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Background: Cerebral microbleeds (MBs) are a hallmark of cerebral small

vessel disease (CSVD) and can be found on T2∗-weighted sequences on MRI.

Quantitative susceptibility mapping (QSM) is a postprocessing method that

also enables MBs identification and furthermore allows to di�erentiate them

from calcifications.

Aims: We explored the implications of using QSM at submillimeter resolution for

MBs detection in CSVD.

Methods: Both 3 and 7 Tesla (T) MRI were performed in elderly participants

without MBs and patients with CSVD. MBs were quantified on T2∗-weighted

imaging and QSM. Di�erences in the number of MBs were assessed, and subjects

were classified in CSVD subgroups or controls both on 3T T2∗-weighted imaging

and 7T QSM.

Results: 48 participants [mean age (SD) 70.9 (8.8) years, 48% females] were

included: 31 were healthy controls, 6 probable cerebral amyloid angiopathy

(CAA), 9 mixed CSVD, and 2 were hypertensive arteriopathy [HA] patients. After

accounting for the higher number of MBs detected at 7T QSM (Median = Mdn;

Mdn7T−QSM = 2.5; Mdn3T−T2 = 0; z = 4.90; p < 0.001) and false positive MBs

(6.1% calcifications), most healthy controls (80.6%) demonstrated at least one MB

and more MBs were discovered in the CSVD group.

Conclusions: Our observations suggest that QSM at submillimeter resolution

improves the detection of MBs in the elderly human brain. A higher prevalence

of MBs than so far known in healthy elderly was revealed.

KEYWORDS

7 Tesla MRI, cerebral small vessel disease (CSVD), cerebral amyloid angiopathy (CAA),

microbleeds, quantitative susceptibility mapping (QSM), hypertensive arteriopathy (HA)
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Introduction

Pathological changes proper of cerebral small vessel disease

(CSVD) lead to leaks and rupture of the vessel’s wall, sometimes

resulting in the accumulation of intact erythrocytes or hemosiderin

(1, 2). These acute, subacute or chronic small focal lesions are called

cerebral microbleeds (MBs) and are among the most representative

hallmarks of CSVD (3, 4). As such, they correlate with the

pathological burden of the disease (5, 6), are predictive of the

risk of intracerebral hemorrhage (7, 8) (ICH), which is the most

acute and devastating outcome of sporadic CSVD, and show an

inconsistent association with cognitive impairment (9, 10). The

distribution of cerebral MBs in the human brain also creates

patterns that allow the distinction between the two most common

forms of sporadic CSVD: Hypertensive arteriopathy (HA), which

is associated with hypertension and manifests especially in the

perforating vessels of the basal ganglia (11), and cerebral amyloid

angiopathy (CAA), which mainly affects the leptomeningeal and

cortical small arteries and is characterized by the accumulation of

amyloid β (Aβ) (12). Consequently, MBs are typically to be found

in the deep brain regions in HA, whereas they are strictly lobar

(and mostly cortical) in CAA (11). Mixed patterns, which likely

express the co-occurrence of both vessel pathologies, also exist

(13). Moreover, MBs are not rare in Alzheimer’s disease (∼25%)

(14, 15) and recent developments also suggest that MBs and the

higher risk for brain hemorrhage that they are linked to, might

encourage caution for the recently approved anti-Aβ Alzheimer’s

disease therapies (16). MBs are present also in healthy elderly

adults, increasing from approximately 17% in the sixth to up to 38%

in the eighth decade of life (17).

MBs are routinely detected on MRI using T2∗-weighted

(T2∗-w) sequences and susceptibility weighted imaging (SWI).

Quantitative susceptibility mapping (QSM) (18), a relatively novel

post processing method, offers advantages, such as the absence

of the blooming effect proper of T2∗-w sequences and SWI

(19) and the possibility to discriminate between diamagnetic and

paramagnetic substances (20) (e.g., between calcium—as found

in calcifications—and hemosiderin deposits—as found in MBs).

In this study, we hypothesize that MBs detection would benefit

from (i) greater magnetic field strength (3T T2∗-w vs. 7T T2∗-

w imaging), as previously shown (21), and (ii) the use of QSM

(7T T2∗-w vs. 7T QSM). Additionally, in the same cohort of

patients with CSVD and healthy elderly participants, we explore the

implications of 7T QSM for the neuroimaging-based classification

of patients as CSVD and/or controls.

Methods

Participants

Patients with CSVDwere selected within a longitudinal 3TMRI

study on the pathophysiology of CSVD conducted at the University

Clinic of Magdeburg and German Center for Neurodegenerative

Disease (DZNE), Magdeburg. Presence of hemorrhagic CSVD

markers, i.e., MBs, ICH and/or cortical superficial siderosis (cSS)

were the screening criteria for inclusion in this study. The lesions

were individuated on iron-sensitive MRI sequences [gradient

recalled echo (GRE) T2∗-weighted or susceptibility weighted

imaging (SWI)] of a clinical 1.5T MRI conducted for diagnostic

work-up. Reasons for the diagnostic MRI included epileptic

seizures, gait disturbances, cognitive impairment, headache, and

transient ischemic attack.

Controls were recruited from a pool of cognitively normal

community-dwelling elderly individuals of the DZNE, Magdeburg,

who previously participated in one or more aging studies and,

within this frame, underwent a 3T MRI scan that involved a

susceptibility sensitive MRI, on which no hemorrhagic markers

(MBs, ICH, cSS) were found (22).

After this initial recruitment all participants of this study

underwent a clinical neurological visit, during which genetic

neurological disease, history of psychiatric disease, alcohol or

drug abuse, and cerebrovascular malformations were excluded.

Cardiovascular risk factors were also gathered for all participants.

Arterial hypertension was defined as >130/80 mmHg. Diabetes

mellitus was diagnosed in case fasting plasma glucose level was

>7.0 mmol/L or > 11.1 mmol/L 2 h after glucose tolerance test.

Hyperlipidemia was recorded when there were abnormal blood

levels of low-density lipoprotein cholesterol (>2.6 mmol/L) and/or

triglycerides (>1.7 mmol/L).

Furthermore, both a 3T and a 7T MRI scan were conducted.

Contraindications for scanning at 7T were considered and

represented a further exclusion criterion from our study, according

to the recommendations of the German Ultrahigh Field Imaging

network (www.mr-gufi.de).

3T MRI

Participants were subject to a 3T scan prior to 7T MRI [median

interval (range) in months: 2.5 (1–25)], which was performed in

a Siemens Verio scanner with a Siemens 32-channel array coil.

The protocol included a T2∗-w 3D GRE pulse sequence (voxel

size: 1 x 1 x 2 mm3, echo time: 20ms, repetition time: 28ms, flip

angle: 17◦, receiver bandwidth (RBW) 100 Hz/px, GRAPPA with

factor 2, 24 reference lines were enabled, scanning time 5.23min),

which served for the identification of cerebral MBs, cSS, and

ICH. A T2-weighted fluid-attenuated inversion recovery (FLAIR)

sequence was included to determine white matter hyperintensity

(WMH) patterns (see below, scanning time 7.02min). (23) A

T2-weighted turbo spin echo sequence was used to establish the

burden of enlarged perivascular spaces (EPVS) in the centrum

semiovale (CSO) (scanning time 5.40 minutes) (24). Total scanning

time amounted to 45min, because the protocol included further

sequences not implicated in this study.

7T MRI

7T MRI was conducted at a Siemens Healthineers, scanner

equipped with a 32-channel head-coil (Nova Medical). A T2∗-w

3D GRE sequence was acquired (voxel size: 0.35 x 0.35 x 1.5 mm3,

echo time: 9ms, repetition time: 18ms, flip angle: 10◦, RBW 100

Hz/px; 3D matrix dimensions 200 x 169 x 132. GRAPPA enabled

with an acceleration factor of 2 and 32 reference lines, scanning
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FIGURE 1

Visualization of microbleeds on di�erent sequences. Example of a microbleed (MB) visualized as a hypointense round structure in the deep brain

region at 3T T2*-w imaging (A); visualization of the same brain region in the same subject at 7T T2*-w imaging, which shows the same MB (arrow)

and an additional MB that had remained undetected at 3T (inset) (B). Hyperintense appearance of the deep MB (inset) in the

same subject on 7T QSM (C).

time 5.48min). A 3D-MPRAGE was also acquired for anatomical

reference (scanning time 5.23min). The protocol included more

sequences that were not used in our study. Total scanning time

was 50min, because the protocol included further sequences not

adopted in this study.

QSM reconstruction from 7T T2∗-w
imaging

As previously explained in another study by our group (25),

the T2∗-w magnitude and phase data underwent reconstruction

steps, in order to produce QSM maps. Multiple-channel complex

image data were combined using an adaptive algorithm (26)

followed by automatic reference channel selection. Unwrapping

of the combined phase data was achieved using a continuous

Laplacian approach (27). Adopting FSL’s BET routing (threshold

0.1), a brain mask was calculated from the magnitude image and

applied to the phase image. The background field was consequently

removed in two steps: Laplacian boundary value (LBV) (28) with

two-layer region of interest (ROI)-peeling, followed by variable

mean spherical value (vSMV) (29) with r0 = 40mm and step

size/final kernel radius of 1mm. Finally, a Multi-Scale Dipole

Inversion (MSDI) (30) was carried out in order to reconstruct

quantitative susceptibility maps from the local field maps obtained

in the previous step.

Assessment of neuroimaging markers

In this study, neuroimaging markers of CSVD were assessed.

Microbleeds (MBs) were defined as small, round lesions of 2–

5mm in diameter that appear hypointense on T2∗-w imaging

and hyperintense on QSM (Figure 1). Because of its quantitative

nature, QSM allows to distinguish between the susceptibility

provoked by a diamagnetic substance, and that provoked by a

paramagnetic substance. Therefore, calcifications, which resemble

MBs on T2∗-w magnitude images, can be distinguished from

hemosiderin deposits. In our study, calcifications were defined

as small (2–5mm) hypointense round lesions on 7T QSM. Each

calcification identified on 7T QSM was also compared to the

respective 7T T2∗-w magnitude image, where it also appears

hypointense, in order to ensure that the same lesion had been

identified there as a MB. The localization of the MBs was recorded

according to the Microbleed Anatomical Rating Scale (MARS) as

lobar (frontal, parietal, temporal, occipital, insular), deep (deep

and periventricular white matter, basal ganglia, thalamus, internal

capsule, external capsule and corpus callosum) or infratentorial

(brainstem, cerebellum).

Additionally, the total number of MBs was recorded. Cortical

superficial siderosis (cSS) and intracerebral hemorrhage (ICH)

were identified on the 3T T2∗-w magnitude images sequence.

Furthermore, enlarged perivascular spaces (EPVS), which are

thin hyperintense stripes or ovals up to 3mm, and white matter

hyperintensities (WMH) were also assessed on T2-weighted and

FLAIR MRI respectively, because they are part of the most recent

version of the Boston criteria for the diagnosis of CAA (31).

In fact, severe EPVS in the CSO (> 20 in one hemisphere and

one axial slide) and/or a multi-spot WMH pattern [>10 small

circular or ovoid T2/FLAIR-hyperintense lesions in the bilateral

subcortical white matter (32)] can determine possible or probable

CAA, assuming the other diagnostic criteria are met (31).

Participants were classified in four CSVD subgroups according

to the presence and distribution of hemorrhagic markers on 3T

T2∗-w imaging, of EPVS in the CSO, and of multispot WMH

for the CAA sub-group. All CSVD participants had at least one

hemorrhagic marker. The first sub-group was that of possible CAA,

which according to the Boston criteria 2.0 (31), implies the presence

of one strictly lobar MB, or one lobar ICH, or cSS, or of severe

burden of CSO-EPVS and/or multi-spot WMH, accompanied by

a clinical manifestation related to CAA (cognitive impairment,

spontaneous ICH or transient focal neurological event). Probable

CAA is on the other hand defined by the presence of >1 strictly

lobar hemorrhagic marker (MBs, cSS or ICH) or one lobar MBs

and either severe EPVS in the CSO or a multispot WMH pattern.

For this diagnosis, deep MBs/ICH are not allowed. A further group

was that of hypertensive arteriopathy (HA), which was defined
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TABLE 1 Characteristics of the groups.

Probable CAA
(n = 6)

HA
(n = 2)

Mixed MBs
(n = 9)

Controls
(n = 31)

Group di�erences

Age years 72.3 (+/− 6.3) 71.1 (+/− 4.3) 71.5 (+/− 7.3) 69.4 (+/− 9.9) H(3)= 0.54, p= 0.91

Female % 50 0 33 42 H(3)= 1.76, p= 0.623

BMI (kg/m2) 27.0 (+/− 2.6) 31.4 (+/− 1.8) 26.9 (+/− 3.7) 25.2 (+/− 2.4) H(3)= 7.19, p= 0.066

Diabetes mellitus % 17 0 44 10 H(3)= 4.55, p= 0.21

Arterial hypertension % 100 100 100 53 H(3)= 9.75, p= 0.021

post hoc tests not significant

Hyperlipidemia % 50 100 67 39 H(3)= 3.75, p= 0.29

The table reports the characteristics of the study participants based on 3T T2∗-w imaging, including demographics and vascular risk factors. Mean and SD are given. Kruskal-Wallis test is

reported, assessing differences between the subgroups.

BMI, body mass index; CAA, cerebral amyloid angiopathy; HA, hypertensive angiopathy; MBs, microbleeds.

as presence of strictly deep MBs (13). Finally, the mixed CSVD

group involved the presence of both mixed lobar and deep MBs

(13, 33).

Healthy controls were considered as such when they had

no hemorrhagic markers (MBs, ICH, cSS), no severe EPVS in

both the BG and CSO, no multi-spot WMH and were recruited

from an already existing pool of cognitively normal community-

dwelling elderly.

The baseline classification of the participants was carried out on

3T T2∗-w images. The hypothetical reclassification of the cohort, as

a consequence of the detection of further MBs and discrimination

from calcifications, was based on 7T QSM. The 7T T2∗-w sequence

was not used for the purposes of classification in subgroups.

Data availability

De-identified data are available upon reasonable request subject

to a material transfer agreement.

Statistics

Shapiro-Wilk-Tests were used to determine the distribution of

the data, which proved to be non-normal in all cases. We therefore

applied the Wilcoxon-Signed Rank test to evaluate differences

between the number of MBs detected at 3T T2∗-w vs. 7T T2∗-w

imaging, 7T T2∗-w imaging vs. 7T QSM, and 3T T2∗-w imaging

vs. 7T QSM. Moreover, percentages of the distribution of the

calcifications in different areas of the brain and with respect to the

total number of MBs on 7T T2∗-w were also calculated. Statistical

analyses were two-tailed and conducted using IBM SPSS Statistics

version 23.

Results

Based on 3TT2∗-w imaging, a total of 48 participants [mean age

(SD) 70.9 (8.8) years, 48% females] were included. 31 participants

were classified as healthy controls [69.4 (9.9) years, 42% females],

6 as probable CAA, 9 as mixed CSVD, and 2 were HA patients

(Table 1 and Figure 2).

Number of MBs detected on 7T is higher
than on 3T T2∗-weighted MRI

In our cohort the total number of MBs on 7T T2∗-w magnitude

images (Median = Mdn; Mdn = 1) was significantly higher than

on 3T T2∗-w imaging (Mdn = 0, z = 3.11, r = 0.32, p = 0.002).

This difference was driven by lobar MBs (Mdn3T−T2−w = 0,

Mdn7TT2∗−w = 1, z = −3.58, r =−0.37, p < 0.001), while in deep

(Mdn3T−T2−w = 0, Mdn7TT2∗−w = 0, z = 0.66, r = 0.067, p =

0.508) and infratentorial (Mdn3T−T2−w = 0, Mdn7TT2∗−w = 0, z=

1.80, r= 0.18, p= 0.072) regions the difference was not statistically

significant (Figure 3A).

Number of MBs detected on 7T QSM is
higher than on 7T T2∗-weighted MRI

Furthermore, the use of 7T QSM overall allowed to recognize

moreMBs (Mdn7T−QSM = 2.5) than the 7T T2∗-weighted sequence

(Mdn7TT2∗−w = 1, z = 4.45, r = 0.46, p < 0.001). In this

case the statistically significant difference concerned lobar MBs

(Mdn7TT2∗−w = 1, Mdn7T−QSM = 1; z= 4.22, r= 0.43, p < 0.001),

but was also relevant to deep brain regions (Mdn7TT2∗−w = 0,

Mdn7T−QSM = 0; z = 1.98, r = 0.20, p = 0.047). In infratentorial

brain regions, the observed differences in MBs count were not

statistically significant between 7T T2∗-w imaging and 7T QSM

(Mdn7T−QSM = 0; Mdn7TT2∗−w = 0, z = 1.48, r = 0.15, p = 0.139)

(Figures 3B, 4A).

Calcifications can be distinguished from
MBs on 7T QSM

On 7T QSM we could identify 25 calcifications (false-positive

MBs) on a total number of 410 MBs detected at 7T T2∗-w (6.1%)

(Figure 5). They represented 3.6% (11/301) of the lobar MBs, 3%

(2/66) of the deep and 27.9% (12/43) of the infratentorial MBs

found on 7T T2∗-w imaging. Calcifications were found in 29.8%

(14/48) of all study participants, more specifically in 50% (3/6)

of the probable CAA, 67% (6/9) of the mixed CSVD patients

and 100% (2/2) of the HA patients, whereas this was the case
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FIGURE 2

Overview of the study participants, the subgroups and the MRI scans performed. CAA, cerebral amyloid angiopathy; poCAA, possible CAA; prCAA,

probable CAA; CON, controls; HA, hypertensive arteriopathy.

in only 10% (3/31) of the controls. Between the subgroups the

proportion of calcifications found was different: The average ratio

of calcifications (number of calcifications on 7T QSM/number of

MBs on 7T T2∗-weighted) was 5% (8/161) in the probable CAA

group, 4.5% (10/223) in the mixed CSVD cases, and as much as

60% (3/5) in the HA group, whereas these lesions represented 17%

(4/23) of those found in the controls. Overall, calcifications were

localized primarily in infratentorial (44%, 11/25) and lobar (48%,

12/25) regions, whereas only 8% (2/25) were found in deep brain

regions (Figure 4B).

7T QSM leads to a shift in the
neuroimaging-based classification of study
participants

The total number of MBs was significantly higher on 7T QSM

(Mdn = 2.5) than on 3T T2∗-w imaging (Mdn = 0, z = 4.90, r =

0.50, p < 0.001). We counted more lobar MBs on 7T QSM (Mdn

= 1) than on 3T T2∗-w imaging (Mdn = 0, z = 5.01, r = 0.52, p <

0.001). The difference in MBs detection in deep (Mdn3T−T2−w = 0,

Mdn7T−QSM = 0, z = 1.66, r = 0.17, p = 0.098) and infratentorial

(Mdn3T−T2−w = 0, Mdn7T−QSM = 0, z= 1.80, r= 0.18, p= 0.072)

brain regions was not significant (Figure 3C).

The baseline classification of the study participants in controls

and CSVD subgroups, which was performed on 3T T2∗-w imaging,

demonstrated a shift when reassessed at 7T QSM, because of

the increased number of MBs detected on this sequence and the

discrimination between MBs and calcifications. As visualized in

Figure 4C, 33% (2/6) of the probable CAA patients were reclassified

to mixed CSVD cases because of the additional presence of deep

MBs. The 2 HA patients turned out to be mixed CSVD cases due

to the presence of lobar MBs. Most importantly, 80.6% (25/31)

of healthy elderly controls showed at least one MB on 7T QSM,

in this way fulfilling neuroimaging-criteria primarily for possible

(20%, 5/25) and for probable CAA (44%, 11/25). The remaining

participants were subclassified into mixed CSVD (20%, 5/25) and

HA (8%, 2/25). This result suggests that most likely, the majority of

healthy elderly presents cerebral MBs, which may reflect burden of

CSVD pathology in advanced age.

Discussion

In this study, we explored the implications of the use of QSM

at high-field and high-resolution MRI for the detection of cerebral

MBs. When compared to 7T T2∗-w imaging, QSM at 7T allowed

the detection of a higher number of MBs and the differentiation of

MBs from calcifications. The combination of these factors revealed

that the majority of healthy elderly participants showed one or

more MBs, so fulfilling commonly applied neuroimaging-criteria

for a CSVD subgroup.

As expected, a higher number ofMBs was found at 7TQSM and

at 7T T2∗-w when compared to 3T T2∗-w imaging, firstly, because

higher field strength allows a better signal-to-noise ratio (SNR), and

thus higher resolution and better visualization of smaller structures

(21). This result is in line with previous works, which observed how

MBs detection was superior on 7T compared to 1.5T (21) and 3T

T2∗- w imaging (34). In the present work, the 3T and the 7T scan

were not conducted during the same session, so that it is possible

that more MBs have developed in the participants during this time,

especially in the participants who had a higher interval between

MRI scans, which was up to 25 months. However, the median time

gap between scans was only 2.5 months and according to a study

on a memory clinic cohort, only 12% of the participants developed
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FIGURE 3

Di�erences in number of microbleeds. Legend: Violin plot showing the di�erence in total number of microbleeds (MBs) and in di�erent brain

localizations in 3T vs. 7T T2*-w imaging (A), 7T T2*-w imaging vs. 7T QSM (B), 3T T2*-w imaging vs. 7TQSM (C). The di�erence in total number of

detected MBs is always significant and driven by the di�erence in number of those in lobar localization. *p < 0.05; **p < 0.01; ***p < 0.001.

new MBs over 2 years (35). In our cohort, on the other hand, 60%

of the participants showed more lesions on the 7T QSM compared

to the 3T T2∗-w imaging, making it very unlikely that this figure

only depends on disease progression.

More MBs were found in the same subjects at 7T QSM when

compared to 7T T2∗-w imaging, indicating a higher sensitivity of

the former. The feasibility of detection of MBs using QSM has been

addressed before in the ArcAβ mouse model (36), and in human

patients with Cushing’s disease (37), multiple sclerosis (38), and

traumatic brain injury (39). However, to the best of our knowledge,

this is the first work that focused on the use of QSM at high-

field MRI for MBs detection in patients with CSVD and healthy

elderly controls. Subramaninan et al. argued that QSM could

potentially better distinguish betweenMBs and aneurysms or other

vessels’ malformations when compared to T2∗-weighted imaging.

Similarly, a previous study from our group, which investigated an

overlapping cohort, was able to distinguish MBs with a venous

connection at 7T QSM (25).

One of the advantages of QSM, when compared to T2∗-

w imaging, is the ability to distinguish between hyperintense

hemosiderin deposits and hypointense calcifications (40, 41). In our

study cohort, 6% of the MBs at 7T T2∗-w imaging proved in fact to

be calcifications on 7T QSM.

Remarkably, 80.6% of healthy participants showed one or more

MBs on QSM at 7T. In the Rotterdam-study, prevalence of MBs

increased with age and was up to 38.3% in the eldest group

of healthy controls (80–97 years old) (17). In our cohort this

percentage was double as much, even though the mean age was

lower (∼70 years old) and the prevalence of vascular risk factors

comparable to other cohorts. In further studies on community-

based cohorts, this percentage was also considerably lower and was

8.8% in the FraminghamHeart Study (42) and 5% in the Northern-

Manhattan-Study (43). It must be kept in mind, that these numbers

derive from population studies that adopted scanners with lower

magnetic field than 7T. Nonetheless, this result points toward

a possibly high prevalence of an at least mild degree of CSVD

pathology in cognitively healthy elderly, who do not display

further severe neuroimaging markers of CSVD. The presence of

lobar and deep MBs discovered in the majority of healthy-elderly

controls, could spur further and broader studies, involving the

use of QSM, that better determine the clinical relevance of these

observations. Considering that the current diagnostic criteria for

CAA require the manifestation of a symptom and that they have

been established on lower-field MRI (31), the importance of MBs

in healthy elderly controls might not rest in the determination of

a CSVD diagnosis. Instead, in this context MBs could become an
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FIGURE 4

Implications of the use of 7T QSM. Legend: Pie charts showing the localization of the total amount of microbleeds (MBs) in our study cohort, as

detected on QSM (A) and of calcifications (B), as detected on 7T QSM. Graph (C) elucidating the classification of study participants in the di�erent

subgroups at 3T T2*-w imaging and how 7T QSM would impact the neuroimaging-based classification due to the increased number of MBs

detected and due to the calcifications. Possible and probable cerebral amyloid angiopathy (CAA, light and dark brown), mixed cerebral small vessel

disease (CSVD, white), hypertensive arteriopathy (HA, blue), healthy controls without CSVD (gray) (C).

alarm bell for undetected hypertension (42), high blood pressure

variability, or heart disease (44, 45). Moreover, an investigation of

the pathological correlates of the MBs found on 7T QSM would

allow to determine their actual cause (CSVD vs. other pathologies).

In fact, the prevalence of MBs in QSM in healthy participants

of this small cohort is higher than the reported prevalence of

sporadic CSVD in pathological studies of community-dwelling

cohorts (∼23% for CAA and ∼35% for arteriolosclerosis) (46,

47). Nonetheless, it must be reminded that the majority of these

studies relied on histological examination of a small portion of the

brain tissue for this diagnosis, thus possibly underestimating the

prevalence of CSVD pathology.

The more precise assessment of MBs thanks to the use of QSM

could also have implications to better estimate the risk of brain

hemorrhage, the deadliest clinical event related to CSVD, which

has been positively associated to the number of MBs (7, 8) and

leads to concrete clinical decisions, such as the use and selection

of an anticoagulant. A more precise monitoring of MBs could

also become necessary within the context of the recently approved

drug against AD, Aducanumab (48) which demonstrated increased

incidence of MBs and cSS in treated patients (49), with clinical

consequences that remain to be estimated. Our observations and

those of many similar studies, are based on expensive and not

widely available methods. The increasing meaning attributed to the

interaction between CSVD and neurodegenerative disease calls for

studies, that aim to validate and then introduce more convenient

biomarkers (e.g. serological).

Besides the detection of MBs, further QSM-applications

could be meaningful for CSVD (50). For example, overall

iron overload could be detected in the tissue, as it has been

in some neurodegenerative diseases (51, 52). Furthermore, the

identification of chronic inflammatory activity (53, 54), blood-

brain-barrier leakage (55), and diffuse demyelination (56) could

give better insight into the pathophysiology of CSVD. Due to these

possibilities, the last years have seen the surge of a number of open

access toolboxes for QSM reconstruction, which will increasingly

facilitate the implementation of QSM for clinical purposes (57).

The use of multi-echo data (58) and of techniques to achieve

susceptibility source separation (56), would have allowed a more

precise assessment of the susceptibility within the brain tissue.

However, because our aim was to detect round/ovoid structures,

such as MBs and MBs-mimics, these factors would have likely not

significantly impacted the results of the study. The main limitation

of our study is that a comparison between the number of MBs

observed with QSM and those observed with the widely used SWI is

missing. Future projects which rely on such data sets should answer

this question. One further limitation of our study is the relatively

low number of participants. However, the size of our cohort is

comparable to that of previous 7T MRI studies (59) and must be

set in relationship to the many contraindications that apply to high
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FIGURE 5

Visualization of lesions at 7T QSM. Legend: Example of a microbleed

(MB) which was not visible at 3T T2*-w imaging in a healthy control

(A), but was then detected at 7T QSM [(B), inset]. Calcifications can

appear as hypointense round structures on T2*-w imaging, easily

mimicking MBs [(C), inset and arrow], however they can be

di�erentiated from MBs in the QSM because of their hypointense

appearance [(D), inset and arrow].

field imaging. The same contraindications could have also led to a

selection bias toward healthier participants.

The present study is the first to systematically report the

improved precision in MBs detection at high-field and high-

resolution QSM in healthy elderly human participants and patients

with CSVD. Using this post-processing method could have

implications for the classification of CSVD patients and could more

accurately mirror the presence of cerebral small vessel pathology.

Broader studies are needed to confirm these results.
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