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Background and purpose: Corpus callosum (CC) infarction is an extremely 
rare subtype of cerebral ischemic stroke, however, the symptoms of cognitive 
impairment often fail to attract early attention of patients, which seriously affects 
the long-term prognosis, such as high mortality, personality changes, mood 
disorders, psychotic reactions, financial burden and so on. This study seeks to 
develop and validate models for early predicting the risk of subjective cognitive 
decline (SCD) after CC infarction by machine learning (ML) algorithms.

Methods: This is a prospective study that enrolled 213 (only 3.7%) CC infarction 
patients from a nine-year cohort comprising 8,555 patients with acute ischemic 
stroke. Telephone follow-up surveys were carried out for the patients with definite 
diagnosis of CC infarction one-year after disease onset, and SCD was identified 
by Behavioral Risk Factor Surveillance System (BRFSS) questionnaire. Based on the 
significant features selected by the least absolute shrinkage and selection operator 
(LASSO), seven ML models including Extreme Gradient Boosting (XGBoost), 
Logistic Regression (LR), Light Gradient Boosting Machine (LightGBM), Adaptive 
Boosting (AdaBoost), Gaussian Naïve Bayes (GNB), Complement Naïve Bayes 
(CNB), and Support vector machine (SVM) were established and their predictive 
performances were compared by different metrics. Importantly, the SHapley 
Additive exPlanations (SHAP) was also utilized to examine internal behavior of the 
highest-performance ML classifier.

Results: The Logistic Regression (LR)-model performed better than other six 
ML-models in SCD predictability after the CC infarction, with the area under the 
receiver characteristic operator curve (AUC) of 77.1% in the validation set. Using 
LASSO and SHAP analysis, we found that infarction subregions of CC infarction, 
female, 3-month modified Rankin Scale (mRS) score, age, homocysteine, 
location of angiostenosis, neutrophil to lymphocyte ratio, pure CC infarction, and 
number of angiostenosis were the top-nine significant predictors in the order of 
importance for the output of LR-model. Meanwhile, we identified that infarction 
subregion of CC, female, 3-month mRS score and pure CC infarction were the 
factors which independently associated with the cognitive outcome.

Conclusion: Our study firstly demonstrated that the LR-model with 9 common 
variables has the best-performance to predict the risk of post-stroke SCD due 
to CC infarcton. Particularly, the combination of LR-model and SHAP-explainer 
could aid in achieving personalized risk prediction and be served as a decision-
making tool for early intervention since its poor long-term outcome.
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1. Introduction

The corpus callosum (CC) is the largest commissural bridge of 
white-matter fibers between bilateral hemispheres (1), accompanied 
by a unique anterior and posterior double circulation system and 
abundant collateral arteries (2). Because of the sufficient blood supply, 
CC infarction is extremely rare and accounts for barely 2.3–8.0% of 
cerebral ischemic stroke (3–5). Because of its unique physiological 
structure and function, the manifestations of CC infarction are 
variable and lacking of specificity. Due to these special and complex 
characteristics, misdiagnosis and delayed treatment are not 
uncommon for CC infarction (6). Interestingly, we previously found 
that, compared to general basal ganglia infarction, patients with CC 
infarction had lower National Institutes of Health Stroke Scale scores 
and better recovery at the time of discharge, while the one-year 
mortality is higher with poorer long-term prognosis (5). Cognitive 
impairment is one of the main causes of poor long-term prognosis in 
patients with CC cerebral infarction. Unfortunately, due to it’s occult 
exacerbation process, patients often do not pay enough attention to it 
in the early stage, and miss the optimal intervention period, resulting 
in irreversible cognitive impairment.

Subjective cognitive decline (SCD) is an individual’s self-report of 
cognitive decline and is nowadays thought to be a precursor to various 
common cognitive disorders in clinic, such as mild cognitive 
impairment (MCI) (7) and Alzheimer’s disease (AD) (8). Recent 
researches have revealed that compared with age-matched healthy 
controls, patients with SCD suffer a 4.5–6 times higher risk of 
developing into MCI or AD (9, 10). Compared to universally-known 
post-stroke cognitive impairment (PSCI), SCD places more emphasis 
on the patient’s subjective perceptions and timely feedback from 
caregivers, making it easier to identify and intervene early. Meanwhile, 
our, as well as others’ previous studies have proved that, white matter 
lesions (WMLs) are important pathological mechanisms for cognitive 
dysfunctions (5, 11–14). As an extremely rare subtype of stroke with 
prominent WMLs, CC infarction is likely to become a potential driver 
of SCD and other symptomatic cognitive decline. Therefore, aiming 
to restore brain health and cognitive abilities as long as possible, this 
at-risk group is recognized as an eligible target population for early 
intervention strategies (15, 16).

The role of physicians has always been to synthesize the data 
available to them to identify prognosis patterns that guide early 
intervention. Machine learning (ML) is a new rising technical 
foundation of artificial intelligence, which enables the computer to 
learn the rules hidden in the data automatically (17). Several studies 
have revealed that ML-based models are promising in predicting the 
diagnosis, prognosis or recurrence of ischemic stroke, what’s more, 
those models are also widely used in the field of psychology, 
biomechanics and so on (18–23). Nevertheless, it still lacks of 
ML-based evidence on SCD prediction after cerebral infarction. 
What’s more, the “black-box” character of ML-technique hinders 

clinicians to have a good understand of the predictive decision, 
namely failure in accountability (24). To this end, we proposed an 
interpretable strategy combining ML algorithm with SHapley Additive 
exPlanations (SHAP) to provide consistent and locally accurate 
attribution values for each feature within each prediction model. It’s 
calculated by comparing the predicting discrepancy in all possible 
combinations containing and withholding each feature and provide a 
unique report individually (25).

Here, with the largest sample of CC infarction to date, this is an 
exploratory study that for the first time emphasizes the clinical 
feasibility to individually predict the occurrence of one-year SCD 
after CC infarction by using ML methods. We also attempt to apply 
SHAP-value for explaining the importance and influence of each 
predictor contributing to the optimal model’s outcome. We expect 
this ML-derived early warning system and SHAP-based framework 
of interpretation could help clinicians to better counsel patients, 
conduct targeted follow-up and determine personalized 
interventional measures.

2. Methods

2.1. Participants

The design of this study is presented in Figure 1. A total of 8,555 
ischemic stroke patients were collected from Shanghai Changhai 
Hospital between July 2012 and June 2021. Among them, 314 (3.7%) 
patients with acute CC infarction were enrolled. The exclusion criteria 
were as follows: (i) age under 30 or above 80 years old, (ii) cognitive 
impairment precedes CC infarction, (iii) follow-up period was less 
than 1 year, or loss to follow-up, (iv) serious medical complications, 
(v) incomplete neuroimaging materials, (vi) acceptance of 
thrombolytic therapy or interventional therapy, and (vii) failure to 
sign written informed consent. Ultimately, 213 patients with acute CC 
infarction were included for final analysis. This study was approved by 
the Changhai Hospital Ethics Committee (NO. CHEC2021-1021).

2.2. Clinical and imaging assessment

Basic clinical and imaging information of enrolled patients were 
obtained from Electronic Medical Record (EMR) management 
system. A list of these variables was shown in Supplementary Table S1, 
including: demographic characteristics (age, sex, body mass 
index[BMI]), vascular risk factors (hypertension, diabetes mellitus, 
prior stroke or transient ischemic attack, heart diseases, smoking, 
alcoholism), stroke severity on admission (time from onset to hospital, 
NIH stroke scale [NIHSS] scores), laboratory tests (alanine 
transaminase [ALT], low-density lipoprotein [LDL], high-density 
lipoprotein [HDL], cholestenone, triglyceride, creatine, urea, uric acid, 
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Glucose [Glu]), (thyroid-stimulating hormone [TSH], 
triiodothyronine [T3], thyroxine [T4], erythrocyte, leukocyte, 
neutrophil to lymphocyte ratio [NLR], hemoglobin, thrombocyte, 
erythrocyte sedimentation rate [ESR], C-reactive protein [CRP], 
homocysteine [Hcy], glycosylated hemoglobin [HbA1c], fibrinogen 
[FIB], D-dimer), imaging examination assessment (pure CC 
infarction, infarction subregion of CC, other infarction areas, location 
of angiostenosis, number of angiostenosis, extracranial carotid plague, 
TOAST subtype (26)), functional status (Modified Rankin scale 
[mRS] at 3-month), secondary prevention and recurrence 
(rehabilitation treatment, regular secondary prevention and 
recurrent stroke).

In detail, rehabilitation here referred to a series of standardized 
rehabilitation therapy obtained in rehabilitation hospitals, which 
mainly focuses on the motor and language function. Moreover, it also 
included lifestyle modification and taking medication exactly as 
prescribed at Discharge Notes, as well as additional carotid surgery 
or stenting, repairment for closure of patent foramen ovale, and 
surgery for intracranial or vertebral stenosis if necessary (27).

Additionally, the corresponding neuroimaging evidences were 
collected from both (i) MRI (Magneton Impact 3.0 T, Siemens, Berlin, 
Germany), including T1-imaging, T2-imaging and diffusion-
weighted imaging (DWI), and (ii) MR-angiography (MAGNETOM 
Skyra 3.0 T, Siemens) or CT-angiography (Aquillion One, Toshiba, 
Tokyo, Japan). As shown in Figure 2, the patients could be divided 
into 2 groups according to DWI patterns: pure callosal infarcts and 
complex callosal infarcts. The former was further subdivided into 
following subgroups: (i) Pure genu infarction of the corpus callosum, 
(ii) Pure body infarction of the corpus callosum, and (iii) Pure 

splenium infarction of the corpus callosum according to the 
subregions of CC.

2.3. Cognitive dysfunction definition

Telephone follow-up surveys were carried out for the patients with 
definite diagnosis of CC infarction one-year after onset. According to 
the cognitive decline module of the Behavioral Risk Factor 
Surveillance System (BRFSS), which is the largest ongonging health 
survey system in the world (28). SCD was identified by the question 
of BRFSS, “During the past 12 months, have you  experienced 
confusion or memory loss that is happening more often or is getting 
worse?” (29–31). If respondents had a clear cognitive complaint 
compared with the self-perception before stroke, they were classified 
as suffering from post-stroke SCD, otherwise they were distinguished 
as non-SCD. Additionally, there were five detailed questions of 
aggravating confusion or memory decline mentioned in the BRFSS 
questionnaire, including: (1) the frequency of giving up daily 
household activities or common chores, (2) the frequency of 
requirement of assistance with these daily activities, (3) the frequency 
of getting help, just as you  wanted, (4) the frequency of work, 
volunteer, or social activities disturbed by the confusion or memory 
disorder, and (5) whether having sought medical attention for this (29, 
31). These SCD-related outcomes evaluated by a five-point scale 
(Always, usually, sometimes, rarely, never) were dichotomized to 
determine if these outcomes were challenge (assigned as 1) vs.if they 
rarely or never happened (assigned as 0) (28). Consequently, the 
patients would better realize whether they had problems with 

FIGURE 1

Schematic representation of the study design and modeling workflow.
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post-stroke SCD and SCD related functional impairment through our 
telephone survey.

2.4. Machine learning

2.4.1. Features selection
Least absolute shrinkage and selection operator (LASSO) was 

used to select variables among high-dimensional data based on the 
penalty method. The originally small coefficients were compressed to 
0 after compressing (32). Thereafter, regarded as non-significant 
variables, the corresponding variables of these coefficients were 
directly discarded (33). LASSO regression is also usually characterized 
by variable selection and complexity adjustment for construction of 
ML models while avoiding overfitting. However, the most ML 
methods could not process data with missing values, so we imputed 
the dataset by KNN before LASSO regression. In our study, this binary 

logistic regression (LASSO) model is helpful to screen out significant 
predictors of SCD after acute CC infarction.

2.4.2. Machine learning models
Then, the dataset was randomly divided into training set and 

validation set. As in most cases, the training set accounted for 70% and 
the validation set accounted for 30% (34). Seven comprehensive and 
up-to-date ML algorithms were thereafter used to develop the 
predictive models, including Extreme Gradient Boosting (XGBoost), 
Logistic Regression (LR), Light Gradient Boosting Machine 
(LightGBM), Adaptive Boosting (AdaBoost), Gaussian Naïve Bayes 
(GNB), Complement Naïve Bayes (CNB), and Support vector machine 
(SVM). For each ML-based model, five-fold cross-validation was 
performed to evaluate the generalization ability (35), and the optimal 
hyperparameters were selected subsequently. Additionally, the 
following indicators are calculated to comprehensively evaluate the 
performance of different models: area under the curve (AUC)-value, 

FIGURE 2

Representative images of pure and complex callosal infarction. (A) Complex callosal infarction. (B) Pure genu infarction of the corpus callosum. 
(C) Pure body infarction of the corpus callosum. (D) Pure splenium infarction of the corpus callosum.

https://doi.org/10.3389/fneur.2023.1123607
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org


Xu et al.� 10.3389/fneur.2023.1123607

Frontiers in Neurology 05 frontiersin.org

accuracy, sensitivity, specificity, positive predictive value (PPV), 
negative predictive value (NPV), and F1 scores.

2.4.3. Personalized interpretation
Specifically, we further utilized a novel approach to explain the 

output of the highest-performing ML model, namely Shapley Additive 
explanation (SHAP), rooted in Shapley value. Calculated the marginal 
contribution of a feature when it is added to the “black-box” model, 
then the SHAP value takes the average value considering the different 
marginal contribution of the feature in all permutations of individuals 
(36). A feature with a positive SHAP value improves the output value, 
and those larger numerical values make greater contributions (37). In 
our study, the SHAP summary plot, the importance ranking, and the 
SHAP dependence plot of the relevant covariates were used to improve 
the interpretability. SHAP explainer was suitable to visualize the 
black-box ML algorithms on the basis of the cooperative game theory 
(36). The advantage of SHAP method is be able to explain how much 
and in which direction each predictor influences the optimal 
ML-model’s output. It concluded that, the core idea of SHAP-explainer 
is to calculate the marginal contribution of features to model output, 
and then to explain the “black-box” model from global and local 
levels (38).

2.5. Data preprocessing

Firstly, indicators including ESR, CRP, TSH, T3, T4 were excluded 
because of the high missing ratio (over 30% (39), respectively). 
Secondly, categorical variables were encoded into dummy variables, 
and the details were as follows: (i) TOAST subtypes were converted 
into range 1–5 (LAA = 1, CE = 2, SAO = 3, ODC = 4, UND = 5), (ii) 
Infarction region of CC were divided into range 1–5 (rostrum = 1, 
genu = 2, body = 3, splenium = 4, at least two of rostrum, genu, body 
and splenium = 5), and (iii) Other infarction areas were turned into 
range 0–5 (none = 0, frontal lobe = 1, parietal lobe = 2, temporal 
lobe = 3, occipital lobe = 4, others = 5), (iv) Location of angiostenosis 
were encoded into range 0–4 (none = 0, ICA = 1, VBA = 2, both of ICA 
and VBA = 3), etc. After that, remaining indicators were processed by 
K-nearest-neighbor (KNN) analysis to impute their missing values 
(40). In the end, the Borderline-1 SMOTE (BLSMOTE) algorithm was 
also adopted to balance the samples between the SCD group and 
non-SCD group in an absolute fairness (for 50%, respectively), which 
would improve the reliability or classifying performance of the 
ML-models (41).

2.6. Statistical analysis

Continuous data were uniformly described as mean (SD) or 
median (IQR), while categorical data were presented as n (%). Baseline 
characteristics were compared between the SCD group and non-SCD 
group after CC infarction by Chi-square test (categorical variables), 
two-sample t-test (continuous variables with symmetric distribution), 
Mann–Whitney U test (continuous variables with asymmetric 
distribution), or Welch’s t-test (continuous variables with heterogeneity 
of variance), as appropriate. Then, variables with a relatively 
remarkable (p < 0.1) association with cognitive outcome in univariable 
analysis were further analyzed by multivariable analysis with a 
traditional forward stepwise selection. All statistical analyzes were 

performed using programming language R package (version 3.6.3, 
https://cran.r-project.org/bin/windows/base/) and all ML-relevant 
workflows were performed using python (version 3.7, https://www.
python.org/getit/); p < 0.05 indicates statistical significance.

3. Results

3.1. Demographics

The baseline demographical, clinical, biochemical and 
neuroimaging characteristics of 213 patients (75 female) with acute 
CC infarction were summarized in Supplementary Table S1. The 
average age at baseline was 63 [55, 69] years. After 1 year follow-up 
period, 110 subjects developed into post-stroke SCD, while the 
remaining were no-complaint (NC) patients. Compared to NC 
participants, SCD patients tended to be slightly older (63 [58, 71] vs. 
61 [51, 68] years, p = 0.012), had a higher percentage of female (45.4% 
vs. 24.2%, p = 0.001), and higher mRS scores at 3 month (1 [1–3] vs. 1 
[0–2], p <0.001). Pure CC infarction seems to be more likely to cause 
post-stroke SCD (p = 0.030). Meanwhile, the group with more than 
two subregions involvement of CC infarction were especially 
vulnerable to post-stroke SCD (p = 0.001). Furthermore, patients with 
post-stroke SCD were prone to have multiple angiostenosis with both 
of internal carotid artery (ICA) and vertebral basilar artery (VBA) 
involved (p = 0.009).

3.2. Multivariable analysis of risk factors

According to traditional forward selection, we found that female 
(OR: 3.344; 95% CI: 1.656–6.998; p = 0.001), 3-month mRS scores 
(OR: 1.380; 95% CI: 1.109–1.736; p = 0.005), pure CC infarction (OR: 
4.823; 95% CI: 1.531–17.919; p = 0.011) were the eligible independent 
risk factors for SCD after acute CC infarction (Table 1). Compared 
with the patients with acute infarction of the genu, patients with 
infarction of the splenium but not rostrum or body were more likely 
to have cognitive deterioration during follow-up (OR: 3.058; 95% CI: 
1.221–8.183; p = 0.020). Furthermore, the patients with at least two 
subregions of CC infarction were more susceptible to post-stroke SCD 
than those only with lesions in the genu (OR: 7.370; 95% CI: 2.649–
22.124; p < 0.001).

3.3. Performance of machine learning 
models

Based on the predictors selected by LASSO in the supplementary 
materials (Supplementary Figure S1), different artificial intelligence 
(AI) -derived models were constructed (Table 2). According to the 
metrics, the AUC and accuracy of the LR model were obviously better 
than those of the other six models, respectively. Therefore, the logistic 
model was selected as the most prominent one for predicting SCD 
after acute CC infarction, which achieved an AUC of 0.771 (±0.042) 
and accuracy of 0.703 (±0.050) in the validation set. The ROC-curves 
and Forest map of AUC values for the LR and the other models were 
shown in Figure 3.

Moreover, we calculated the contribution of each predictor to LR 
model by SHAP algorithm, which can simultaneously reveal the 

https://doi.org/10.3389/fneur.2023.1123607
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
https://cran.r-project.org/bin/windows/base/
https://www.python.org/getit/
https://www.python.org/getit/


Xu et al.� 10.3389/fneur.2023.1123607

Frontiers in Neurology 06 frontiersin.org

power and direction of these factors. Thereafter, features were ranked 
on the basis of the absolute SHAP values over all samples (Figure 4A). 
As is depicted in Figure 4B, high values of infarction subregions of CC, 
female, 3-month mRS score and pure CC infarction have positive 
impact on the output of LR model, indicating the acceleration of 
cognitive deficit after acute CC infarction. Importantly also, age, HCY, 
NLR, location and number of angiostenosis were the other top-9 
predictors for post-stroke SCD based on Shapely value.

SHAP model is a relatively all-powerful ML-model interpretation 
method, which can also be used for personalized interpretation. That 
means, individual patient predictions can be extracted to visualize 
which features played a role in their cognitive decline and what their 
feature values were. For instance, Figure 4C exhibits a subject with a 
predicted possibility of 74% for SCD after CC infarction by LR-model. 
The plot explains that location of angiostenosis = 3.0 (both of ICA and 
VBA), infarction subregion of CC = 5.0 (at least two of rostrum, genu, 
body, and splenium) and female = 1 (female) are the most remarkable 
values contributing to the increased chance of cognitive disorder, 

while 3-month mRS score = 0 is just the opposite. Ultimately, the result 
indicated a high-risk of post-stroke SCD for this subject, and the 
follow-up result confirmed cognitive impairment outcome, which 
means true positive. Similarly, Figure  4D exhibits a case with a 
predicted possibility of 37% for post-stroke SCD, in other words, that 
means a possibility of 63% for non-SCD after CC infarction. The most 
essential positive contributors towards adverse cognitive outcome are 
NLR = 1.9 and HCY = 12.3. Inversely, the negative contributors involve 
location of angiostenosis = 0.0 (none) and age = 62.0. Therefore, the 
LR-based algorithm’s result was low-risk of SCD after CC infarction 
for this subject, and the actual outcome was identified as non-cognitive 
impairment (true negative).

4. Discussion

The presence of SCD is known to be associated with a high risk 
for objective cognitive decline and even clinical progression to 
symptomatic disease stages (42, 43). Effective intervention to delay 
or prevent pathologic cognitive decline may best to targeted at the 
earliest symptomatice disease stage, such as SCD, in which cognitive 
function is still relatively preserved (44). This is an exploratory study 
that for the first time focuses on post-stroke SCD of rare CC 
infarction via an interpretable machine learning-derived early 
warning strategy.

After multivariate adjustment for potential confonders, we found 
that female, 3-month mRS scores, pure CC infarction and infarction 
subregion of CC independently correlated with the incidence of 
SCD. Interestingly, our previous study has reported that males had a 
higher incidence of CC infarction (5), while in the current cohort, 
we found females were more susceptible to SCD after this specific 
infarction. Reasons for this phenomenon may include: (1) females in 
the present study had an older onset-age of CC infarction than males 
(64 [58,71] vs. 62 [55,69]), (2) women are usually considered to have 
a lager corpus callosum volume (45–47), indicating that callosum may 
play a more important role in maintaining brain function of females, 
(3) women tend to have higher cortisol but lower estradiol levels in 
menopausal period (48). Indeed, scholars have well-clarified that 
higher serum cortisol is correlated with more severe microstructural 
WMLs, particularly in CC, while estrogen are thought to promote the 
remyelination, and the latter in turn is strongly associated with general 
cognitive capacity (49–51). Meanwhile, a strong interaction between 
serum cortisol and cerebral atrophy among females, but not males was 
also identified (52). Richa et al. (53) once reported that the MoCA 
scores (between 4–8 weeks post-infarct) were obviously correlated to 

TABLE 2  Comparison of predictive effects of different machine learning algorithms.

Models AUC Accuracy Sensitivity Specificity PPV NPV F1 score

XGBoost 0.722 (0.035) 0.618 (0.024) 0.722 (0.100) 0.717 (0.120) 0.704 (0.068) 0.578 (0.022) 0.705 (0.045)

LR 0.771 (0.042) 0.703 (0.050) 0.763 (0.094) 0.730 (0.108) 0.661 (0.077) 0.765 (0.044) 0.703 (0.064)

LightGBM 0.655 (0.066) 0.615 (0.093) 0.757 (0.145) 0.559 (0.230) 0.644 (0.104) 0.604 (0.105) 0.676 (0.042)

AdaBoost 0.691 (0.059) 0.648 (0.053) 0.669 (0.070) 0.688 (0.095) 0.628 (0.087) 0.668 (0.090) 0.642 (0.051)

GNB 0.752 (0.047) 0.700 (0.045) 0.701 (0.085) 0.768 (0.087) 0.722 (0.062) 0.683 (0.062) 0.709 (0.062)

CNB 0.668 (0.044) 0.573 (0.051) 0.711 (0.185) 0.627 (0.187) 0.616 (0.051) 0.562 (0.072) 0.641 (0.079)

SVM 0.647 (0.042) 0.594 (0.026) 0.774 (0.175) 0.496 (0.204) 0.588 (0.048) 0.609 (0.069) 0.660 (0.094)

TABLE 1  Multivariate logistic regression for the risk factors of post-stroke 
SCD after callosal infarction.

Variables Odds ratio 
(95% CI)

p value

Age, year 1.024 (0.995–1.055) 0.114

Female (yes vs. no) 3.344 (1.656–6.998) 0.001

Uric acid, umol/L 0.999 (0.997–1.001) 0.497

Hypertension (yes vs. no) 1.266 (0.615–2.619) 0.522

3-month mRS scores 1.380 (1.109–1.736) 0.005

Pure CC infarction (yes vs. no) 4.823 (1.531–17.919) 0.011

Number of angiostenosis

none 1 (ref)

Seldom 0.537 (0.169–1.662) 0.284

Multiple 1.711 (0.723–4.141) 0.225

Infarction subregion of CC

Genu 1 (ref)

Body 3.347 (0.747–15.754) 0.116

Splenium 3.058 (1.221–8.183) 0.020

At least two of above subregions 7.370 (2.649–22.124) <0.001

mRS, Modified Rankin scale; CC, Corpus callosum. In this table, the term of Multiple means 
the number of narrowed or occluded vessels is greater than two, and the term of Seldom 
means the level was between none and multiple.
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mRS scores (at the same follow-up points) among the stroke patients. 
Then, our results showed that 3-month mRS scores were related to 
longer-time cognitive outcome due to CC infarction.

The structure of CC can be divided into four classical parts in the 
order from front to back: rostrum, genu, body and splenium (54). 
Consistent with previous reports (5), we found that the incidence of 
‘pure’ CC infarction was rare, while the mental disturbance and 
cognitive dysfunction were more prominent than ‘complex’ CC 
infarction. The mechanisms of the discrepancy are still unclear, 
perhaps the atypical symptoms and insufficient distinguishment of 
MRI scan made it difficult to draw sufficient attention and appropriate 
prevention of ‘pure’ CC infarction. Meanwhile, we reported for the 
first time that acute infarction in the splenium had a higher tendency 
of cognitive decline than that in the genu. As the most vulnerable area 
of the CC infarction, the splenium is more vulnerable to insufficient 
blood supply, and the splenium lesions were known to be related with 
cognitive disorder, aphasia, homonymous hemianopsia, alien hand 
syndrome and so on (54). Therefore, we believe that the splenium 
plays an important role in the high incidence of SCD caused by CC 
infarction to some extent. What’s more, patients with at least two 
subregions of CC infarction were more susceptible to SCD than those 
only had lesions in the genu. This result is well understood given that 
the more structural damage CC is, the more disrupted the fiber 
connections and information transmission between the bilateral 
hemispheres. Besides, evidence showing that the infarction in body 
or splenium of CC could lead to disturbed executive capacity, 
attention and calculation (55), which may provide a side note for 
our viewpoint.

Besides multivariable analysis, LASSO analysis was also adopted 
to select potential risk predictors by eliminating irrelevant features. It 
is universally accepted that age was a risk factor of cognition damage 
after various types of ischemic stroke (56). Except of age, evidence 
linking high HCY(HHCY) and cognitive decline is profuse (57). It is 
known that, HHCY is not only associated with WMLs, but also the 
progression of WMLs (58). In the meantime, extensive intracranial 
vascular stenosis is another promotor for SCD after CC infarction. 

Cerebral angiostenosis/occlusion has already been proved to induce 
hypoperfusion and impaired executive dysfunctions, such as working 
memory, attention, cognitive flexibility, planning, thought 
organization and implementation (59). This phenomenon indicates 
that appropriate increase of cerebral blood flow may help prevent 
post-stroke SCD. Interestingly, NLR is often known as a risk factor for 
PSCI (60). However, we found that NLR is negatively associated with 
self-report cognitive decline, indicating that NLR is likely to act as a 
compensatory neuroprotective response in the early stage of CC 
infarction. Biological mechanisms between NLR and risk of post-
stroke SCD have not been explored before and warrants further 
clarifications, especially in the condition of CC infarction.

In our study, the combination of LASSO regression and ML-based 
models was beneficial to identify the optimal configuration to predict 
whether it is vulnerable to develop SCD after CC infarction or not. 
Then, the seven ML algorithms were assessed by several metrics, 
comprising AUC-value, accuracy, sensitivity, specificity, positive 
predictive value (PPV), negative predictive value (NPV), as well as F1 
scores. Apart from global explanation, the well-accepted local 
explanation, SHAP was also implemented to interpret how a complex 
black-box ML model makes a prediction (61). By incorporating the 
individualized patient profile, the level of contribution and 
directionality of specific input features were visualized (62). As shown 
in the Table 1, the LR model seemed to be  the best-performance 
classifier with the highest scores of AUC- value (77.1%), accuracy 
(70.3%), sensitivity (76.3%) and NPV (76.5%). In addition, acceptable 
values of specificity, PPV and F1 score (all above 65.0%) were achieved 
in the validation set. Taken together, we selected the LR model as the 
optimal algorithm with the best generalization ability. At the same 
time, we suggested that we should treat this problem dialectically and 
choose appropriate predictive classifier according to different 
clinical needs.

The strength of our research is that the cohort has the largest 
sample of CC infarction in the world, and the datasets are 
non-synthetic, which is more likely to be objective and effective as a 
screening tool. Unlike studies focused on each risk factor individually 

FIGURE 3

The ROC-curves and Forest map of AUC values for seven models. (A) The ROC curves for the different machine learning algorithms, and LR model 
yielded the greatest AUC among all the models. (B) The Forest map of AUC values of the seven models. The dots mean the AUC-value of each model, 
and the confidence intervals are depicted by the vertical lines.
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FIGURE 4

Matrix plots of the top nine important features and the SHAP plots for two selected patients. (A) The SHAP summary plot of LR model. Each dot 
represents a SHAP-value for a feature. The red color means high value, while the blue means low. The positive SHAP-value represents an increased risk 
of post-stroke SCD for the output of LR model, and vice versa. (B) The histogram of mean absolute SHAp values of top-nine important features of LR 
model. The longer the bar, the larger impact the feature has on the output. (C,D) SHAP force plots for two selected patients. Feature values colored red 
are pushing the predictive outcome towards cognitive impairment, while feature values colored blue are just the opposite. The associated Shapley 
value of each feature is visualized by the length of an arrow, and the longer of the arrow, the more significant the feature value is.
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or its pathophysiological interpretation (63, 64), we  aimed to 
encompass a large combination of variables from real-world clinical 
situations once. The variables we  used, including demographics, 
laboratory and radiological findings were all easily accessible for 
clinicians, which could assist with the early prediction and prevention 
for suspected post-stroke SCD. Additionally, an interpretable and 
explainable ML model was created with the help of SHAP-explainer, 
promoting to make individualized clinical decisions.

There are some limitations that still needed to be ironed out in our 
study. Firstly, although this investigation had the maximal population 
of patients with acute CC infarction, the sample size was still needed 
to be  added. Secondly, we  did not exploit the different cognitive 
abilities separately, such as orientation, calculation, executive abilities, 
long-term and short-term memory and attention, etc. Thirdly, the 
follow-up period is not long enough to verify the proportion of 
patients with SCD who eventually converted to PSCI. Therefore, muti-
center prospective cohorts with detailed cognitive domains 
impairment are needed in the future.

5. Conclusion

In conclusion, the present study screened out 9 key features 
associated with post-SCD and developed a LR-model which can 
improve the prediction accuracy of one-year SCD after CC infarction. 
What’s more, the individual report generated by SHAP facilitate the 
early implementation of primary prevention measures. Based on these 
techniques, we are even expected to continue to individually predict 
the long-term effects of different clinical drugs on cognitive 
impairment to shape a brighter future for patients with CC infarction.
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