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Introduction: Brachial plexus injury (BPI) is one of the most destructive peripheral
nerve injuries and there is still a lack of e�ective treatment.

Methods: This study was conducted to evaluate the e�ects of melatonin
in the treatment of acute brachial plexus compression injury in rats
using histopathological, histomorphometric, immunohistochemical and
electrophysiological methods. Forty-eight adult male Sprague Dawley rats
were randomly allocated into three groups: sham, melatonin and vehicle groups.
The brachial plexus compression injury model was performed by a vascular
clamp. Melatonin group received intraperitoneal injection of melatonin at doses
of 10 mg/kg for 21 days after crush injury. The conduction velocity and amplitude
of compound muscle action potential (CAMP) in the regenerated nerve, and
nerve histomorphometry, as well as levels of myelin protein zero (P0) protein of
the crush region were assessed.

Results: Compared with the vehicle group, the melatonin group which reported
significant increased CMAP conduction velocity and amplitude also showed
thicker myelin sheath and lower levels of P0 protein.

Discussion: Our results suggest that melatonin e�ectively promotes nerve
regeneration and improves the function of damaged nerves. Melatonin
treatment is a promising strategy for the treatment of acute brachial plexus
compression injury.

KEYWORDS

acutebrachial plexus compression injury,melatonin, ratmodel,myelin protein zero, nerve
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1. Introduction

Brachial plexus injury (BPI) is one of the most destructive peripheral nerve injuries,

which can result in notable motorsensory deficits (1–3). Despite neurosurgical techniques

are available to repair the lesion, function restoration of BPI remains unsatisfactory in

clinical practice (2). The outcomes after nerve reconstruction are adversely affected not only

by mechanical injury, also by several secondary factors such as inflammatory responses,

oxidative stress and regenerative misdirection (4). Several recent studies have focused on the

promising approaches involving therapeutic management of the secondary cascade resulting

from BPI (4, 5).
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Melatonin, the main hormone of the pineal gland, daily

regulates circadian rhythms (6, 7). Various formulations of

melatonin have been patented and used in the treatment of

sleep dysfunction. Some previous studies show that melatonin

can regulate various physiological functions including anti-

inflammation, free radical scavenging and anti-oxidative properties

(7). Due to these biological properties, melatonin has been used

as potential pharmacotherapy for traumatic events in the central

nerve system. Recently, it has been demonstrated that melatonin

has have beneficial effects on peripheral nerve repair in models of

sciatic nerve injury (8–13).

In this study, we evaluated the potential neuroprotective roles

of melatonin in brachial plexus compression injury models of rats.

2. Materials and methods

A total of 48 adult male Sprague Dawley (SD) rats, weighing

about 250 g, were obtained from experimental animal center of

Zhejiang University. The animal experiment was approved by the

Zhejiang University’s Animal Experimentation Ethics Committee.

All rats were housed in a room with constant and appropriate

temperature and humidity and are subjected to a 12-h diurnal

cycle. Drinking water and standard laboratory feed were available

in sufficient quantities. They were allowed to acclimatize for 1

week prior to the experiments. Efforts were made to minimize

animal suffering and to reduce the number of animals used during

the experiments.

The animals were randomly divided into 3 groups (n = 16

each group): sham, vehicle and melatonin groups. Sham group

had no operation on the brachial plexus nerve, instead, they just

underwent skin incision and suturing. In melatonin and vehicle

groups, all surgical procedures were performed after anesthesia

with an intraperitoneal injection of xylazine and ketamine (10 and

80mg/kg). The left brachial plexus was identified and exposed using

an operating microscope. Distal to the suprascapular nerve branch,

the upper trunk of the brachial plexus were crushed by a mosquito

vascular clamp (Shanghai Medical Instruments Corp. Ltd.) that

was fixed to the maximun extent for 30 s. Afterwards, the incision

was closed by using 4.0 silk sutures. Melatonin group received

intraperitoneal injection of melatonin at doses of 10 mg/kg for 21

days after injury. Normal saline was injected intraperitoneally in

vehicle group (Figure 1).

By 7 and 14 days after surgery, 6 rats were anesthetized

and perfused transcardially with 0.5% glutaraldehyde in 0.1M

phosphate buffer. Short 5mm segments of the brachial plexus were

collected. The specimens were fixed in 2.5% phosphate-buffered

glutaraldehyde solution (PBS) for 1 h at room temperature and then

at 4◦C, until processed. Tissue paraffin blocks were fabricated by

post-fixing specimens in 1% OsO4 in PBS, dehydrating in a graded

series of alcohol and propylene oxide, embedding in resin, and

then polymerizing at 60◦C. Transverse semi-thin sections (1mm)

were obtained using an ultramicrotome, and were respectively

stained with Fast blue (Abcam, UK), silver (Amresco, USA) and

H&E staining (Abcam, UK). By 7 days after surgery, ultrathin

sections (70 nm) of nerve samples were stained with uranyl acetate

and citrate and were evaluated by JEM1400 transmission electron

microscope (JEOL Ltd., Tokyo, Japan).

FIGURE 1

The modeling diagram.

Three weeks after surgery, the injured sites of the brachial

plexus were excised and lysed, and resolved by 10% sodium dodecyl

sulfate polyacrylamide gel electrophoresis, and then transferred to

a polyvinylidene difluoride membrane, blocked with 5% non-fat

dry milk. Subsequently, the membrane was incubated with mouse

polyclonal antibody to P0 (1:1,000; Santa Cruz Biotechnology,

USA) and mouse monoclonal antibody to GAPDH (1:5,000; Santa

Cruz Biotechnology). After washing with 0.1M Tris buffered

saline (Ph 7.2) containing 0.1% Tween-20 (TBST) for three

times (10min for each), the membranes were incubated with

rabbit anti-mouse IgG (1:5,000; Santa Cruz Biotechnology), for

2 h at room temperature. Band optical density values were

determined using Gel-Pro Analyzer Software, version 4.0 (Media

Cybernetics, USA).

Three weeks after surgery, 4 rats were anesthetized and

the left brachial plexus was isolated. Bipolar stimulating

electrodes were placed near the injury site while the bipolar

recording electrode was placed in the upper limb muscle. The

amplitude and latency of compound muscle action potential

(CMAP) were recorded with an electromyogram instrument.

The bipolar stimulating electrodes were used to stimulate

the regenerated nerves and the bipolar recording electrodes

inserted into the muscle were to record electrical activity

through a digital MYTO electromyograph machine (Esaote,

Genoa, Italy).

All pathological manifestations, Fast blue staining, HE staining,

silver staining or transmission electron microscopic images, were

evaluated by a pathologist who was blinded to this study.

Quantitative variables were described using means and standard

deviations (SD), and compared using t-tests. The level of

significance was set to p < 0.05. All analyses were done in

SPSS 23.0.
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FIGURE 2

The general views of histological sections stained by Fast blue, silver and H&E. (A–C) Sham group: well-arranged and distributed nerve fibers were
observed; (D–I) vehicle groups at 7 and 14 days: typical features of peripheral nerve injury after 7 days could be seen in (D–F), including myelin loss
with Wallerian degeneration (arrow), and endoneurial edema (*). (G–I) A further decrease in nerve fiber density, disruption of fiber arrangement, and a
marked increase in fibrosis (triangle) and axonal vacuolization (arrowhead) at day 14. (J–O) Melatonin groups at 7 and 14 days: compared with
vehicle group, less axonal degeneration and vacuolization, as well as fibrosis were observed, with more regenerating axon clusters (star) and the
nerve fibers were are neatly aligned.
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FIGURE 3

Transmission electron micrographs showing the ultrastructure of
brachial plexus day 7 after injury. (A) Vehicle group; (B) melatonin
group. Nerves in the melatonin group showed thicker myelin
sheaths and narrower endoneural gaps compared to the vehicle
group. Scale bar = 5 mm.

FIGURE 4

P0 protein/GAPDH protein levels were assessed using western
blotting in the injured sites of rats in all 3 groups, 3 weeks after
injury. p-value *

<0.05.

3. Results

Well-arranged and distributed nerve fibers were observed

in sham group (Figures 2A–C). On the contrary, the typical

characteristics of peripheral nerve injury were present in

vehicle group on day 7, including axonal degeneration, myelin

abnormalities, and endoneurial edema (Figures 2D–F). By

day 14, the density of nerve fibers was further reduced, and

the axonal degeneration was increased markedly. More axons

had collapsed and the number of Schwann’s cells increased

(Figures 2G–I). Compared with vehicle group, less axonal

degeneration and vacuolization were observed in melatonin

group (Figures 2J–O). And the vehicle group showed slightly

more increase in endoneural space than the melatonin group.

Similarly, the transmission electron microscope analysis showed

there was a significant difference in myelin sheath thickness

and endoneural space between the vehicle and melatonin group

(Figures 3A, B).

The levels of P0 protein at 3 weeks after surgery in

all three groups were shown in Figure 4. The levels of P0

protein were significantly decreased in vehicle group compared

with the sham group (P < 0.05). Whereas, the P0 protein

levels in the melatonin group, although slightly lower than the

sham group, were significantly higher compared with vehicle

group (P < 0.05).

Table 1 showed the results of electrophysiological assessment at

3 weeks after surgery in all three groups. The CMAP amplitude

was reduced markedly (p < 0.05), while the CMAP latency was

prolonged significantly (p < 0.05) in vehicle group compared

with that in Sham group. Moreover, melatonin-treated group

displayed distinctly higher CMAP amplitude (p < 0.05) and

markedly shorter CMAP latency (p < 0.05) compared with

vehicle group.

4. Discussion

Peripheral nerve injury of the upper limb is a common and

extremely inconvenient clinical disease. The main mechanisms

of its occurrence are compression, trauma, peripheral nerve

tumor, inflammation, neuronal degeneration, and radiation

exposure (14–16). The brachial plexus is not only the most

complicated structure in the peripheral nervous system, but

highly susceptible to trauma, or may be damaged secondary

to lesions of adjacent structures (17). The present study

demonstrated continuous treatment with melatonin can

significantly increase CMAP conduction velocity, enhance

myelin sheath thickness and at the same time, increase P0

protein levels in the regenerated brachial plexus nerve after

injury compared with vehicle treatment. These results suggest

that melatonin can effectively promotes nerve regeneration and

improves the function of damaged nerves. Melatonin treatment

is a promising strategy for the treatment of acute brachial plexus

compression injury.

There are some basic pathological changes in the early stage

of peripheral nerve injuries, including axonal degeneration,

myelin abnormalities, and endoneurial edema (4). And severe

peripheral nerve injuries can finally lead to the Wallerian

degeneration of the distal segment of the nerve, which means

rupture of the axonal membrane, degradation of cytoskeletal

components and lysis of myelin sheaths (4, 18). Therefore,

several pharmacological agents have been investigated to
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TABLE 1 The results of electrophysiological evaluation in all three groups.

Group Sham Vehicle Melatonin

CMAP latency (ms) 2.21± 0.08 3.57± 0.16∗ 3.08± 0.06#

CMAP amplitude (Mv) 11.68± 0.8 1.92± 0.24∗ 5.34± 0.14#

∗P < 0.05 for the sham compared with vehicle group; #P < 0.05 for the melatonin compared

with vehicle group.

facilitate myelination and functional recovery after peripheral

nerve injury.

In the process of peripheral nerve repair, Schwann cells

proliferate and construct the myelin sheath to enhance axonal

regeneration from proximal to distal (18). P0, the major peripheral

nervous system myelin protein, belongs to the immunoglobulin

supergene family of membrane proteins and can mediate

homotypic adhesion (19, 20). P0 is considered as a fundamental

structural component of peripheral nervous system myelin, and

is directly or indirectly involved in the regulation of myelin

gene expression and myelin morphogenesis (20). And the levels

of P0 expression are related to Schwann cell myelination in

peripheral nerve repair (21). The experimental results of the

present study showed that P0 protein levels in the myelin sheath

were increased after melatonin treatment, from which it can

be inferred that melatonin treatment triggered Schwann cell

proliferation and myelination, thus promoting the repair and

regeneration of damaged nerves. Other histomorphological

findings corroborate this supposition. The electrophysiological

assessment showed that injured nerve after melatonin treatment

can provides lower latency recordings and higher amplitude

measures, which indicated a higher number of normally

functioning axons in the melatonin treatment group. And

histological observation manifested the presence but not

nimiety of Wallerian degeneration, more regenerating axon

clusters, higher myelin thickness and nerve fiber density,

more orderly nerve fiber arrangement in the melatonin

group, all of which support the promotion of melatonin for

nerve regeneration.

Melatonin is a hormone secreted by the pineal gland of

brain and produce a marked effect on the regulation of sleep

and circadian rhythm (1, 2). Previous studies demonstrated

melatonin has neuroprotective effects in the treatment of

peripheral nerve injury (8–13, 22). Melatonin treatment can

markedly increase the number of axons and thickness of myelin

sheath in rat models of sciatic nerve injury (8–13, 22). And

structural protection of the myelin lamellae can be preserved

following repeated low dosage of melatonin administration

(13). Even a single injection of high-dose melatonin can act

to protect myelin sheath, prevent axonal loss, and accelerate

functional recovery of the injured sciatic nerve (12). Pan

et al. (11) illustrated that melatonin might promote peripheral

nerve regeneration by improving the proliferation and migration

of Schwann cells through the Shh signaling pathway after

sciatic nerve injury. Moreover, recently simultaneous use of

melatonin and chondroitin sulfate ABC synergistically promoted

nerve regeneration in the brachial plexus nerve-root avulsion

model (23). All these experimental results were consistent with

our findings.

Overall, this study strengthens the idea that melatonin

promoted axonal regeneration after brachial plexus compression

injury, which may provide a promising therapeutic strategy

for peripheral nerve injury. However, our study had some

limitations. Firstly, histomorphometric changes with experimental

injury and healing response were assessed only by histology and

immunohistochemistry. Secondly, we did not conduct functional

evaluation. In addition, further experiments should be conducted

on the proper dosage and possible side effects.
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