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Background: There are established correlations between risk factors and ischemic

stroke (IS) recurrence; however, does the hazard of recurrent IS change over time?

What is the predicted baseline hazard of recurrent IS if there is no influence of

variable predictors? This study aimed to quantify the hazard of recurrent IS when

the variable predictors were set to zero and quantify the secondary prevention

influence on the hazard of recurrent ischemic stroke.

Methods: In the population cohort involved in this study, data were extracted

from 7,697 patients with a history of first IS attack registered with the National

Neurology Registry of Malaysia from 2009 to 2016. A time-to-recurrent IS model

was developed using NONMEM version 7.5. Three baseline hazard models were

fitted into the data. The best model was selected using maximum likelihood

estimation, clinical plausibility, and visual predictive checks.

Results: Within the maximum 7.37 years of follow-up, 333 (4.32%) patients had at

least one incident of recurrent IS. The data were well described by the Gompertz

hazard model. Within the first 6 months after the index IS, the hazard of recurrent

IS was predicted to be 0.238, and 6 months after the index attack, it reduced

to 0.001. The presence of typical risk factors such as hyperlipidemia [HR, 2.22

(95%CI: 1.81–2.72)], hypertension [HR, 2.03 (95%CI: 1.52–2.71)], and ischemic

heart disease [HR, 2.10 (95%CI: 1.64–2.69)] accelerated the hazard of recurrent

IS, but receiving antiplatelets (APLTs) upon stroke decreased this hazard [HR, 0.59

(95%CI: 0.79–0.44)].

Conclusion: The hazard of recurrent IS magnitude di�ers during di�erent time

intervals based on the concomitant risk factors and secondary prevention.

KEYWORDS

recurrent, ischemic stroke, pharmacometrics, time to event model, NONMEM

Introduction

Stroke is the world’s second leading cause of death and mortality (1–4). The risk of

recurring strokes is much greater for survivors of acute ischemic stroke (IS). For survivors

of acute ischemic stroke (IS), the risk of repeated strokes is significantly larger (5–7).

In Malaysia, ∼33% of the IS population had recurrent stroke (8). In recurrence stroke,
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neurological damage is usually severe, harder to deal with, and has a

higher mortality rate compared with the first stroke (9). Therefore,

secondary prevention is crucial to reduce recurrent IS events (9).

The prognosis of recurrent IS has been widely studied. The

probability of recurrent IS after the index attack was predicted

to vary over time, i.e., it was predicted to range from 11.2%

to 30% within the first 24 months (10, 11) and be 9.5% within

5 years after the IS attack (12). In contrast, the most recent

study reported that the rate of recurrent IS was 1.2% in the

first 30 days, 3.4% within 90 days, 7.4% within 1 year, and

19.4% within 5 years (13). Moreover, the reported risk factors

of recurrent stroke vary (14–16), in which hypertension (HTN),

atrial fibrillation (AF), diabetes mellitus (DM), hyperlipidemia

(HPLD), ischemic heart disease (IHD), and smoking were the most

common reported predictors of recurrent stroke (17, 18). Despite

improvements in recurrent IS risk classification and prevention

measures in the past decades, IS remains a devastating disease.

Currently, most of the methods of secondary prevention of IS are

focused on reducing and controlling the risk factors that lead to

recurrent IS. Nevertheless, does the hazard of recurrent IS change

over time?

The Essen Stroke Risk Score (ESRS) is a score that is

used to predict stroke recurrence in a hospital-based follow-

up study. It includes 9 points depending on risk factors: 2

point for age >75, but only 1 point for 65–75, HTN, DM,

previous myocardial infarction, other cardiovascular diseases,

peripheral arterial disease, smoking history, and previous TIA

or IS (19). The Recurrence Risk Estimator at 90 days (RRE-

90) is a web-based prognostic scoring tool designed to calculate

90-day recurrent stroke risk by including risk factors of stroke,

such as the history of a mini-stroke or transient ischemic attack

(TIA), age, and the type of first stroke the person experienced

(20). These conventional recurrent IS prediction scores did not

incorporate time to follow the longitudinal natural changes of

recurrent IS.

The majority of the previous prognosis studies of recurrent

stroke used the most common semi-parametric survival analysis

method, i.e., the Cox regression analysis. The Cox model

incorporates the effect of covariates on the hazard without

quantifying the shape or form of the recurrent stroke hazard rate

at baseline. The hazard of the event at baseline is defined as the

hazard of having an interest event when all the predictor variables

were set to zero or their reference level was set for categorical

variables. Thus, in addition to quantifying the effect of predictor

variables on the occurrence of the event (e.g., recurrent IS), defining

specific shape or distribution of the event hazard at baseline (e.g.,

just after the index stroke) may allow better prediction of the event

of interest, taking into account the natural effect of the disease itself.

Studies using this approach on recurrent strokes are still lacking

(21, 22).

Abbreviations: APLT, antiplatelet; DM, diabetes mellitus; HPLD,

hyperlipidemia; HTN, hypertension; IHD, ischemic heart disease; IS, ischemic

stroke; MOH, ministry of health, Malaysia; NNEUR, national neurology

registry; OFV, objective function value; RTTE, repeated time to event;

RSE, relative standard error; TTE, time to event; SIR, sampling importance

resampling; VPC, visual predictive check.

In this study, we performed a non-conventional way of

developing a predictive model for recurrent IS using the parametric

approach of the time-to-event analysis. We quantified the specific

trend of recurrent IS after the index IS when all the predictor

variables were set to zero. This permits more time-dependent

prognostic information that better reflects the disease’s expected

“natural effect.” Moreover, the validated prognostic models of

recurrent IS are limited. This study used real-world population-

based data of the IS population and aimed to quantify the

hazard of recurrent IS when the variable predictors were

set to zero, to quantify the hazard of the recurrent IS at

different time points after the index IS, and to quantify the

secondary prevention influence on the hazard of recurrent

ischemic stroke.

Method

Patients and data acquisition

This population cohort study used the secondary analysis

of data from the National Neurology Registry (NNEUR) of

Malaysia. Data of all Malaysian patients with a history of index

IS from August 2009 to December 2016 were extracted from

the NNEUR of Malaysia. The details on the National Stroke

Registry of Malaysia were published previously (23–25). The stroke

was diagnosed according to the World Health Organization’s

criteria (26). All diagnoses were confirmed using brain computed

tomography or magnetic resonance imaging. Index IS was

defined as the first stroke registered in the NNEUR for patients

from 2009 to 2016. Recurrent IS was defined as any IS event

recorded by involving hospitals after the index IS for a specific

patient in the NNEUR database. Malaysian adults aged above

18 years with a history of IS and registered with NNEUR were

included. Non-Malaysian citizens and those with diagnoses other

than IS were excluded from the study. The minimum events

needed to develop this prognostic model were calculated as 228.

Sample size—Survival analysis|Sample Size Calculators (sample-

size.net).

Stroke registry in Malaysia

The NNEUR in Malaysia was established in 2009. It has

recorded data from multiethnic stroke cases from 13 states

in the country. The NNEUR aims to provide comprehensive

epidemiological data on the country’s stroke statistics, trends, and

management, representing a multicenter, hospital-based registry.

The registry development is funded by the Ministry of Health,

Malaysia (MOH). A comprehensive explanation of the NNEUR has

been previously published (27).

Ethics approval

Ethical approval for this study was obtained from the Medical

Research and Ethics Committee (MREC), Ministry of Health,

Malaysia (Research ID: NMRR-08-1631-3189).
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Collected variables

Based on demographic data and concomitant diseases,

including DM, HTN, HPLD, IHD, and hyperuricemia, medications

used for secondary prevention were tested. They were defined

either by physician diagnosis, by patients’ electronic records, or

from the medication history, and the medications were prescribed

during discharge.

Analysis

The time to the recurrent events of IS and factors predicting

the recurrence of IS were quantified and determined using

NONMEM version 7.5 software and Perl-speaks-NONMEM (PsN)

version 4.1.0. After the index IS, the event was described as

having recurrent IS events. All event times were treated as

exact time models, in which the event was assumed to occur

at the time of observation. For the baseline hazard model,

three models, namely, exponential, Gompertz, and Weibull,

were investigated.

Model development

The model was developed in the following two steps: (i) a

base model without any explanatory factors and (ii) an exploration

of covariates.

Development of the base model

A parametric survival function based on Equation 1 was used

to describe the time to the recurrent IS.

S (t) = e−
∫ t
0 h(t)dt , (1)

where S(t) is the survivor function calculated from the integral

of hazard concerning time. The hazard is h(t), and the survival

S(t) is a function of the cumulative hazard within the time

interval between the time zero and the time t, describing

the probability of not experiencing any recurrent IS within

this interval.

The base model was developed by exploring different

functions for the hazard h(t), starting from a simple

time-independent constant hazard and then gradually

progressing to more complex functions, including Gompertz

and Weibull, according to Equations (2), (3), and (4),

respectively (28).

h = h0 × e0 (2)

h(t) = h0 × eβt (3)

h(t) = h0 × eβ ln(t) (4)

The hazard of recurrent IS at baseline or baseline hazard

function at different time points after the index was quantified

based on Equation 5. Equation 5 shows an example of changes in

the baseline hazard h0(t) based on different time t intervals.

h0(t) =



















θ1, if 0 < t< t 1

θ2, if t1 < t ≤ t2

. . . . . . . . . . . . . . .

θn t , if t(n− 1) < t ≤ tn

(5)

Between-subject variability around the hazard was estimated,

assuming an exponential distribution for the random effect.

Development of the covariate model

Possible explanatory variables that may influence or predict the

changes in hazard were explored by including each explanatory

variable in the hazard function. A parameter, βn, for each

of the n explanatory variables, Xn, was estimated using the

following equation.

h (t) = h0 (t) ∗ expβ1X1+β2X2....+βnXn,

where h0 is the baseline hazard and βn is the coefficient for

the explanatory variable, Xn, which describes how the hazard varies

with the explanatory variable. Exponentiation of the explanatory

variable coefficient provides the hazard ratio (HR), which reflects

the influence of the explanatory variables relative to the hazard

when the explanatory variable is not present.

Initially, the covariates were tested in a univariate manner,

i.e., each covariate relationship was evaluated on the base hazard

individually. Then, based on the results, covariate relationships

were identified for a systematic covariate search by applying a

stepwise analysis approach, i.e., with stepwise forward inclusion

followed by backward elimination (29).

In the forward inclusion, the statistical significance level was set

at a P-value of<0.05, which corresponds to a reduction of the OFV

of at least 3.84, for one degree of freedom (addition of one covariate

parameter). While in the backward deletion, the significant value

was set to a P-value of <0.01, corresponding to an increase in

the OFV of at least 6.64 to be kept in the model for one degree

of freedom.

Model evaluation

Parameters were estimated using the LAPLACE method

(ADVAN = 6 TOL = 9 NSIG = 3) in NONMEM to obtain

maximum likelihood estimates of time-to-event parameters. The

parametric time-to-event (TTE) analysis was performed using

NONMEM version 7.5 and Perl-speaks-NONMEM (PsN) version

4.1.0.7. Model selection was based on comparing the OFV between

models, bootstrap confidence intervals for parameter estimates, and

biological plausibility. The improvement in the fit was measured by
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a decrease (30) in the OFV generated by NONMEM. The difference

in OFV between the two hierarchical models is approximately X2

distributed and can be tested for significance with X1,0.052 = 3.84.

To evaluate the predictive performance of the model

throughout the model building, Kaplan-Meier visual predictive

checks (VPCs) for internal and temporal validation and Xpose4

(version 4.7.1) function (31, 32) in the RStudio software (version

1.1.456, RStudio, Inc., Boston, MA, http://www.rstudio.com/) were

utilized. The plots were based on simulations of 1,000 simulated

datasets. To enable simulations for time points where no clinical

observations had been made, extra dummy time points were added

to the dataset for all individuals until 7.37 years for the VPC

simulation. The parameter certainty was evaluated through relative

standard error (RSE) produced from the sampling importance

resampling (SIR) method (33).

Results

Out of 7,697 subjects, 333 patients (4.32%) developed recurrent

IS within the maximum follow-up period of 7.37 years. The median

time to the first recurrent IS was 1.2 years. The study population

included all age groups, from young to elderly, with a median age

of 63.47 years at the time of index IS. As shown in Table 1, most

of the patients were women (4,289, 55.72%). The percentage of

smokers in this study population was 48%. Of 7,697 subjects, 3,493

(45.38%) subjects had diabetes before index IS, while the number of

patients with HTN before index IS was 5,506 (71.5%). The number

of subjects with HPLD before index IS was 2,028 (26.34%), of

patients who had IHD before index IS was 879 (11.4%), and of

patients who had AF before index IS were 3.4%. Among patients

who had recurrent IS, the percentage of patients who received

antiplatelets (APLT), antihyperlipidemics, angiotensin-converting

enzyme inhibitors (ACEI), beta-blockers (BB), calcium channel

blockers (CCB), diuretics (DIU), and antidiabetics (ADM) for

concurrent disease control and secondary prevention were 85.58%,

86.18%, 29.42%, 11.71%, 24.02%, 8.70%, and 39.63%, respectively.

Baseline hazard model of recurrent IS

The Gompertz model fits the data well in terms of OFV, clinical

plausibility, and the Kaplan–Meier plots. The baseline hazard of

recurrent IS was quantified at two different time points, as shown

in Table 2. As shown in Table 3, the hazard of recurrent IS when the

predictor variables were set to zero was 0.238 in the first 6 months

after the index IS, and the hazard remained non-zero afterward

(Figure 1). After incorporating the factor of time and established

risk factor, the exponential increase in the hazard of recurrent

IS was observed in the first 3 years after the index IS and then

exponentially reduced afterward (Figure 3).

Factors influencing the risk of having
recurrent IS after index IS

In our model, the presence of established cardiovascular risk

factors prior to index IS determine the risk of recurrent IS.

TABLE 1 Characteristic of patients with recurrent IS during di�erent time

intervals that included into the study (N = 333).

Variable Patients with
recurrent IS
N = 333 (%)

Patients with no
recurrent IS
N = 7,364 (%)

Recurrent IS < 6 months 108 (31.43) –

Age group

<60 150 (45.04) 2,924 (39.70)

≥60 183 (54.95) 4,440 (60.29)

Female 186 (55.85) 4,103 (55.71)

2nd recurrent stroke 36 (0.108) –

Ethnicity

Malay 155 (46.54) 1,479 (20.08)

Chinese 7 (2.10) 206 (2.79)

Indian 3 (0.9) 80 (1.08)

Others 167 (50.15) 5,601 (76.05)

Smoker 202 (60.66) 3,547 (48.166)

DM 195 (58.55) 3,298 (44.78)

Duration of diabetes (years)

<1 9 (2.70) 340 (4.61)

1–5 97 (29.12) 1,675 (22.74)

6–10 42 (12.61) 520 (7.06)

>10 43 (12.91) 763 (10.36)

Unknown 4 (1.2) –

Family history of stroke 27 (8.10) 339 (4.60)

HTN 288 (86.48) 5,218 (70.85)

HTN duration (years)

≤5 163 (48.94) 2,167 (29.42)

>5 125 (37.53) 2,051 (27.85)

IHD 77 (23.12) 802 (10.89)

HPLD 159 (47.74) 1,869 (25.38)

AF 4 (1.2) 263 (3.57)

HU 16 (4.8) 218 (2.96)

NIHSS

Minor 145 (43.54%) 3,407 (46.26%)

Moderate/severe 188 (56.45%) 3,957 (53.73%)

Received medications for concurrent disease
control and/or secondary prevention

APLT 285 (85.58%) 6,613 (89.80%)

Antihyperlipidemic 287 (86.18%) 6,607 (89.72%)

ACEI 98 (29.42%) 2,298 (31.20%)

BB 39 (11.71%) 776 (10.53%)

CCB 80 (24.02%) 1,520 (20.64%)

DIU 29 (8.70%) 425 (5.77%)

ADM 132 (39.63) 2,306 (31.31%)

ACEI, angiotensin converting enzyme inhibitors; ADM, antidiabetics; AF, atrial fibrillation;

APLT, antiplatelet; BB, beta blockers; CCB, calcium channel blockers; DIU, diuretics; DM,

diabetes mellitus; FHOS, family history of stroke; IHD, ischemic heart disease; HTN,

hypertension; HPLD, hyperlipidemia; HU, hyperuricemia; NIHSS, national institute of health

stroke scale; N, number of patients.
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TABLE 2 Objective function value di�erences between di�erent models.

Number of parameters Variable Model OFV 1OFV p-value

1 Constant h(t) = θ1 3,803.971 0 –

2 Gompertz h(t) = θ1 × e(θ2)t 3,777.083 −26.888 <0.0001∗

2 Weibull h(t) = θ1 × e(θ2) ln(t) 3,788.58 −15.391 0.003955∗

After inserting di�erent time intervals

4 Gompertz h (t) = θx × e(θy)t 2,808.68 −959.291 <0.0001∗

4 Weibull h(t) = θx × e(θy) ln(t) 3,185.810 −623.161 <0.0001∗

OFV, objective function value; h, hazard; t, time; θx equals, θ1 if time < 0.5 year; θ3 if time ≥ 0.5, θy equals; θ2 if time < 3 years, θ4 if time ≥ 3 years. ∗Significance; p-value < 0.05.

TABLE 3 Parameters of the final developed model for recurrent IS after index IS.

Parameter Description Typical value Half-life (Ln2/α) aHR 95%CI RSE%

θ1(<6 months) θ1 Baseline hazard 0.238 – 19.92%

θ3(≥6 months) θ3 0.0016 21.62%

α (<3) θ2 Shape parameter in the first 3 years after index IS 1.63 0.42 (5.06 months) 4.81%

α (≥3) θ4 Shape parameter after 3 years of index IS 0.23 3.008 years 20.19%

HPLD (covariate) θ5 Effect of baseline HPLD on hazard 0.799 – 2.22 (1.81–2.72) 12.89%

IHD (covariate) θ6 Effect of baseline IHD on hazard 0.745 – 2.10 (1.64–2.69) 16.85%

HTN (covariate) θ7 Effect of baseline HTN on hazard 0.711 – 2.03 (1.52–2.71) 20.62%

APLT θ8 Effect of receiving APLT on hazard −0.514 0.59 (0.79–0.44) 28.41%

APLT, antiplatelet; h, baseline hazard; RSE, relative standard error; 95%CI, 95% confidence interval; α, shape parameter; aHR, adjusted hazard ratio; HPLD, hyperlipidaemia; HTN, hypertension;

IHD, ischemic heart disease; NIHSS, national institute of heath stroke scale; The RSE (%) were obtained from sampling importance resampling (SIR) method (33).

FIGURE 1

Baseline hazard during di�erent time intervals after index IS; during first 6 months after index IS, after 6 months.
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FIGURE 2

E�ect of covariates on hazard of recurrent IS after index IS.

FIGURE 3

Kaplan-Meier plots showing the IS survivor function (probability of not having recurrent ischemic stroke) throughout di�erent time intervals. The final

time-to-event model of the internal data.

Prior to index IS, diagnosis of HPLD, HTN, and IHD increases

the risk of recurrent IS with [HR, 2.22 (95%CI: 1.81–2.72)],

[HR, 2.03 (95%CI: 1.52–2.71)], and [HR, 2.10 (95%CI: 1.64–

2.69)], respectively, while receiving APLT for secondary prevention

decreased this hazard [HR, 0.59 (95%CI: 0.79–0.44)] (Figure 2).

The Kaplan-Meier VPCs for recurrent IS after index IS showed

good predictions (Figure 3).

Figure 4 shows the survival (probability of not having recurrent

IS) among patients who received APLT vs. patients who did not

receive APLT for secondary prevention.
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FIGURE 4

Survival (probability of not having recurrent IS after index IS) among (i) patients did not receive APLT vs. (ii) patients received APLT.

Discussion

To the best of our knowledge, this is the first study predicting

the recurrence of IS in our population using real-world data of IS

population as well as defining the baseline hazard of recurrent IS. A

previous study (34) reported a constant hazard of having recurrent

IS over time. In our population, the hazard of recurrent IS was

reported to change over time after the first IS attack. Unlike the

conventional model development (e.g., the Cox model), defining

the specific shape or distribution of the event hazard at baseline

(e.g., just after the index stroke) may allow for better prediction of

the event of interest, taking into account the “natural effect” of the

disease itself.

Recurrent stroke is associated with increased disability and

mortality rates compared to index stroke (35). Even with

appropriate secondary prevention, the risk of recurrence after IS

is high, especially in the early phase after stroke (36). It has been

reported that, within the first year after the initial stroke, the risk

of stroke recurrence is higher (between 6 and 14%) as opposed

to the risk in subsequent years (4% annually) (37–39). A more

recent study showed that the incidence of stroke recurrence was

the highest during the first year after index stroke at 12.8% with a

declining annual rate, 6.3% during the second year, and 5.1% (95%

CI, 4.0–6.5) during the third year after the index stroke (15).

In our population, we demonstrated the predicted hazard of

recurrent IS at certain time points and change over time. Those with

≥2 concomitant diseases predicted a higher likelihood (>3.5%)

of recurrent IS as compared to those who had at least one or

no risk factor. This indicates that early and extensive secondary

IS prophylaxis, especially in the first 3 years after the index IS

as well as for those with the three risk factors, is paramount

to prevent recurrent IS. The follow-up schedule after the index

IS should be personalized depending on the risk factors. Those

with more risk factors may require frequent follow-up after

the stroke as well as different therapy goals for controlling the

concomitant diseases.

The time course of recurrent IS hazards may represent the

infarct involved during the stroke attack. There may be a relatively

rapid increase in infarction cells after the initial diagnosis of stroke,

which may increase the hazard of recurrent IS during the stage.

However, the incidence of recurrent IS observed in the surviving

population may decrease with time. This could be explained by the

fact that the secondary prophylaxis therapy received may show a

delay in obvious benefit in reducing the recurrent IS at this stage

but with greater benefit later.

In this study, IHD, HPLD, and HTN were identified as

independent predictors for recurrent IS. These findings are

consistent with data reported in a previous study (22–25). The

presence of HPLD, IHD, or HTN was found to increase the hazard

of developing recurrent IS by 2.22, 2.10, and 2.03, respectively.

In contrast, receiving APLT was found to decrease the hazard of

recurrent IS by∼40%.

HPLD findings could be explained through the angiopathy

resulting from atherosclerotic plaque (40). For IHD, it was reported
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that IHD and IS share similar pathophysiology, mainly because

atherosclerosis is manifested in both conditions (22). Patients

who have atherosclerosis are at risk for acute stroke. In both

cases, a sudden change in circulation arises, and as a result, the

blood supply decreases to some parts of the brain or heart (22).

In agreement with these findings, receiving APLT was found to

decrease the hazard of recurrent IS among the whole population

with index IS. Effective management of these comorbidities is

necessary to reduce the risk of recurrent IS. Although we reported

the established and well-known risk factors of recurrent IS, our

model allows the prediction and quantification of the recurrent

IS hazard at different time points after the index IS. Moreover,

the hazard is quantified according to the risk groups, which

allows the future study to incorporate the time-varying effect of

secondary prophylaxis therapies on the progression and hazard of

recurrent IS.

Limitations

This was a retrospective study based on the available data from

the National Stroke Registry of Malaysia. Therefore, the first stroke

captured by the NNEUR from 2009 to 2016 was assumed to be

the first stroke experienced by the patient. Any data on the prior

TIA or stroke before the NNEUR establishment were not available

and not considered in the current study. Due to the nature of the

data captured from the registry database, the comorbidities were

analyzed independently. Nevertheless, this study was a population-

based study and large samples representing various ethnic groups

across the country. This model may provide insights into the

importance of frequent follow-up, especially in the early days

(examples within the first 6 months to 1 year), and thus perhaps

may make a positive shift in the Malaysian population regarding

follow-up schedules during the management to prevent recurrent

IS. This model is expected to be the basic model for future studies

incorporating the time-varying effects of drugs, e.g., dosing changes

and pharmacokinetic and pharmacodynamic characteristics.

Conclusion

Incorporating time in predicting the risk of recurrent IS may

attribute positively to predicting the prognosis of recurrent IS. The

hazard of recurrent IS changes over time after the index IS. In

addition to concomitant diseases, secondary prevention time also

plays a vital role in predicting the risk of recurrent IS population.

These results may add to the knowledge related to patient follow-up

schedules during the management of IS to prevent IS recurrence.
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