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Purpose: This study aims to automatically classify color Doppler images into two

categories for stroke risk prediction based on the carotid plaque. The first category

is high-risk carotid vulnerable plaque, and the second is stable carotid plaque.

Method: In this research study, we used a deep learning framework based on transfer

learning to classify color Doppler images into two categories: one is high-risk carotid

vulnerable plaque, and the other is stable carotid plaque. The data were collected

from the Second A�liated Hospital of Fujian Medical University, including stable

and vulnerable cases. A total of 87 patients with risk factors for atherosclerosis in

our hospital were selected. We used 230 color Doppler ultrasound images for each

category and further divided those into the training set and test set in a ratio of 70

and 30%, respectively. We have implemented Inception V3 and VGG-16 pre-trained

models for this classification task.

Results: Using the proposed framework, we implemented two transfer deep

learning models: Inception V3 and VGG-16. We achieved the highest accuracy

of 93.81% by using fine-tuned and adjusted hyperparameters according to our

classification problem.

Conclusion: In this research, we classified color Doppler ultrasound images into

high-risk carotid vulnerable and stable carotid plaques. We fine-tuned pre-trained

deep learning models to classify color Doppler ultrasound images according to our

dataset. Our suggested framework helps prevent incorrect diagnoses caused by low

image quality and individual experience, among other factors.

KEYWORDS

color Doppler ultrasound images, stroke risk prediction, deep learning, transfer learning,

carotid artery

1. Introduction

With the advent of aging, cerebrovascular disease has become one of the world’s three

significant causes of death and disability (1). Atherosclerosis is a systemic and progressive

disease, and its progression is reflected in the transformation of stable and unstable lipid

plaques in the arterial lumen. Cerebrovascular disease is closely related to carotid atherosclerotic

plaque. The vulnerability of carotid plaque is a significant risk for the recurrence of cerebral

infarction (2). The recurrence rate of ischemic cerebral infarction patients within 7 days is

as high as 8.1% (3). Carotid color Doppler ultrasound is a routine method for examining

carotid plaque. Conventional two-dimensional ultrasound can accurately determine the plaque’s

location, size, shape, and echo and observe the degree of carotid artery stenosis and even

the ulcer on the plaque surface and intraplaque hemorrhage (4). Different echoes represent

changes in plaque composition, and plaque stability can be preliminarily judged according to
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plaque morphology, echoes, thickness, and integrity of the fibrous

cap. Studies have shown that hypoechoic plaques are more prone

to stroke than iso-echoic and hyperechoic plaques (5). However,

the detection of ulcer plaque and intraplaque hemorrhage by

conventional ultrasound is limited, and the nature of plaque

mainly depends on the operator’s experience and subjective

judgment, which has certain limitations (6). Multiple studies used

numerical simulations to analyze the fluid–structure interaction

between the blood vessel wall and blood flowing through elastic

arteries with eccentric stenotic plaque (7). With the rapid

development of inspection techniques, contrast-enhanced ultrasound

and ultra-microvascular imaging techniques are able to display

new blood vessels with plaques, better assess the vulnerability of

plaques, and improve the predictive value of cerebral infarction

recurrence (8, 9). However, due to the limitations of inspection

instruments and contrast media, contraindications cannot be used as

routine screening.

Numerous imaging approaches, such as 3D imaging, auto-

fluorescence imaging (AFI), and narrow-band imaging (NBI), have

been developed to enhance the diagnostic system and get over

the constraints listed above (10). A precise 3D reconstruction and

modeling (11) of the segmented cardiac structures (12) is crucial

because hemodynamic modeling of these structures aids in the

evaluation of blood dynamics. There is still a need for a computer-

aided autonomous framework to improve the efficiency and quality

of diagnosis in daily clinical practice (13). Deep learning technology

has recently permeated several areas of medical study and has taken

a center stage in modern science and technology.

Deep learning technology can fully utilize vast amounts of data,

automatically learn the features in the data, accurately and rapidly

support clinicians in diagnosis, and increase medical efficiency.

Traditional machine learning and deep learning methods in medical

image analysis have been widely used in medical image diagnosis

(14), and ensemble learning techniques are also used in various

medical examinations (15). For the automatic segmentation of

images in cardiac radiography, Song et al. (16) utilized the deep

learning technique and obtained significant results. To segment the

carotid plaque in ultrasound longitudinal B-mode images, Meshram

et al. (17) used U-Net architecture, where the dilated convolution

layers were used in the bottleneck. Savaş et al. (18) used a multi-

hidden layer neural network to detect and classify intima-media

thickness and achieved 89.1% accuracy. In their experiment, they

used U-Net architecture to segment the same plaque manually,
and the results showed the Dice coefficients of 0.55 for automatic

segmentation and 0.84 for semi-automatic segmentation. Pre-trained

deep learning models based on massive datasets have demonstrated
their superiority to conventional approaches as the processing

capacity of modern hardware continues to grow. Therefore, from

a deep learning perspective, transfer learning can be used to solve

the image categorization problem. The study found that the transfer

learning and convolutional neural network technique achieve several

cutting-edge achievements in medical image analysis (19). Chatterjee

et al. (20) used MobileNet and various feature selection techniques to

determine the amount of plaque in the carotid artery to predict the

heart risk and achieved 95% accuracy on the validation set.

We utilized the benefits of pre-trained deep learning models

to enhance the diagnosis and overcome the mentioned limitations.

Our deep learning framework improves the carotid color Doppler

ultrasound for examining carotid plaque using MRI scans. We used

pre-trained models, including VGG-16, ResNet-50, and Inception

V3, and adjusted their hyperparameters to fit our classification task.

The study is organized as follows: Section 2 of this study

illustrates the methodology, including the dataset description, feature

extraction, and implementation detail of deep learning models.

Section 3 explains the results and discussion. Section 4 presents the

conclusion and possibilities for future research.

2. Materials and methods

A computer-aided autonomous framework is needed to classify

color Doppler ultrasound images into two types to enhance carotid

plaque diagnosis. Deep learning technology has recently permeated

several areas of medical study and has taken a center stage in

modern science and technology (21). Deep learning technology

can fully utilize vast amounts of data, automatically learn the

features in the data, accurately and rapidly support clinicians in

diagnosis, and increase medical efficiency. Our research implemented

a deep learning framework based on transfer learning to classify

color Doppler ultrasound images into vulnerable and stable carotid

plaques. We used VGG-16 and Inception V3 pre-trained models,

fine-tuned them, and adjusted hyperparameters according to our

classification problem. The proposed framework to address the

mentioned research gap is shown in Figure 1.

2.1. Data collection and statistics

The data were collected from the Second Affiliated Hospital

of Fujian Medical University, including stable cases and vulnerable

cases. A total of 87 patients with risk factors for atherosclerosis

in the mentioned hospital were selected. Due to the complexity of

medical images and the requirement for extremely high accuracy of

results, the current analysis of medical images is mainly performed by

experienced personnel. We randomly selected 230 sample images of

vulnerable carotid plaque from color Doppler ultrasound images, and

similarly, 230 images were selected randomly for the stable carotid

plaque category. We divided the dataset in the ratio of 70 and 30%

for training and testing, respectively. The sample data are shown in

Figure 2.

Furthermore, the dataset statistics are shown in Table 1 for a

better understanding.

The carotid artery color ultrasound confirmed the presence

of the carotid artery homogeneous hypoechoic plaque (with the

sternocleidomastoid muscle as the reference, the echo was slightly

lower than sternocleidomastoid echoes and may have hyperechoic

fibrous caps) or heterogeneous hypoechoic plaque (the echoes are

marginally lower than those of the sternocleidomastoid muscles,

mainly hypoechoic, with hyperechoic and is echoic parts <25 %).

Patients with diabetes, hypertension, and hyperlipidemia should

receive regular symptomatic treatment.

Two-dimensional ultrasound diagnostic criteria for vulnerable

plaques are as follows: The overall shape of the plaque is irregular, the

fibrous surface cap is thin or not smooth, and the internal lipid core is

low or low to anechoic, heterogeneity, and basal lines. The echo-like

continuity is poor or inconsistent, or there is an ulcer on the surface

of the plaque. The RESONA 7OB diagnostic ultrasound system

(Mindray Medical International, Shenzhen, Guangdong Province,

Frontiers inNeurology 02 frontiersin.org

https://doi.org/10.3389/fneur.2023.1111906
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org


Su et al. 10.3389/fneur.2023.1111906

FIGURE 1

Proposed framework to classify color Doppler ultrasound images. An image is fed to the feature extraction module of a neural network; then, data are

split to the train and test set. Inception V3 and VGG-16 are trained according to the dataset to classify images into two classes.

FIGURE 2

Sample dataset (A) pertains to vulnerable carotid plaque ultrasounds images scans and (B) belongs to stable carotid plaque ultrasounds images scans,

whereby (i) and (ii) represent the color Doppler image scans and their respective enlarged views for clarity.
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China) linear array probe is in the frequency of 3–11 MHz, and

the patient is in a supine position with the occiput removed, with

the head slightly turned to one side (to avoid hyperextension),

and conventional color Doppler ultrasound of the carotid artery

is performed, the thickness of plaque was observed according to

the characteristics of the first echo. Homogeneous or heterogeneous

hypoechoic plaques were selected as representative plaques. If the

plaques were multiple, the homogeneous plaque with the lowest

visual echo was selected. After determining the target plaque, the

long-axis section of the plaque is taken; then, the probe is kept steady,

and the image is acquired.

2.2. Feature extraction

We begin with a pre-trained model for extracting characteristics

and changing the weights of the bottom layer, from which we obtain

predictions. It is called feature extraction because we change the

output layer and apply the pre-trained CNN as a fixed feature

extractor (22). As the number of convolution steps increases,

convolution neural networks successfully learn the edge features

of the input image and some or all objects—high-level semantic

information. In the convolution neural network, the convolution

layer and complete connection layer can be used to extract the

image’s deep features; however, the convolution layer contains

several dimensions, making it difficult to calculate the dimensionality

reduction that comes next (23). The last layer consists of the softmax

layer that computes the categorical cross-entropy loss function

(E) between the symptomatic and asymptomatic classes and is

mathematical, as given in Equation 1.

TABLE 1 Statistics of our dataset in each category.

Category Total number of images

Vulnerable carotid plaque 230

Stable carotid plaque 230

E = −
(

y∗ log
(

p
))

+
[(

1− y
)∗

log
(

1− p
)]

(1)

where y is the binary indicator for the observed class, “∗” denotes the

product, and p is the predicted probability of the plaque belonging to

a specific class computed using deep learning models.

2.3. Inception V3

Inception V3 is a 48-layer deep pre-trained convolutional neural

network model, as shown in Equation 2. This network was trained

using a subset of the more than a million images in the ImageNet

collection. Typically, the inception module includes one maximum

pooling and three convolutions of various sizes (24). After the

convolution operation, the channel is aggregated for the network

output of the preceding layer, and the non-linear fusion is then

carried out. In this model, overfitting can be avoided while enhancing

the network’s expression and flexibility to various scales, as shown in

Figure 3.

AX =







A1,1 . . . A1N

A21 . . . A2N

AM1 . . . AMN







∗ 





B1,1 . . . B1N
B21 . . . B2N
BM1 . . . BMN







=
M−1
∑

i=0

N−1
∑

j=0

A(M−1),(N−j)B(i+1), (j+1) (2)

By flattening the output layer, reducing its dimensions to one, and

adding a sigmoid layer for classification along with a fully connected

layer with 1,024 hidden units, with a ReLU activation function, as

shown in Equation 3, and a dropout rate of 0.4, we were able to

use Inception V3 by avoiding its overfitting. The neuronal weights

of the classification layers are initialized with the algorithm described

in (25), as shown in Equation 4.

FIGURE 3

Architecture of inception network.
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f (x) = max (0, x) (3)

Wk ∼ U

(

−
1

√
m
,

1
√
m

)

(4)

where eU (–a, b) is a uniform distribution in the interval [–a, b], m is

the size of the previous layer, and Wk stands for weight parameters

in the CNN at iteration k. The complete model architecture and

hyperparameter details are shown in Table 2.

2.4. VGG-16

The convolution neural network model known as the VGG-16

neural network was created and trained by the Visual Geometry

Group (VGG) at the University of Oxford (26). The architecture

structure of VGG-16 is shown in Figure 4, which consists of

convolutions, pooling, and dense layers. A layer where y = f (x)

should be considered. We are interested in learning which x

components affect which y components.

In addition, we consider this to be the receptive field. As a

result, the output component yi, j is solely dependent on the input

components xi, j, where (i, j) ∈ � (i′′, j′′). The set� (i′′, j′′) rectangle

is defined by Equations 5 and 6.

i ∈ α(i′′ − 1) + βh +
[

−
δh − 1

2
,

δh − 1

2

]

(5)

i ∈ α(j′′ − 1) + βv +
[

−
δv − 1

2
,

δv − 1

2

]

(6)

TABLE 2 Hyperparameter details used in the Inception V3 model according

to our dataset.

Layer (type) Output shape Param

inception_v3 (Model) (None, 8, 8, 2,048) 21,802,784

flatten_ 1 (Flatten) (None, 131,072) 0

activation_95 (Activation) (None, 131,072) 0

dropout_ 1 (Dropout) (None, 131,072) 0

dense_ 1 (Dense) (None, 1,024) 134,218,752

activation_96 (Activation) (None, 1,024) 0

dropout_2 (Dropout) (None, 1,024) 0

dense_2 (Dense) (None, 28) 28,700

activation_97 (Activation) (None, 2) 0

where (αh, αv) is the stride, and (βh, βv) and (1h, 1v) are the offset

and respective field size, respectively. We enhanced the VGG-16 pre-

trained models using Keras (27) and fine-tuned this model following

our dataset. The complete model architecture and hyperparameter

details are shown in Table 3.

Our VGG-16 model consists of a dense layer in which each

neuron in the preceding layer sends signals to the neurons in the thick

layer, which multiply matrices and vectors. A matrix-vector product’s

standard formula is shown in Equation 7.

AX =







a11 a12 a1n
a21 a22 a2n
am1 am2 amn













x1
x2
xn






=







a11x1+ a12x2 a13x3
a21x1 a22x2 a23x3
am1x1 am2x2 amnxn






(7)

where x is a matrix with a diagonal of 1, and α is a (M × N) matrix.

The values inside the matrix are the trained parameters of the earlier

layers, and backpropagation can likewise be used to update them.We

assessed our model’s performance using accuracy, loss graphs, and

ROC curves as described in Equations 8–10.

Accuracy =
TP + TN

TP + TN + FP + FN
(8)

where true positive (TP) is the total number of accurately identified

positive cases; the number of accurately categorized negative cases

(cases without stenosis) is known as true negative (TN); false positive

(FP) and false negative (FN) are the numbers of false positive and false

negative instances with ground truth, that is, respectively, classified as

positive and negative (28).

TABLE 3 Hyperparameter details used in the VGG-16 model according to

our dataset.

Layer (type) Output shape Param

Vgg1 (Functional) (None, 7, 7, 512) 14,714,688

flatten_ 1 (Flatten) (None, 25,088) 0

dense_5 (Dense) (None, 1,024) 25,691,136

dense_6 (Dense) (None, 512) 524,800

dense_7 (Dense) (None, 256) 131,328

dropout_ 1 (Dropout) (None, 256) 0

dense_8 (Dense) (None, 128) 32,896

dense_9 (Dense) (None, 2) 516

FIGURE 4

Network architecture of VGG-16.
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L (W) = −
1

n

N
∑

n=1

(

yn log
(

yn
)

+
(

1− yn
)

log
(

1− yn
))

(9)

where y is the input patch’s ground truth label, and calculating the

gradient of the function L for the network weights W minimizes

the loss function during the model training process. The receiver

operating characteristics (ROC) curve (29), used to assess a test’s

overall diagnostic performance, compares the performance of two or

more diagnostic tests. The area under the ROC, commonly referred

to as ROC-AUC, can be interpreted as shown in Equation 10.

P (x1 > x0) = P (x1 − x0 > 0) (10)

where x1 and x0 are the continuous random variable giving the

“score” output by our binary classifier for randomly chosen positive

and negative samples. The ROC curve shows the trade-off between

sensitivity (TPR) and specificity (FPR), represented in Equations 11,

12, respectively.

TPR =
TP

p
(11)

FPR =
FP

N
(12)

Pérez-Fernández et al. (30) by the definition of TPR, it

corresponds to the probability of correctly classifying a randomly

chosen positive sample, so TPR (T) = P(X1 > T) = 1 – P(X1 ≤
T) = 1–F1(T) by definition of the density function as shown in

Equation 13.

TPR (T) =
∫ +∞

T
f1 (x) dx (13)

By definition, ROC is shown in Equation 14.

ROC − AUC =
∫ 1

0
TPR (FPR) dFPR

=
∫ 1

0
TPR

(

FPR−1 (x)
)

dx (14)

By changing a variable, the integral equation becomes as shown

in Equation 15.

∫ −∞

+∞
TPR (T)X

(

−f0 (T)
)

dT =
∫ +∞

−∞
TPR (T) X f0 (T)dT (15)

By summarizing Equation 15, it becomes as shown in

Equation 16.

∫ +∞

−∞

∫ +∞

T
f1 (x) dx X f0(T) dT (16)

By using this change in the variable for the inner integral, as

shown in Equation 18, we obtained Equation 18.

v = x− T (17)

∫ +∞

−∞

∫ +∞

0
f1 (v+ T) dv Xf0 (T) dT =

∫ +∞

0

∫ +∞

−∞
f1 (v+ T)

X f0 (T) dT dv (18)

In general, the change in the variable for the inner integral is

u = v+ T, and the equation becomes as shown in Equation 19.

∫ +∞

0

∫ +∞

−∞
f1 (u) X f0 (u− v) du dv (19)

According to the convolution theorem and assuming the

convergence, with a density of X1–X0 = X1+ (–X0), our ROC-AUC

equation becomes as shown in Equation 20.

P (x1 > x0) = P (x1 > x0) > 0

=
∫ +∞

0

∫ +∞

−∞
f1 (u) X f0 (u− v) du dv (20)

3. Experimental results and discussion

A Doppler ultrasound is a non-invasive diagnostic that uses

circulating red blood cells to reflect high-frequency sound waves

(ultrasound) to assess the hemodynamic characteristics of blood flow

via the cardiovascular vessels. The hemodynamic quantification of

cardiovascular flow is vital to evaluating plaque rupture (30, 31),

and medical imaging using ultrasound can obtain such information.

By monitoring the rate of change in frequency, a color Doppler

ultrasound may calculate the frequency of blood flow. A sonographer

with ultrasound imaging training presses down on your skin with

a small, handheld tool (transducer) while moving it over the area

of your body being examined. Studies have shown that hypoechoic

plaques are more prone to stroke than isoechoic and hyperechoic

plaques (5). However, the detection of ulcer plaque and intraplaque

hemorrhage by conventional ultrasound is limited, and the nature of

plaque mainly depends on the operator’s experience and subjective

judgment, which has certain limitations. There is a need for a

computer-aided autonomous framework to improve color Doppler

efficiency and quality in daily clinical practice (31). Deep learning

technology has recently permeated several areas of medical study

and has taken a center stage in modern science and technology. In

this research, we collected data from the Second Affiliation of Fujian

Medical University, including stable cases and vulnerable cases.

We implemented two pre-trained deep learning models, which

include the Inception V3 and VGG-16, to classify color Doppler

ultrasound images into two categories: one is high-risk carotid

vulnerable plaque, and the second is stable carotid plaque. We fine-

tuned (32) pre-trained deep learning models according to our dataset

to classify color Doppler ultrasound images into two categories. Our

trained Inception V3 model achieved 93.81% accuracy, and VGG-

16 achieved 91.13% accuracy in classifying color Doppler ultrasound

images into two categories. Figures 5A reports the training accuracy

and loss by using Inception V3, and (Figure 5B) represents the

training accuracy and loss by using VGG-16, respectively, according

to our dataset. ROC curves are typically used to graphically

represent the relationship or trade-off between clinical sensitivity and

specificity for each potential cutoff for a test or combination of tests.

Figures 5A, B show the training accuracy and loss of Inception

V3 and VGG-16 models for eight epochs. We can observe that
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FIGURE 5

Accuracy and loss graph using the Inception V3 and VGG-16. (A) Representing the training accuracy and loss by using Inception V3 and (B) representing

the training accuracy and loss of the VGG-16 models according to our dataset.

FIGURE 6

ROC curves for Inception V3 and VGG-16. (A) Representing the ROC by using Inception V3 and (B) representing the ROC by using VGG-16.

the accuracy of Inception V3 is higher than the VGG-16, and the

model loss is also decreased from 70 to 20%. We used the same

number of epochs and hyperparameters for both models, and the

results indicate that the Inception V3 model can better classify color

Doppler ultrasound images into two categories. Figure 6 represents

the performance of two models by using the ROC curve. Here,

Figure 5A illustrates the implementation of the Inception V3 model

for classifying color Doppler ultrasound images.

Similarly, Figure 5B illustrates the performance of the VGG-

16 model for classifying color Doppler ultrasound images into two

categories. The probability curve known as the ROC curve effectively

separates the “signal” from the “noise” by plotting the true positive

rate (TPR) against the false positive rate (FPR) at various threshold

values (33). The capacity of a classifier to differentiate between classes

is measured by the area under the curve (AUC), which is used as

a summary of the ROC curve. When AUC is near 1, the classifier

can correctly distinguish all the positive and the negative class points

(34). In Figure 6A, the AUCs for class 0 and class 1 are 0.85 and 0.92,

respectively. Hence, Inception V3 performed very well in classifying

color Doppler ultrasound images. Similarly, in Figure 6B, the AUC

for both classes is far from 1, and there is a high chance that the

classifier will be able to distinguish the positive class values from the

negative class values.

Figure 7 represents the performance of these two models by

using the 2 × 2 confusion matrix. Here Figure 7A illustrates the

performance of the Inception V3 model for classifying color Doppler

ultrasound images. Similarly, Figure 7B represents the performance

of VGG-16 in terms of the confusion matrix to classify color

Doppler ultrasound images into high-risk, vulnerable, and stable

carotid plaque.

As we can observe in Figure 7A, the Inception V3model classifies

92% of the data into true positive (TP), meaning 92% of the data

belongs to this class. 7.9% of the data was negative but falsely

predicted as positive, 4.5% of data was positive but falsely predicted

as negative, and 95% of the data was negative and also predicted

as negative by the Inception V3 model. Similarly, in Figure 7B, the

VGG-16 models classify 89% of the data into true positive (TP),

meaning 89% of the data belongs to this class. 9.9% of the data

was negative but falsely predicted as positive, 8.4% of the data was

positive but falsely predicted as negative, and 92% was negative and
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FIGURE 7

Confusion matrix representation of the performance of our models. (A) Represents the performance of Inception V3, while (B) illustrates the VGG-16

according to our dataset.

TABLE 4 Comparative accuracy of the proposed approach with previous

proposed studies.

References Approach Accuracy %

Yekkala et al. (37) Ensemble machine
learning

92

Wankhede et al. (38) DL models 92.5

Uddin and Halder (39) ML models 91.6

Our proposed framework Pre-trained models 93.81

also predicted as negative by the VGG-16 model. From the result,

we can conclude that Inception V3 performs better than the VGG-

16 in classifying color Doppler ultrasound images. In VGG-16, the

fifth block is the first tuned block, followed by backward tuning

until the first block represents the whole network (35). Whereas,

the Inception V3 model has 11 inception model blocks, backward

tuning starts from the mixed 10 inception module and then to the

entire basic convolutional network (36). The Inception V3 model

performs better in classifying color Doppler ultrasound images. We

fine-tuned these two models according to our dataset to classify

color Doppler images into two categories. Our trained Inception

V3 achieved 93.81% accuracy VGG-16 model which gained 91.13%

accuracy in classifying color Doppler images. Furthermore, we have

compared our proposed framework performance with the previously

proposed approach, as shown in Table 4.

Conclusion

In this study, we concluded that deep learning-based methods for

carotid risk assessment are the most promising and successful. Our

trained Inception V3model achieved 93.81% accuracy, and the VGG-

16 achieved 91.13% accuracy in classifying color Doppler ultrasound

images. We assessed and compared our model’s performance with

previous methods using accuracy, loss graphs, and ROC curves,

showing that our proposed framework outperformed other methods.

Our framework will avoid inaccurate diagnoses caused by inadequate

image quality and individual experience. Thus, the assessments in

this study have shown that this methodology performs reasonable

results for Doppler ultrasound image classification. In future

implementations, extreme learning may be used as a more advanced

classifier for plaque classification problems. Due to differences in

patients and the appearance of the prostate, future studies should

focus on testing the model with a larger dataset. Therefore, even

though the results of studies have the potential for deep learning

associated with different kinds of images, additional studies may need

to be carried out clearly and transparently, with database accessibility

and reproducibility, in order to develop useful tools that aid health

professionals. In addition to the stenosis appearing in the carotid

bifurcation and related arteries, the blockage of heart vessels may

also occur, and this sometimes leads to left atrial enlargement [aa],

and detailed analysis is required to understand the reason behind

the blockage and to find effective ways to rectify the cardiac health

problems (40).
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