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As a specific lymphatic marker and a key ligand of C-type lectin-like

receptor 2 (CLEC-2), podoplanin (Pdpn) is involved in various physiological and

pathological processes such as growth and development, respiration, blood

coagulation, lymphangiogenesis, angiogenesis, and inflammation. Thrombotic

diseases constitute a major cause of disability and mortality in adults, in

which thrombosis and inflammation play a crucial role. Recently, increasing

evidence demonstrates the distribution and function of this glycoprotein in

thrombotic diseases such as atherosclerosis, ischemic stroke, venous thrombosis,

ischemic-reperfusion injury (IRI) of kidney and liver, and myocardial infarction.

Evidence showed that after ischemia, Pdpn can be acquired over time by a

heterogeneous cell population, whichmay not express Pdpn in normal conditions.

In this review, the research progresses in understanding the roles andmechanisms

of podoplanin in thromobotic diseases are summarized. The challenges of

podoplanin-targeted approaches for disease prognosis and preventions are

also discussed.

KEYWORDS

podoplanin, thrombotic, inflammation, CLEC-2, platelet activation, epithelial-

mesenchymal transition

Introduction

Podoplanin (Pdpn), named according to its expression in renal podocytes, is a type

I transmembrane glycoprotein containing a large number of O-glycoside chains, which

makes it a member of mucin-type proteins. Due to its expression in human and several

mammal species in various cells and tissues, it has many different names. In human it is

also called gp36 and T1α (1), however, in mice which is also known as Aggrus, OTS-8,

gp38, and antigen PA2.26 (2–4). Pdpn is mainly involved in growth and development,

respiration, blood coagulation, lymphangiogenesis, angiogenesis, and inflammation (5–7).

Especially the interaction with its receptor C-type lectin-like receptor 2 (CLEC-2) has

been shown to play an important role in thromboinflammation (8, 9). Pdpn expression is

upregulated in both epithelial and mesenchymal cell compartments during thrombosis and

inflammation, and a growing body of evidence indicates its prominence in these pathologies

of thrombotic diseases.

Structure, protein partners and cell expression

Pdpn consists of a heavily O-glycosylated ectodomain, a hydrophobic membrane

spanning domain, and a short cytoplasmic tail (CT) of only nine amino acids. Besides

C-type lectin-like receptor 2 (CLEC-2), there are variable proteins interacting with Pdpn,
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such as CCL21, galectin-8, and heat-shock protein A9 (HSPA9)

binding its ectodomain; CD9 and CD44 interacting with its

transmenbrane domain; and ezrin, radixin, and moesin (ERM)

binding to its CT. Through these interactions, Pdpn exerts various

functions like platelet aggregation/activation, platelet biogenesis,

immune surveillance, cytoskeleton rearrangement, and epithelial-

mesenchymal transitions (EMTs) by protein–protein interactions

for the lack of obvious enzymatic motifs (10–12) (Figure 1). Mostly,

Pdpn is expressed on various cells, or at plasma membrane

extensions, such as microvilli, filopodia, and ruffles, linking to

the actin cytoskeleton to rearrange cytoskeleton and regulate cell

motility. A fraction of Pdpn is localized in detergent-resistant

membrane domains or raft platforms regulated by its CT and

transmembrane domains, which appears to be necessary for Pdpn-

mediated EMT and cell migration (13, 14). Besides, a soluble

form of Pdpn (sPdpn) has recently been detected and investigated

(15, 16). Cells ectopically or endogenously expressing Pdpn has

been found to release extracellular vesicles (EVs) that contain

Pdpn mRNA and protein. Pdpn incorporates into membrane shed

microvesicles (MVs) and endosomal-derived exosomes (EXOs),

and immunoelectron microscopy revealed its colocalization with

the classical EV marker CD63 (15). Ovarian cancer cells express

Pdpn themselves and also release Pdpn-rich EVs, both causing

platelet aggregation, leading to venous thrombosis (16). Those

Pdpn-EXO may contribute to sPdpn in circulating body fluid

for Pdpn+ microparticles were detected in human body fluids

including plasma and other liquids, which were quantitated using

surface plasmon resonance, immunohistochemistry, and a double-

antibody sandwich ELISA (17–20).

The Pdpn research was originally started from the cloning of

highly metastatic NL-17 subclone from mouse colon 26 cancer

cell lines and the establishment of 8F11 monoclonal antibody

(mAb) that could neutralize NL-17-induced platelet aggregation

and hematogenous metastasis. Pdpn was identified as the antigen

of 8F11 mAb, whose ectopic expression brought cells the platelet-

aggregating abilities and hematogenous metastasis phenotypes.

From the 8F11 mAb recognition epitopes, Pdpn is found to contain

tandemly repeated, highly conserved motifs, designated platelet

aggregation-stimulating (PLAG) domains, which are associated

with the CLEC-2 binding (21). Pdpn was discovered for the

first time in rat and mice lungs, and on the surface of stromal

cells in lymph nodes (LNs) in mice, which has been found to

be expressed in a wide variety of cells later, such as lymphatic

endothelial cells, tumor cells, osteocytes, choroid plexus epithelial

cells, glial cells, and cancer-associated fibroblasts for its pleiotropic

functions (7, 22).

Pdpn signaling pathways

Among the many protein ligands of Pdpn, CLEC-2, and ERM

proteins are studied comprehensively. CLEC-2 is a main receptor

for Pdpn. The PLAG3 and PLAG4 domains of Pdpn are required

for its binding to CLEC-2 (23, 24). The combination of CLEC-

2 with the PLAG domains in the extracellular domain of Pdpn

induces platelet activation and regulates inflammation through the

Src, Syk, and SLP-76 kinase pathway (25, 26). Additionally, the

interaction of Pdpn with CLEC-2 enhanced the interaction between

Pdpn and ERM proteins and CD44, which activated Rho GTPase

signaling pathway (27, 28). Both the interaction of Pdpn with

CLEC-2 and with ERM are the two main pathways of cytoskeleton

reorganization and inflammation regulation, which have been

demonstrated to contribute to the occurrence and development

of thrombotic diseases (29, 30). Studies show that Pdpn plays

an important role in the functional regulation of immune cells.

Following inflammatory or ischemic stimulation, Pdpn expression

was upregulated in macrophages, microglia, and other immune

cells, which influenced their motility and functionally phenotype

transformation (31–33).

Pdpn in atherosclerosis

Atherosclerosis is usually considered as a chronic inflammatory

disease, which is the main root cause of thrombotic diseases

characterized by lipid deposition in parts of the artery

accompanied by smooth muscle cell (SMC) and fibrous

matrix proliferation. Unstable atherosclerotic plaque rupture

and following thrombus formation, or vascular stenosis lead

to arteriosclerotic cardiovascular disease (ASCVD) resulting in

high rate of mortality in the population (34). Platelet activation

and aggression has a well-established role in the development

and manifestation of atherosclerosis (35–37). Both CLEC-2 and

Pdpn have been shown to bind to atherosclerotic lesions. CLEC-2

co-localized with vascular SMCs, while Pdpn was localized to

SMCs and macrophages (38). Besides, Pdpn expression in SMCs

and macrophages increased with atherosclerotic progression.

However, in a rat model similar to the plaque erosion in

human which contains relatively few inflammatory cells and

more SMCs compared with plaque rupture, Pdpn was found

to be overexpressed in endothelial cells, not in SMCs. Further

exploration showed that vascular endothelial growth factor

(VEGF)-A, which is expressed in SMCs, macrophages, and

endothelial cells in the advanced atherosclerotic lesions, induced

Pdpn expression. Therefore, it is speculated that VEGF-A from

superficial SMCs stimulates endothelial Pdpn expression, which

interacts with CLEC-2 to induce platelet aggregation and thrombus

formation (39). The results remind us that at different stages

of atherosclerosis, Pdpn expression varies in different cells and

plays different roles. This partly might be explained by the fact

that inflammatory stimulation upregulated Pdpn expression in

macrophages, and Pdpn was expressed on inflammatory but

not tissue-resident macrophages (31). Toll-like receptor (TLR)

stimulation and some inflammatory cytokines activates Pdpn

expression. Additionally, in advanced atherosclerotic plaque,

Pdpn was detected in a membranous or cytoplasmic staining

pattern, suggesting Pdpn may contribute to atherosclerosis

development in both CLEC-2-dependent and independent

manners (38). Pdpn is expressed in stromal myofibroblasts, which

contribute to cell migration and invasion, suggesting a role of

Pdpn in vascular remodeling and atherosclerotic progression

in atherosclerotic plaques. On the other hand, inflammatory

cytokines in plaque progression promote Pdpn expression in

stromal cells and endothelial cells. Besides, adventitial lymphatics

in the arterial walls protect against atherosclerosis, which are

important in reverse cholesterol transport from atherosclerotic

lesions (40). Pdpn was specifically associated with lymphatic

endothelium number of adventitial lymphatics of human internal
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FIGURE 1

The structure of podoplanin and its functions with interacting proteins. Schematic representation of the molecular structure of podoplanin with a

heavily glycosylated extracellular domain, a single transmembrane domain, and a short 9-amino acid cytoplasm. The ligands and biological

processes during which the identified molecules interacting with podoplanin are presented. EC, ectodomain; TM, transmembrane region; CT,

cytosolic domain; PLAG, platelet aggregation-stimulating.

carotid artery, which demonstrated Pdpn may participate in

atherosclerosis via regulating functions and regeneration of

adventitial lymphatic vessels in atherosclerotic lesions (41).

In a disturbed blood flow (d-flow) model, monocyte Pdpn

was upregulated by d-flow, and the myeloid-specific Pdpn

deletion mitigated the subendothelial accumulation of platelets

and monocytes/macrophages, which ameliorated vascular

inflammation (42) (Table 1).

Much evidence confirmed the role of Pdpn in the development

and manifestation of atherosclerosis mainly through inflammation

and lymphatic vessel functional regulation pathways. CLEC-2 is the

important partner for the role of Pdpn in atherosclerosis, however,

other receptors and signaling pathways need to be explored.

Ischemic stroke

Ischemic stroke is one of the most common thrombotic

diseases, caused by a blood clot occluding one or multiple cerebral

arteries, which means rapid recanalization of the occluded blood

vessel is necessary for the treatment of acute ischemic stroke

(AIS). However, even recanalization is successful, symptoms can

still aggravate. This is called ischemia/reperfusion (I/R) injury, in

which thrombotic and inflammatory pathways play a crucial role.

Thus, ischemic stroke is recognized as a thromboinflammation

disease (85). The Pdpn/CLEC-2 axis is thought to be a major

regulator of thrombo-inflammatory disorders (86, 87). Therefore,

we previously conducted a prospective observational study,

including 352 AIS patients and 112 healthy controls. The results

showed that plasma CLEC-2 (pCLEC-2) levels were associated

with stroke progression and poor prognosis at 90 days. During

1 year follow-up, pCLEC-2 levels were also predictive for higher

incidence of death and vascular events (43, 44). Further we

examined the mechanism of Pdpn/CLEC-2 axis in cerebral

ischemia injury using a mouse middle cerebral artery occlusion

(MCAO) model. In this study, the expression of CLEC-2 and Pdpn

increased after ischemia/reperfusion (I/R) injury and anti-Pdpn

antibody pretreatment reduced infarct volume and attenuated the

neurological deficits with a significant decrease of IL-18 and IL-

1β, indicating a possible role of the Pdpn/CLEC-2 axis in the

regulation of inflammation in ischemic stroke via modulating

NLRP3 inflammasome (45). An upregulated Pdpn expression in

reactive astrocytes in the ischemic model was observed, which

might be a part of compensatory response to ischemic brain

injury. This implied a remarkable role of Pdpn in astrocytes in

ischemic brain injury, and cellular interactions among astrocytes,

neurons, and microglia await to be elucidated further (20). Qian

et al. reported the molecular mechanism of Pdpn neutralization

inhibiting I/R-induced microglial activation using transcriptome

sequencing analysis and found numerous inflammation-related

signaling pathways were regulated by the anti-Pdpn treatment (46).

Some upper proteins such as TRPM7 kinase might downregulate

CLEC-2 to protect mice from acute ischemic disease without

developing intracranial hemorrhage, which could provide us some

clues on the mechanism of Pdpn/CLEC-2 axis in ischemic stroke

(88). Both vascular and neurovascular interactionmechanismsmay

be involved, awaiting to be elucidated. Moreover, the interaction

of the CT of Pdpn with the ERM protein family activates Rho

GTPases. RhoA/ROCK signaling pathway in astrocytes is suggested

to be crucial in neurogenesis and angiogenesis after cerebral
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TABLE 1 Pdpn in thrombotic diseases.

Diseases Species Trend Outcomes Potential molecules References

Atherosclerosis Human/Mouse ↑ Contributing to atherosclerosis

development in both

CLEC-2-dependent and

independent manners.

CLEC-2,

VEGF-A,

inflammatory cytokines

Torres et al. (34), Kutkut et al. (40),

Drozdz et al. (41)

Ischemic stroke Human/Mouse ↑ High risk of stroke progression,

poor prognosis, and death.

Increased expression of CLEC-2

and Pdpn after I/R injury and

protective effect of anti-Pdpn

against I/R injury.

Regulation of inflammatory

cytokines through NLRP3?

and thrombosis

CLEC-2, NLRP3?, RhoA/ROCK? Zhang et al. (43), Wu et al. (44),

Meng et al. (45), Zhao et al. (20),

Qian et al. (46)

Venous thrombosis Human/Mouse ↑ Anti-Pdpn antibody treatment and

CLEC-2 deletion resulted in a

reduction of thrombus formation.

Pdpn overexpression was strongly

associated with the amount of

intratumoral thrombotic vessels

and increased VTE risk in cancer

patients.

Anti-Pdpn antibody treatment

inhibited platelet activation in vitro

and decreased the incidence of

VTE in mice.

CLEC-2 von Brühl et al. (47), Brill et al.

(48, 49), Payne et al. (50), Kolenda

et al. (51), Mir Seyed Nazari et

(52, 53), Riedl et al. (54),

Suzuki-Inoue (55), Wang et al.

(56), Lee et al. (57), Sasano et al.

(16), Sun et al. (58), Watanabe et al.

(59), Tawil et al. (60), Zwicker (61)

Kidney ischemic injury Human/Rats/Mouse Glomeruli↓ renal interstitium↑ The increasing of urine

Pdpn-to-creatinine ratio correlates

with the onset of renal IRI.

Significant decrease Pdpn

expression in the renal glomerulus

of diabetic kidney disease mice

with an underlying chronic

renal ischemia.

NF-κB?, mTOR? Breiteneder-Geleff et al. (62),

Weichhart et al. (63), Kezic et al.

(64, 65), Zhang et al. (66), Chuang

et al. (67), Kasinath et al. (68, 69),

Yu et al. (70), Gao et al. (71)

Myocardial ischemia Human/Mouse ↑ Upregulation of Pdpn in a

heterogeneous cell population.

Pdpn-neutralizing antibodies

reduces inflammation post-MI

without full suppression leading to

heart function and scar

composition improvement.

? Mahtab et al. (72, 73), Douglas

et al. (74), Cui (75), Loukas et al.

(76), Noseda et al. (77), Popescu

et al. (78), Aspelund et al. (79),

Díaz-Flores et al. (80), Caporali

et al. (81), Cimini et al. (82), Wakai

et al. (83)

Ischemia-reperfusion liver injury Mouse ↑ Activation of platelets. Nakata et al. (84)
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ischemia, which indicates the crosstalk among podoplanin, ERM

protein family, and astrocytes in ischemic stroke needs to be further

studied (Table 1).

Pdpn contributes to the cerebral ischemia injury mainly

through thrombosis and inflammation pathways. Its expression is

upregulated after brain ischemia in various kinds of cells, some of

which may not express Pdpn in normal conditions. However, the

exact cellular interactions, vascular and neurovascular interaction

mechanisms, and molecular signaling pathways remains to

be elucidated.

Venous thrombosis

Deep vein thrombosis (DVT) is a type of blood clot within deep

veins, which is one of the most common venous thromboembolic

disorders with a high mortality. Its underlying mechanisms still

remain unclear, however, recent evidence has demonstrated that

immune cells and inflammatory processes are involved in DVT

initiation besides blood coagulation disorder (89). DVT is rich

in red cells and fibrin, the formation of which involves the

interaction of von Willebrand factor (vWF), platelets, neutrophils,

and mast cells (47–49). In a murine DVT model of inferior

vena cava (IVC) stenosis, it has been demonstrated that general

inducible deletion of CLEC-2 or platelet-specific deficiency in

CLEC-2 are protected against DVT. Also, anti-Pdpn antibody

treatment resulted in a reduction of thrombus formation (50). The

mechanisms have been suspected that the interaction of CLEC-

2 in platelets and overexpressed Pdpn in the IVC wall induced

venous thrombus formation. Highly distorted flow caused by IVC

stenosis and following hypoxia led to upregulated Pdpn expression

(51). However, Pdpn upregulation cannot only be a cause for

thrombosis but might also be triggered by thrombus formation,

which indicates both mechanisms may operate in parallel forming

a positive feedback (Table 1). A recent study has demonstrated

a role of CLEC-2 in cerebral venous thrombosis (CVT), an

unusual manifestation of venous thrombosis. The results showed

antibody (INU1-fab)-induced cooperative signaling of CLEC-2 and

GPIIb/IIIa triggered a CVT-like thrombotic syndrome in mice. The

authors speculated that INU1-fab alters the conformation of CLEC-

2 and facilitates its interaction with an unknown ligand enriched

in cerebral veins (90). Thus, Pdpn, a main ligand of CLEC-2 for

platelet activation, was thought to be a candidate partner, as it is

obviously upregulated in different inflammatory tissues including

the brain, and can be shed from the cell surface to circulate in

plasma (20, 91). However, it needs to be further explored.

A crucial role of the interaction between CLEC-2 and Pdpn

in venous thrombosis has been revealed. Upregulated Pdpn

expression was observed in DVT. The exact cellular expression and

molecular signaling pathway remains to be uncovered, especially

for CVT. Also, whether there are interactions between Pdpn and

other receptors in venous thrombosis needs to be explored.

Cancer-associated thrombosis

Moreover, Pdpn-associated platelet activation has been

demonstrated to contribute to cancer-associated thrombosis,

which are based on the upregulation of Pdpn on the cell

surface of brain tumor cells. CATS trial reported that Pdpn

overexpression was strongly associated with the amount of

intratumoral thrombotic vessels and increased VTE risk in

cancer patients. Platelet counts were lower and plasma D-

dimer levels were higher in those with Pdpn-expressing brain

tumors (52). Increased Pdpn expression in glioma cells coincides

with the development of venous thrombo-embolism, which is

correlated with laboratory evidence of coagulation activation

by elevated D-dimer levels (54). CLEC-2-Pdpn interaction has

been suggested to stimulate cancer-associated thrombosis in

which thromboinflammation plays a crucial role. One hand,

thromboinflammation induces ectopic podoplanin expression

in vascular endothelial cells or macrophages; on the other hand,

CLEC-2 depletion reduces levels of plasma inflammatory cytokines

(55). Anti-Pdpn antibody treatment inhibited platelet activation

in vitro and decreased the incidence of VTE in mice (56). In

oral squamous cell carcinoma and ovarian cancer, the same

results have been reported (16, 57). Hypermethylation of CpG

islands in the Pdpn promoter was regulated by mutant isocitrate

dehydrogenase (IDH) in glioma, which resulted in decreased Pdpn

expression (58). Indeed, combination of IDH1 mutation and Pdpn

expression in brain tumors can help identify patients at high risk

of VTE (53, 59). Further exploration found Pdpn was released

with exosome-like EVs shed from cells (60). Additionally, in a

mouse model of systemic Salmonella Typhimurium infection,

Pdpn was upregulated in monocyets and Kupffer cells (KCs)

and its combination with CLEC-2 promoted the formation

of infection-driven thrombosis in the liver (61, 92) (Table 1).

Different forms of Pdpn participate in the formation of cancer-

associated thrombosis, to which pdpn-mediated thrombosis,

inflammation, and intratumoral vessel generation contributes.

Besides CLEC-2, there may be other partners interacting with

Pdpn in cancer-associated thrombosis.

Kidney ischemic injury

Ischemia-reperfusion injury (IRI) is one of the most common

causes of acute kidney injury (AKI), a serious and often deadly

condition. Kidney IRI accounts for almost 50% of AKI cases, which

is mediated by free radicals and reactive oxygen species (ROS) after

periods of disrupted blood flow (68). Pdpn was named according

to its expression in podocytes, mainly along their urinary surfaces,

indicating a potentially functional role of Pdpn in kidney IRI (62).

In a mouse model of kidney IRI, decreased Pdpn expression in

the glomerulus and increased expression in the tubulointerstitial

compartment of the kidney shortly after IRI was demonstrated.

And the intensity of Pdpn in the tubulointerstitial compartment

increased with the severity of ischemia, and the distribution of

its expression changed over time (68). Moreover, an increase in

the urine Pdpn-to-creatinine ratio was found to correlate with the

onset of renal IRI. The researchers speculated that Pdpn was shed

from the podocytes in an extracellular-vesicle form and expelled

into the urine, which might be internalizated by the proximal

tubule epithelium. Another hypothesis was spindle-shaped cells

expressing Pdpn in the interstitium of the medulla might migrate

to kidney from another organ, playing an important role in
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neovascularization during processes of kidney IRI. However, the

exact mechanisms need to be further explored. Pdpn expression

was significantly decreased in the renal glomerulus of diabetic

kidney diseasemice with an underlying chronic renal ischemia (70).

During the process, the activation of NF-κB signaling pathway

in podocytes downregulated the expression of Pdpn, leading to

increased podocyte apoptosis. Moreover, rapamycin, a kind of

mTOR inhibitor, had a controversial role in the treatment of

acute ischemic kidney injury. Some studies indicated a damage-

promoting role of rapamycin during kidney IR injury (64, 65),

while some reported a protective role of rapamycin against kidney

IR injury (63, 65, 66). However, there was evidence on correlation

between phosphorylated mTOR expression and Pdpn expression in

esophageal squamous cell carcinoma and traumatic brain injury,

which indicated Pdpn might participated in kidney IRI via mTOR

pathway, awaiting to be explored (67, 71). Immune responses are

involved in the pathophysiology of ischemic acute kidney injury

(AKI) (93). In some immune diseases of kidney such as rescentic

glomerulonephritis (GN), membrane Pdpn on fibroblastic reticular

cells (FRCs) may play an important role in the pathogenesis.

The effect of treatment with anti-Pdpn antibody was similar

to that of FRC depletion by decreasing T-cell activation in the

lymph node (LN), resulting in reduction of kidney injury (69).

Fibroblastic reticular cells also maintain the integrity of high

endothelial venules (HEVs) through interactions between Pdpn on

the FRCs and CLEC-2 on platelets (9). Anti-Pdpn treatment led

to disorganization of laminin fibers in the kidney LN, which was

associated with remarkably reduced expansion of the lymphatic

vasculature (69). Therefore, it is hypothesized that Pdpn on FRCs

may contribute to ischemic kidney injury by immune regulation,

which may be the future research contents (Table 1).

The role of Pdpn in kidney IRI remains unclear. Its mechanisms

are complex. Both sPdpn and cellular form participate in the

pathogenesis, in which NF-κB and mTOR signaling pathways have

been implicated. Moreover, the role of Pdpn on FRCs in activation

of T-cells and maintenance of the integrity of HEVs in kidney IRI

needs to be explored.

Myocardial ischemia (MI)

Myocardial ischemia (MI) is the commonest cardiovascular

disease and one of the major causes of morbidity and mortality

worldwide, in the pathogenesis of which inflammation and

following heart tissue evolution play an important role. In the

process, the growth and expansion of cardiac lymphatic vasculature

in response to MI, is crucial for the transportation of extravasated

proteins and lipids, inflammatory, and immune responses, as well

as fluid balance (75, 76, 79). Therefore, Pdpn as a specific lymphatic

marker, is thought to be vital in the cardiac development as well

as the pathogenesis of MI. The function of Pdpn is crucial for

epicardiac development and myocardial differentiation and its

knockout shows a hypoplastic myocardium, atrioventricular valve

abnormalities, and coronary artery abnormalities, which is partly

correlated with reduced epithelial-mesenchymal transformation

(EMT) caused by down-regulation of Pdpn (72, 74). Moreover,

Pdpn deficiency results in hypoplastic sinus venosus myocardium

including the sinoatrial node, which is also related to abnormal

EMT due to up-regulated E-cadherin and down-regulated RhoA

controlled by Pdpn (73). In the adult heart, Pdpn-positive cells

only constitute <5% of the myocardial small cell population,

which is only expressed by cardiac lymphatic endothelial cells in

homeostatic conditions (94). However, after myocardial infarction

(MI), Pdpn is upregulated in a heterogeneous cell population

such as PDGFRα-, PDGFRβ-, and CD34-positive cells, besides

lymphatic endothelial cells. Therefore, researchers thought Pdpn

might be a sign of activation of a cohort of progenitor cells

in different phases of post-ischemic myocardial wound repair.

Inhibition of Pdpn by Pdpn-neutralizing antibodies reduces

inflammation post-MI without full suppression leading to heart

function and scar composition improvement. The increase of

Pdpn-positive cells last from the acute (2 days) to the chronic

phase of MI (2 weeks to 1 month) (82), which indicates a vital

role of Pdpn in inflammation and wound repair after MI. Cimini

et al. identified Pdpn as a potential cellular mediator of the

lymphangiogenic and fibrogenic responses during different stages

of myocardial wound repair after infarction (82). After injury, Pdpn

is co-expressed by four kinds of cells such as PDGFRα-, PDGFRβ-,

CD34-positive cells, and lymphatic endothelial cells which are

responsible for regeneration, fibrosis, and inflammatory processes

of the same pathologies. In the process, inflammation was thought

to contribute to the recruitment of Pdpn-bearing LYVE-1-negative

cells to the site of myocardial repair or the activation of Pdpn

expression in responsive cell cohorts, which started the myocardial

wound repair after infarction. At different stages of MI, Pdpn is

expressed on various kinds of cells, for example, PDGFRα-positive

cells during the whole process and PDGFRβ and CD34-positive

cells at later stages of infarct healing in the mature scar. This

means Pdpn plays multiple roles in the pathogenesis of MI. Cimini

et al. reported the inhibition of the interaction between Pdpn

and CLEC-2 expressing immune cells in the heart improved the

cardiac performance, regeneration, and angiogenesis. In the model,

Pdpn neutralizing antibody treatment induced recruitment of anti-

inflammatorymonocytes/macrophages and increased expression of

anti-inflammatory cytokines (95).

Pericytes with PDGFR-β is very connected with Pdpn

expression and transplantation of allogenic pericytes improves

myocardial vascularization after MI resulting from the regulation

of the endothelium in angiogenesis (81, 96). While mesenchymal

stem cells (MSCs) expressing PDGFRα in the heart showed

cardiomyocyte, endothelial, and smooth muscle lineage potential

(77). In vitro differentiation of cardiac PDGFRα-positive cells

brings out a lot of SMCs and endothelial cells only, indicating a

predominant role of Pdpn in cardiac MSCs PDGFRα-positive cells

in the vascular and mesenchymal compartments. CD34+telocytes

expressed Pdpn after 15 days of MI, which supports cardiac growth,

regeneration, renovation of connective tissue, and repair due to

the unique communication with cardiac stem and progenitor

cells (78, 80). Moreover, Pdpn expression significantly enhanced

the migration of mesenchymal stromal cells (MSCs) and Pdpn-

expressing MSCs extended processes into the endothelial cell layer,

which could interact with circulating platelets (83) (Table 1).

In conclusion, cardiac ischemic injury induces upregulated and

ectopic expression of Pdpn. The interaction of Pdpn and CLEC-2 or

ERM proteins may participate in post-MI inflammatory response

and cardiac repair through inflammation regulation, cytoskeleton
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reorganization, and lymphangiogenic and fibrogenic responses.

The exact mechanisms remain unclear. And the interaction of

Pdpn with other partners in cardiac ischemic injury needs to be

further explored.

Ischemia-reperfusion (I/R) liver injury

Hepatic I/R injury is usually associated with surgical

procedures, trauma, liver transplantation, or resection as a

consequence of interrupted blood supply to the liver, which leads

to liver dysfunction and failure, as well as multiple organ failure

(97, 98). Kupffer cells (KCs) and platelets were reported as two

main roles in the procedure (99–101). Nakata et al. revealed Pdpn

expression in the cytosol of hepatocytes in the post-ischemic liver

and KC depletion weakened the Pdpn expression, which suggested

that activated KCs regulate the expression of Pdpn in hepatocytes

after I/R without clear mechanisms (84). Moreover, the authors

demonstrated in the acute phase of hepatic I/R injury, the binding

of CLEC-2 on the cell surface of platelets to Pdpn in hepatocytes

activated platelets in the hepatic sinusoid (84). Therefore, the

crosstalk among podoplanin, KCs, and platelets in hepatic I/R

injury needs to be further studied (Table 1).

Conclusions and perspectives

Pdpn, as an important glyprotein, has multiple interacting

proteins in various tissues and organs, demonstrating its pleiotropic

functions, especially a role in thrombosis and inflammation.

Thrombosis and inflammation contribute to the pathogenesis

of thrombotic diseases, such as atherosclerosis, ischemic stroke,

venous thrombosis, acute kidney and liver ischemic injury, and

myocardial ischemia. Evidence showed that after ischemia, Pdpn

can be acquired over time by a heterogeneous cell population such

as SMCs, endothelial cells, astrocytes, pericytes, MSCs, telocytes,

and so on, which may not express Pdpn in normal conditions.

However, the exact mechanisms of Pdpn in such ischemic diseases

have not clearly been demonstrated. Pdpn in different cells plays

different roles such as thrombosis, inflammation, vascularization,

lymphagiogenesis, growth, and regeneration. However, many issues

remain to be elucidated further; for instance, cell/stage-specific

effects of Pdpn and according molecular mechanisms, and the

relevance of anti-Pdpn treatment on ischemic diseases, especially

ischemic stroke, venous thrombosis, and myocardial ischemia. The

solutions to these issues can provide a new target of treating

thrombotic diseases from bench to clinical translation.
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