misdiagnosed following the initial biopsy. Eventually, a second brain
biopsy confirmed the diagnosis of PCNSL.

3.2. Diagnostic performance

We trained the CNN model with data from the training and
calibration sets. And the model was basically stable after 500 epochs.
Then we fed all of the data from the validation set into the CNN
model for classification and achieved an overall accuracy of 87% with
AUCs of 0.92, 0.92, 0.88, and 0.89 for TDLs, PCNSL, gliomas, and
TPACNS, respectively (Figure 4). In addition, we separately ran a
test for Glioblastoma (GBM), which obtained an AUC of 0.95 and
the accuracy, sensitivity, and specificity are presented in Table 2.
The diagnostic performances of the two senior neuroradiologists
were 73 and 75%, respectively and the overall accuracy was 74%. In
general, the CNN model’s diagnostic accuracy was higher than that of
senior neuroradiologists.

We also created a human-computer interaction interface to assist
users in selecting the area of lesions. The interface will present the
confidence level of the MR images for TDLs, TPACNS, PCNSL, and
gliomas as a reference while providing classification results.

4. Discussion

In this work, we built a CNN-based differential diagnostic model
to assist clinicians in differentiating TDLs, TPACNS, PCNSL, and
gliomas from MRI. We chose ResNet-18 as the foundational model
and combined it with transfer learning to achieve a more accurate
understanding of the radiographic features of diseases on limited
datasets. Previous research demonstrated that the CE-T1WI provided
the best contrast for distinguishing space-occupying brain diseases
and is widely utilized in conventional MR screening procedures for
cerebral mass lesions (1, 28, 29). In order to acquire more data and
achieve more accurate classification results, we trained the CNN
model only with CE-T1WI images in this study.

TABLE 2 Diagnostic performance of the CNN model and neuroradiologists.

CNN model and neuroradiologists ACC SEN SPE

CNN Model TDLs 0.88 0.78 0.96

TPACNS 0.85 0.75 0.86

PCNSL 0.89 0.93 0.89

Gliomas 0.88 0.82 0.81

Neuroradiologists1 - 0.73 - -

Neuroradiologists2 - 0.75 - -

AUC, area under the curve; ACC, accuracy; SEN, sensitivity; SPE, specificity.

Numerous studies have been conducted utilizing a variety
of feature extraction/selection and classification algorithms to
classify medical images, and most of them have shown satisfactory
performance (29–32). As far as we are aware, no research has been
done to date utilizing artificial intelligence technology to identify
the above four types of space-occupying brain diseases. TDLs and
TPACNS are the most commonly misdiagnosed space-occupying
diseases due to lack of specificity in clinical presentation and the
extensive heterogeneity on MRI. And most research focused on just
two or three types of diseases with large and substantial lesions, such
as GBM and PCNSL (28, 33, 34). GBM is a grade IV astrocytoma
that is also the most prevalent and severe brain cancer (35), but
is more readily distinguished from other space-occupying brain
lesions than other kinds of gliomas due to its massive lesions and
necrosis in the lesions. Low grade gliomas (LGG) and other high
grade gliomas (HGG) (20), on the other hand, are harder to identify
on MRI since their lesions are non-specific and often missed or
confused with other diseases (36). Therefore, to be more applicable
to the current clinical context with the complex etiology of space-
occupying diseases, we included TDLs, TPACNS, PCNSL, LGG
(diffuse astrocytoma, ependymoma), and HGG (GBM, anaplastic
astrocytoma, anaplastic oligodendroglioma) patients in our research
and attempted to differentiate these types of lesions at the same time.

In order to overcome the high radiographic heterogeneity and
relative scarcity of image data with similar characteristics of the
aforementioned diseases, we cropped ROIs in MR images and
used the reduced images for CNN model training and testing to
minimize interference from other brain tissues. And the expert
group supplemented the training set with images that share similar
radiographic characteristics with incorrectly diagnosed images of the
CNN model to simulate the process of error correction by the expert-
guided CNN model. Our CNN model finally achieved a total accuracy
of 87%, which is better than that of the senior neuroradiologists
(74%). In addition, we tested GBM images individually in our CNN
model and had an AUC of 0.95.

According to our data, clinicians were more likely to consider
tumors in the absence of dynamic imaging data. Although most
patients were diagnosed 1–2 months after the onset of symptoms,
the intervals ranged from 1 week to 80 months. It was due to the
fact that space-occupying brain diseases are difficult to differentiate
and most clinicians are inept at doing so, resulting in a wide range of
diagnoses. Our CNN model may assist clinicians in swiftly acquiring
space-occupying brain disease imaging characteristics and correcting
their diagnostic bias. On the basis of clinical expertise and the
CNN model’s prediction findings, clinicians can establish a tentative
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diagnosis of a condition and then undertake the necessary tests
to confirm the tentative diagnosis. When patients are suspected of
having TDLs, testing with oligoclonal bands, aquaporin-4 antibody,
glial fibrillary acidic protein antibody, and myelin oligodendrocyte
glycoprotein antibody should be conducted (37). High-resolution
wall MRI can help to diagnose TPACNS (18). And if a tumor is
suspected, brain biopsies should be performed as soon as possible so
that the pathological type can guide the further treatment or surgical
excision (38). Moreover, pathological features of PCNSL with sentinel
lesions or following steroids therapy may mimic TDLs (39). Thus,
combination of clinical, neuroimaging pathological and follow-up
information are essential for an accurate diagnosis.

4.1. Limitations

First, even though we randomly separated the whole data set
into four sub-datasets to reduce it, the retrospective character of the
research may have introduced some selection bias. Second, there were
still some challenging situations that CNN models misdiagnosed.
Since the appearance of tumor and non-neoplastic lesions changed
as the disease progressed, and imaging performance during the early
stages of diseases was often non-specific, which made diagnosis
more challenging. In future research, we intend to stage the patient’s
imaging data according to the disease course and train the computer
model’s hierarchical classification to summarize the radiographic
characteristics in various disease courses in order to enhance the
model’s performance. Thirdly, the proposed CNN model is still
in its infancy and is only able to recognize CE-T1WI sequences.
In the future, we will include patient information such as multi-
parametric MRI sequences, age, and symptoms into the computer
model’s diagnosis to improve its accuracy.

5. Conclusion

It is essential to enhance the decision-making skills of doctors in
neuroscience applications. The CNN model has an obvious advantage
over clinicians in identifying particular radiographic features of
TDLs, TPACNS, PCNSL, and gliomas on MR images. And that it
might be utilized in the clinic as an additional diagnostic tool to
assist inexperienced clinicians in minimizing diagnostic bias and
improving the diagnostic efficiency and accuracy of space-occupying
brain diseases.

Data availability statement

The original contributions presented in the study are included in
the article/supplementary material, further inquiries can be directed
to the corresponding authors.

Ethics statement

This study was approved by the Ethical Committee of the Sixth
Medical Center of PLA General Hospital. Written informed consent
for participation was not required for this study in accordance with
the national legislation and the institutional requirements.

Author contributions

JL, JW, and CS designed the original research and revised
the paper. XM, TS, YW, QW, JH, XL, and YL conducted the
research. XM, TS, and YW analyzed the data. XM and TS wrote the
manuscript. All authors contributed to the article and approved the
submitted version.

Funding

This work was supported by the PLA General Hospital Big Data
Project (2019MBD-047).

Conflict of interest

The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the
authors and do not necessarily represent those of their affiliated
organizations, or those of the publisher, the editors and the reviewers.
Any product that may be evaluated in this article, or claim that may
be made by its manufacturer, is not guaranteed or endorsed by the
publisher.

References

1. Suh CH, Kim HS, Jung SC, Choi CG, Kim SJ. MRI findings in tumefactive
demyelinating lesions: a systematic review and meta-analysis. AJNR Am J Neuroradiol.
(2018) 39:1643–9. doi: 10.3174/ajnr.A5775

2. de Boysson H, Boulouis G, Dequatre N, Godard S, Neel A, Arquizan C, et al.
Tumor-like presentation of primary angiitis of the central nervous system. Stroke. (2016)
47:2401–4. doi: 10.1161/STROKEAHA.116.013917

3. Paoletti M, Muzic SI, Marchetti F, Farina LM, Bastianello S, Pichiecchio A.
Differential imaging of atypical demyelinating lesions of the central nervous system.
Radiol Med. (2021) 126:827–42. doi: 10.1007/s11547-021-01334-y

4. Ostrom QT, Patil N, Cioffi G, Waite K, Kruchko C, Barnholtz-Sloan JS, et al.
Statistical report: primary brain and other central nervous system tumors diagnosed in the
United States in 2013-2017. Neuro Oncol. (2020) 22:v1–96. doi: 10.1093/neuonc/noaa200

5. Ng S, Butzkueven H, Kalnins R, Rowe C. Prolonged interval between sentinel
pseudotumoral demyelination and development of primary CNS lymphoma. J Clin
Neurosci. (2007) 14:1126–9. doi: 10.1016/j.jocn.2006.05.003

6. Bajagain M, Oyoshi T, Hanada T, Higa N, Hiraki T, Kamimura K, et al.
Histopathological variation in the demyelinating sentinel lesion of primary central
nervous system lymphoma. Surg Neurol Int. (2020) 11:342. doi: 10.25259/SNI_5
31_2020

7. Faehndrich J, Weidauer S, Pilatus U, Oszvald A, Zanella FE, Hattingen E.
Neuroradiological viewpoint on the diagnostics of space-occupying brain lesions. Clin
Neuroradiol. (2011) 21:123–39. doi: 10.1007/s00062-011-0073-6

8. Nguyen AV, Blears EE, Ross E, Lall RR, Ortega-Barnett J. Machine learning
applications for the differentiation of primary central nervous system lymphoma from

Frontiers in Neurology 07 frontiersin.org

https://doi.org/10.3389/fneur.2023.1107957
https://doi.org/10.3174/ajnr.A5775
https://doi.org/10.1161/STROKEAHA.116.013917
https://doi.org/10.1007/s11547-021-01334-y
https://doi.org/10.1093/neuonc/noaa200
https://doi.org/10.1016/j.jocn.2006.05.003
https://doi.org/10.25259/SNI_531_2020
https://doi.org/10.25259/SNI_531_2020
https://doi.org/10.1007/s00062-011-0073-6
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org


Miao et al. 10.3389/fneur.2023.1107957

glioblastoma on imaging: a systematic review and meta-analysis. Neurosurg Focus. (2018)
45:E5. doi: 10.3171/2018.8.FOCUS18325

9. Nazir M, Shakil S, Khurshid K. Role of deep learning in brain tumor detection
and classification (2015 to 2020): a review. Comput Med Imaging Graph. (2021)
91:101940. doi: 10.1016/j.compmedimag.2021.101940

10. Zaharchuk G, Gong E, Wintermark M, Rubin D, Langlotz CP. Deep learning in
neuroradiology. AJNR Am J Neuroradiol. (2018) 39:1776–84. doi: 10.3174/ajnr.A5543

11. Akkus Z, Galimzianova A, Hoogi A, Rubin DL, Erickson BJ. Deep learning for
brain MRI segmentation: state of the art and future directions. J Digit Imaging. (2017)
30:449–59. doi: 10.1007/s10278-017-9983-4

12. Magadza T, Viriri S. Deep learning for brain tumor segmentation: a survey of
state-of-the-art. J Imaging. (2021) 7:19. doi: 10.3390/jimaging7020019

13. Krizhevsky A, Sutskever I, Hinton G. ImageNet classification with deep
convolutional neural networks. Adv Neural Inform Process Syst. (2012) 25:84–90.
doi: 10.1145/3065386

14. LeCun Y, Bengio Y, Hinton G. Deep learning. Nature. (2015) 521:436–
44. doi: 10.1038/nature14539

15. Yaqub M, Jinchao F, Zia MS, Arshid K, Jia K, Rehman ZU, et al. State-of-the-art
CNN optimizer for brain tumor segmentation in magnetic resonance images. Brain Sci.
(2020) 10:427. doi: 10.3390/brainsci10070427

16. Aneja S, Chang E, Omuro A. Applications of artificial intelligence in neuro-
oncology. Curr Opin Neurol. (2019) 32:850–6. doi: 10.1097/WCO.0000000000000761

17. Chinese guidelines for the diagnosis and management of tumefactive demyelinating
lesions of central nervous system. Chin Med J. (2017) 130:1838–50. doi: 10.4103/0366-
6999.211547

18. Birnbaum J, Hellmann DB. Primary angiitis of the central nervous system. Arch
Neurol. (2009) 66:704–9. doi: 10.1001/archneurol.2009.76

19. Hoang-Xuan K, Bessell E, Bromberg J, Hottinger AF, Preusser M, Ruda R, et al.
Diagnosis and treatment of primary CNS lymphoma in immunocompetent patients:
guidelines from the European association for neuro-oncology. Lancet Oncol. (2015)
16:e322–32. doi: 10.1016/S1470-2045(15)00076-5

20. Louis DN, Ohgaki H, Wiestler OD, Cavenee WK, Burger PC, Jouvet A, et al. The
2007 WHO classification of tumours of the central nervous system. Acta Neuropathol.
(2007) 114:97–109. doi: 10.1007/s00401-007-0243-4

21. He KM, Zhang XY, Ren SQ, Sun J. Deep residual learning for image recognition. In:
2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). IEEE (2016).
p. 770–8. doi: 10.1109/CVPR.2016.90

22. Krizhevsky A, Hinton G. Learning multiple layers of features from tiny
images. In: Handbook of Systemic Autoimmune Diseases, Vol. 1 (2009). p. 1–
60. Available online at: https://www.researchgate.net/publication/306218037_Learning_
multiple_layers_of_features_from_tiny_images

23. Image classification of fine-grained fashion image based on style using pre-trained
convolutional neural network. In: 2018 IEEE 3rd International Conference on Big Data
Analysis (ICBDA) (2018). p. 387–90.

24. Kim J, Yang E. Sea Fog identification from GOCI images using CNN transfer
learning models. Electron. Switz. (2020) 9:311. doi: 10.3390/electronics9020311

25. Zia R, Akhtar P, Aziz A. A new rectangular window based image
cropping method for generalization of brain neoplasm classification

systems. Int J Imag Syst Tech. (2018) 28:153–62. doi: 10.1002/ima.
22266

26. Grommes C, DeAngelis LM. Primary CNS lymphoma. J Clin Oncol. (2017) 35:2410–
8. doi: 10.1200/JCO.2017.72.7602

27. Nakayama M, Naganawa S, Ouyang M, Jones KA, Kim J, Capizzano AA, et al.
A review of clinical and imaging findings in tumefactive demyelination. AJR Am J
Roentgenol. (2021) 19:1–12. doi: 10.2214/AJR.20.23226

28. Suh CH, Kim HS, Jung SC, Park JE, Choi CG, Kim SJ, et al. as a diagnostic biomarker
for differentiating primary central nervous system lymphoma from glioblastoma:
a systematic review and meta-analysis. J MAGN Reson Imaging. (2019) 50:560–
72. doi: 10.1002/jmri.26602

29. Xia W, Hu B, Li H, Shi W, Tang Y, Yu Y, et al. Deep learning for automatic
differential diagnosis of primary central nervous system lymphoma and glioblastoma:
multi-parametric magnetic resonance imaging based convolutional neural network
model. J Magn Reson Imaging. (2021) 54:880–7. doi: 10.1002/jmri.27592

30. Chang P, Grinband J, Weinberg BD, Bardis M, Khy M, Cadena G, et al. Deep-
learning convolutional neural networks accurately classify genetic mutations in gliomas.
AJNR Am J Neuroradiol. (2018) 39:1201–7. doi: 10.3174/ajnr.A5667

31. Zhang Y, Liang K, He J, Ma H, Chen H, Zheng F, et al. Deep learning
with data enhancement for the differentiation of solitary and multiple cerebral
glioblastoma, lymphoma, and tumefactive demyelinating lesion. Front Oncol. (2021)
11:665891. doi: 10.3389/fonc.2021.665891

32. Zhang M, Young GS, Chen H, Li J, Qin L, McFaline-Figueroa JR, et al. Deep-
Learning detection of cancer metastases to the brain on MRI. J Magn Reson Imaging.
(2020) 52:1227–36. doi: 10.1002/jmri.27129

33. Yang Z, Feng P, Wen T, Wan M, Hong X. Differentiation of glioblastoma and
lymphoma using feature extraction and support vector machine. CNS Neurol Disord Drug
Targets. (2017) 16:160. doi: 10.2174/1871527315666161018122909

34. Kunimatsu A, Kunimatsu N, Yasaka K, Akai H, Kamiya K, Watadani T,
et al. Machine learning-based texture analysis of contrast-enhanced MR imaging to
differentiate between glioblastoma and primary central nervous system lymphoma. Magn
Reson Med Sci. (2019) 18:44–52. doi: 10.2463/mrms.mp.2017-0178

35. Grabowski MM, Recinos PF, Nowacki AS, Schroeder JL, Angelov L, Barnett
GH, et al. Residual tumor volume versus extent of resection: predictors of survival
after surgery for glioblastoma. J Neurosurg. (2014) 121:1115–23. doi: 10.3171/2014.7.JN
S132449

36. Ryu YJ, Choi SH, Park SJ, Yun TJ, Kim JH, Sohn CH. Glioma: application of
whole-tumor texture analysis of diffusion-weighted imaging for the evaluation of tumor
heterogeneity. PLoS ONE. (2014) 9:e108335. doi: 10.1371/journal.pone.0108335

37. Hardy TA. Pseudotumoral demyelinating lesions: diagnostic
approach and long-term outcome. Curr Opin Neurol. (2019) 32:467–
74. doi: 10.1097/WCO.0000000000000683

38. Jiang T, Mao Y, Ma W, Mao Q, You Y, Yang X, et al. CGCG clinical practice
guidelines for the management of adult diffuse gliomas. Cancer Lett. (2016) 375:263–
73. doi: 10.1016/j.canlet.2016.01.024

39. Kvarta MD, Sharma D, Castellani RJ, Morales RE, Reich SG, Kimball AS, et al.
Demyelination as a harbinger of lymphoma: a case report and review of primary central
nervous system lymphoma preceded by multifocal sentinel demyelination. BMC Neurol.
(2016) 16:72. doi: 10.1186/s12883-016-0596-1

Frontiers in Neurology 08 frontiersin.org

https://doi.org/10.3389/fneur.2023.1107957
https://doi.org/10.3171/2018.8.FOCUS18325
https://doi.org/10.1016/j.compmedimag.2021.101940
https://doi.org/10.3174/ajnr.A5543
https://doi.org/10.1007/s10278-017-9983-4
https://doi.org/10.3390/jimaging7020019
https://doi.org/10.1145/3065386
https://doi.org/10.1038/nature14539
https://doi.org/10.3390/brainsci10070427
https://doi.org/10.1097/WCO.0000000000000761
https://doi.org/10.4103/0366-6999.211547
https://doi.org/10.4103/0366-6999.211547
https://doi.org/10.1001/archneurol.2009.76
https://doi.org/10.1016/S1470-2045(15)00076-5
https://doi.org/10.1007/s00401-007-0243-4
https://doi.org/10.1109/CVPR.2016.90
https://www.researchgate.net/publication/306218037_Learning_multiple_layers_of_features_from_tiny_images
https://www.researchgate.net/publication/306218037_Learning_multiple_layers_of_features_from_tiny_images
https://doi.org/10.3390/electronics9020311
https://doi.org/10.1002/ima.22266
https://doi.org/10.1002/ima.22266
https://doi.org/10.1200/JCO.2017.72.7602
https://doi.org/10.2214/AJR.20.23226
https://doi.org/10.1002/jmri.26602
https://doi.org/10.1002/jmri.27592
https://doi.org/10.3174/ajnr.A5667
https://doi.org/10.3389/fonc.2021.665891
https://doi.org/10.1002/jmri.27129
https://doi.org/10.2174/1871527315666161018122909
https://doi.org/10.2463/mrms.mp.2017-0178
https://doi.org/10.3171/2014.7.JNS132449
https://doi.org/10.3171/2014.7.JNS132449
https://doi.org/10.1371/journal.pone.0108335
https://doi.org/10.1097/WCO.0000000000000683
https://doi.org/10.1016/j.canlet.2016.01.024
https://doi.org/10.1186/s12883-016-0596-1
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org

	The value of convolutional neural networks-based deep learning model in differential diagnosis of space-occupying brain diseases
	1. Introduction
	2. Materials and methods
	2.1. Patients and image acquisitions
	2.2. MRI acquisition and lesions segmentation
	2.3. Statistical analysis
	2.4. Algorithm Implementation 
	2.4.1. Data pre-processing
	2.4.2. CNN model development
	2.4.3. Experts feedback to form a closed loop
	2.4.4. Human-computer interface development
	2.4.5. Compare with neuroradiologists


	3. Results
	3.1. Subject' clinical characteristics
	3.2. Diagnostic performance

	4. Discussion
	4.1. Limitations

	5. Conclusion
	Data availability statement
	Ethics statement
	Author contributions
	Funding
	Conflict of interest
	Publisher's note
	References


