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Nucleoporin (NUP) 85 is a member of the Y-complex of nuclear pore complex

(NPC) that is key for nucleocytoplasmic transport function, regulation of mitosis,

transcription, and chromatin organization. Mutations in various nucleoporin genes

have been linked to several human diseases. Among them, NUP85 was linked

to childhood-onset steroid-resistant nephrotic syndrome (SRNS) in four a�ected

individuals with intellectual disability but no microcephaly. Recently, we broaden the

phenotype spectrum of NUP85-associated disease by reporting NUP85 variants in

two unrelated individuals with primary autosomal recessive microcephaly (MCPH)

and Seckel syndrome (SCKS) spectrum disorders (MCPH-SCKS) without SRNS. In this

study, we report compound heterozygous NUP85 variants in an index patient with

only MCPH phenotype, but neither Seckel syndrome nor SRNS was reported. We

showed that the identified missense variants cause reduced cell viability of patient-

derived fibroblasts. Structural simulation analysis of double variants is predicted

to alter the structure of NUP85 and its interactions with neighboring NUPs. Our

study thereby further expands the phenotypic spectrum of NUP85-associated human

disorder and emphasizes the crucial role of NUP85 in the brain development

and function.
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Introduction

Nucleoporin (NUP) 85 is a member of the Y-complex of nuclear pore complex (NPC) that

is key for nucleocytoplasmic transport function (1). Along with NUP85, other members of the

Y-complex (NUP160, NUP133, NUP107, NUP96, NUP43, NUP37, SEH1, and SEC13) are also

known to regulate mitosis, transcription, and chromatin organization (2, 3). Downregulation

of NUP107-160 subcomplex members resulted in defective cytokinesis, compromised

microtubule structures, altered cytoskeletal dynamics, and impaired chromosome segregation

and differentiation (4–6). Variants in several genes encoding NUP components have been

linked to the spectrum of human disease (Supplementary Table S1, Supplementary material)

(7). NUP85 was initially linked to childhood-onset steroid-resistant nephrotic syndrome in
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four affected individuals (SRNS) (MIM∗618176) with intellectual

disability (ID) but neither microcephaly nor brain malformation

(4). Recently, we reported biallelic NUP85 variants in two unrelated

individuals with primary autosomal recessive microcephaly (MCPH)

and Seckel syndrome (SCKS) spectrum disorders (MCPH-SCKS)

without SRNS and thereby broaden the phenotype spectrum

of NUP85-associated diseases (8). Here, we report compound

heterozygous NUP85 variants in a child with MCPH, but without the

short stature seen in Seckel syndrome.

Materials and methods

Patients

Written informed consent was obtained from the parents of

the index patient for participation in the study, molecular genetic

analysis, and publication. The human study was approved by the local

ethics committees of the DEFIDIAG project (the pilot project of the

Plan France Genomique 2025).

Genetic analysis

The whole genome sequencing trio analysis was carried out

within the framework of the DEFIDIAG project (the pilot project of

the Plan France Genomique 2025) (Supplementary material).

Fibroblast culture

Fibroblast culture was established using the explant technique

from the index patient and the unrelated controls were cultured

in high-glucose Dulbecco’s modified Eagle’s medium (DMEM

GlutaMAX supplement pyruvate, Gibco, Paisley, Scotland) with

10% fetal bovine serum (FBS, Gibco, Paisley, Scotland), and 1%

penicillin/streptomycin (P/S, Gibco, Grand Island, the USA) at 37◦C.

Western blot

Protein extraction and Western blots were performed in

triplicates with the established methods reported previously (9). The

antibodies used in this study were anti-NUP85 (Proteintech, rabbit)

and anti-actin (Millipore, mouse).

Cell viability assay

Fibroblasts of the patient and controls were seeded at a density of

103 cells/well in 96-well plates. Cell viability (fluorimetric CellTiter-

Blue Cell Viability Assay R©, Promega, Madison, the USA) was

performed according to the manufacturer’s instructions as described

previously (9), readings were measured using a SpectraMax iD3

plate reader (Molecular devices, San Jose, the USA), and data were

analyzed using GraphPad Prism 6 Software (version 6.07) (GraphPad

Software Inc., La Jolla, CA, the USA).

Structural analysis of NUP85

The PDB has been searched for human Nup85 wild-type

structure (sequence Q9BW27 from UniProt). This search resulted

in the identification of the currently best resolved (12A) electron

microscopy structure of the human nuclear pore complex (PDB

id 7R5K) with Nup85 being annotated as entity number 18. The

atomic model of Nup85 has been extracted from that coordinates

file and subjected to homology modeling of its double mutant

(Leu152Ile/Leu163Ile) structure using the comparative modeling

approach as implemented in the ROSETTA package (10). In

order to more accurately model the bulkier Ile residues located

in a crowded environment, a short fragment, namely, region

151–164, accommodating both mutated residues (Leu152Ile and

Leu163Ile) has been deleted and “de novo” remodeled using Rosetta’s

loop building algorithms. Fragment libraries required for protein

structure prediction have been obtained from the Robetta server

(http://robetta.bakerlab.org). Over 1,000 homologymodels have been

generated, which have been assessed based on the Rosetta energy

score. The model with the lowest (best) score has been selected as

the homology model for further analysis. The contacts of the residues

152 and 163 either in wild type or double mutant were analyzed using

Arpeggio under standard settings (11). Structural interpretation of

either Nup85 alone or in a complex within the NPC using PDBid:

7r5k, 7tbl, and 7peq were performed (12–14). The figures were

generated using PyMOL (Schrödinger LLC).

Results

The index patient was recruited as part of the DEFIDIAG Study

Group. The index patient (II.2) was a 3.6-year-old boy born at term as

a second child to non-consanguineous parents without complications

(Figures 1A, B). His body weight and length were normal at

birth [2,740 g (3rd centile) and 49 cm (10th centile)]. Primary

microcephaly was already severe at birth with the occipitofrontal

head circumference (OFC) of 31 cm [−3 standard deviations (SD),

<3rd centile] (Supplementary Figure S1, Supplementary material)

(Table 1). At the age of 3 years, the OFC was 46 cm (<-3 SD),

while the weight (11 kg, −2 SD) and height (86 cm, −1 SD)

were normal (Supplementary Figure S1). The boy displayed facial

dysmorphism (almond-shaped eyes, simplified ears, short philtrum)

and Pes adductus (Figure 1B). He had a global developmental delay

with a pronounced speech disorder. He could not speak until the

age of 2 years. He was able to say disyllabic words starting at 2

years and 50 words at 3.6 years of age without the proper frame

of the sentences. Psychomotor evaluation at 22 months showed −4

SD for posturomotor and locomotor scores and a −6 SD for grip

and visuomotor coordination score. He communicated preferably

through eye contact and pointing at objects. Motor milestones were

normal with free ambulation at 17 months of age. Fine motor

skills were delayed with pincer grip at 14 months. He displayed

hyperactivity, repetitive behavior, a frustration intolerance, and

hetero-aggressive behavior. He is really selective about food. An

ophthalmological examination showed esophoria and astigmatism

at the last follow-up. Cranial MRI at 1.4 years of age revealed

reduced global brain volume and delayed myelination (Figure 1C).

Electroencephalograph data were normal. He has a sleeping disorder

with a short night span and multiple awakenings, despite the intake
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TABLE 1 Clinical features of individuals with NUP85mutations.

Characteristics and
symptoms

Index
patient

Patient 1
(P1)a

Patient 2
(P2)a

Patient 3
(A5195-22A)b

Patient 4
(A3259-21)b

Patient 5
(NCR3227)b

Patient 6
(NCR3310)b

NUP85 variant

(NM_024844.5)

c.454C > A,

c.487C > A

c.932G > A c.1109A > G,

c.1589T > C

c.1430C > T c.1933C > T c.405+ 1G > A c.1741G > C

Parents consanguinity – + – + – – –

Sex Male Female Female Female Male Female Male

Age at last assessment 3.6 years 9 years 27 GW 8 years 11 years 7 years 4 years

Age at onset birth birth prenatal 8 years 11 years 7 years 4 years

Primary microcephaly + + + NC NC NC NC

Intrauterine growth

retardation

– + – NC NC NC NC

Short stature + + – + – – +

Dystrophy – + NC NC NC NC

Upslanted palpebral fissures – + – NC NC NC NC

Short philtrum + + – NC NC NC NC

High nasal bridge – + – NC NC NC NC

Reduced vision – + Unknown NC NC NC NC

Optic nerve atrophy – + Unknown NC NC NC NC

Astigmatism + + Unknown NC NC NC NC

Esophoria + + Unknown NC NC NC NC

Long, skinny finger – – NC NC NC NC

Syndactyly – + – NC NC NC NC

Pes adductus + + – NC NC NC NC

Epilepsy – + N/A NC NC NC NC

Intellectual disability,

moderate

+ + N/A – – + +

Delayed speech and language

development

+ + N/A NC NC NC NC

SRNS – – N/A + + + +

Muscular hypotonia + + N/A NC NC NC NC

Cranial MRI abnormalities + – + – – – –

Abnormality of vision evoked

potentials

– – N/A NC NC NC NC

GW, weeks of gestation; MRI, magnetic resonance imaging; SRNS, steroid-resistant nephrotic syndrome;+, yes; –, no; NC, not commented; N/A, not applicable.
aRavindran et al. (8).
bBraun et al. (4).

of melatonin. He displayed abnormal movement during sleep. He

started mainstream school part time with a specialized classroom

assistant and made constant progress.

To identify the underlying genetic cause of the disease phenotype,

we performed the whole genome sequencing (WGS) in the index

family and identified compound heterozygous missense mutations

in the NUP85 gene (NM_024844.5) in the index patient: c.454C

> A, g.73211897C > A (inherited from mother) and c.487C > A,

g.73214291C > A (inherited from father) (Figure 1D). The variant

(c.454C > A) has been reported 51 times in heterozygosity in

gnomAD (v2.1.1) but has not been reported in homozygosity, while

the variant (c.487C > A) has not yet been reported in gnomAD

(v2.1.1) and 1,000 Genome. Both variants are predicted to be disease-

causative by MutationTaster (www.mutationtaster.org). The CADD

phred, SIFT, Polyphen 2, and ClinPred scores for variant c.454C

> A were 22.60, 0.093, 0.044, and 0.064 and for variant c.487C

> A were 23.40, 0.008, 0.83, and 0.776, respectively. Both the

mutations lie in a highly conserved region of the NUP85 protein

leading to an exchange of leucine to isoleucine (p.L152I and p.L163I)

(NP_079120.1) (Figure 1E). No other variants were identified that

met the filtration criteria in the WGS analysis. Western blot analysis

on patient-derived fibroblasts revealed the unaltered levels of NUP85

protein between controls and patient samples, indicating the presence

of mutant protein (Figures 1F, G) (n = 3, one-way ANOVA). Cell
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FIGURE 1

Phenotype of index patient with compound heterozygous NUP85 mutation. (A) Pedigree. (B) Pictures of a�ected individual (II.2). (C) MRI images of the

head (sagittal) T2 images of II.2 shows reduced brain volume. (D) Representation of identified compound heterozygous variants by whole genome

sequencing in the NUP85 cDNA c.454C > A in exon 6 (maternally inherited) and c.487C > A in exon 7 (paternally inherited) and NUP85 wild-type protein

(p.L152I, p.L163I). (E) Mutations lie in the highly conserved region of the NUP85 protein across species. (F) Unchanged levels of total NUP85 protein in

II.2-derived fibroblasts compared to controls [NUP85 (75kDa), actin (43kDa) (loading control)] (n = 3, one-way ANOVA, Tukey’s multiple comparison test,

p = 0.2973). (H) Cell viability in II.2-patient derived fibroblasts is significantly reduced compared to controls (n=8, one-way ANOVA, Tukey’s multiple

comparison test, ****p < 0.0001). (I) Structural overlay of human NUP85 based on PDBid 7R5K (purple) and the L152I/L163I double mutant (wheat). Top

panel: Overlay of the overall structures; bottom panel: magnification of the hinge region (indicated by red line), the structures have been overlaid using

(Continued)
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FIGURE 1 (Continued)

the central region of the molecules. The mutations are located in this hinge region and are indicated in ball and stick mode. (J) Significant change of the

interaction pattern due to mutations. Magnification of the interaction patterns as evaluated using the program Arpeggio under standard settings. Top

panel wild-type, bottom panel-double mutant. The mutated residues are indicted in the colors as in (I).

viability was significantly reduced in the patient-derived fibroblasts

compared to controls (Figure 1H, n= 8, one-way ANOVA).

Structural analysis was performed to understand the effect of the

identified double mutation (p.L152I and p.L163I) on the structure

of the NUP85 protein as well as the NUP107-160 complex and the

overall NPC using structural database and prediction tools (15).

According to the protein structures from Homo sapiens, the two

identified mutations are found in close distance to each other, L152I

located at the end of helix 3 and L163I at the beginning of helix 4.

Structural studies have shown that theMiddle Hinge Domain (MHD)

is highly conserved and formed by helices four through 13. Since

both the mutations L152I and L163I are located at the end and the

beginning of two helices with the linker in between as part of the

MHD, it is predicted to interfere with the helix arrangement in the

MHD region, which in turn alters its orientation and might affect

the interaction of NUP85 with NUP214 complex on the cytoplasmic

side and NUP205 on the nuclear side of the complex (Figures 1I, J).

Overall, these identified mutations are predicted to alter the structure

of NUP85 and impair its interactions with the neighboring NUPs and

their functions.

Discussion

In this study, we report compound heterozygous NUP85 variants

in an affected individual with MCPH phenotype. In contrast to

our previous report on NUP85 variants in two individuals with

MCPH-SCKS spectrum disorder, the index patient reported here

with NUP85 variants had only MCPH but no SCKS phenotype (8).

Mutations in NUP37 have been linked to MCPH24 with the clinical

phenotype of primary microcephaly, ID, clinodactyly, and cerebellar

vermis hypoplasia, but no SRNS (4). Mutations in other NUPs

(NUP107, NUP214) have also been reported to cause microcephaly

in addition to SRNS, whereas mutations in NUP93, NUP205, and

NUP160 have been shown to cause SRNS without microcephaly

(4). Functional experiments using animal models have revealed that

the nature of mutations (hypomorphic or loss-of-function) plays

a key role in causing milder phenotypes or severe consequences

affecting brain or kidney development (4). In this study, the reported

missense variants are located in the highly conserved region of the

protein and lead to the unaltered levels of NUP85 protein in the

patients indicating the presence of dysfunctional protein. Structural

interpretation of the effect of identified variants reveals that the

exchange of leucine to isoleucine leads to the reorientation of the

MHD, which could interfere with the interacting partners of NUP85

on the nuclear side (NUP205) as well as on the cytoplasmic side

(NUP214). These modifications will impact the structural alignment

and functioning of the nucleoporins/NPC and thereby affect the

cellular processes (16). During brain development, several processes

such as proliferation, differentiation, and apoptosis determine the

generation of the correct number of neurons and brain size. Any

defects in these processes lead to abnormal brain size and function

(17). Several NUPs are highly expressed during brain development

and play key roles in regulating these cellular processes (1, 18).

Several nucleoporins have been shown to exhibit regulatory functions

in stem cells during development (19). For example, (i) loss of

Nup210 impairs the differentiation of embryonic stem cells to

neuroprogenitors (20), (ii) Nup133 mutant mice are embryonically

lethal and they fail to develop terminally differentiated neurons

(6), (iii) Nup50 knockout mice display lethality associated with

neural tube defects and intrauterine growth retardation (21), and

(iv) knockdown of Nup153 increases mouse embryonic stem cell

differentiation with reduced pluripotency (22). These effects caused

by loss/dysfunction of NUPs could be due to the defect in cytoskeletal

organization, epigenetic regulation, chromatin architecture, and

cell cycle apparatus (19). Components of NPCs (Seh1) are also

known to play the key role in the regulation of oligodendrocyte

differentiation (23). NUP107-160 complex contributes to proper

kinetochore functions during mitosis and is a key for the assembly

of bipolar spindles (3, 5). NUP85 localizes to mitotic spindles and

its loss causes abnormal mitotic spindles and defective proliferation

(3). The underlying pathomechanism of microcephaly has, to a large

part, been attributed to defective mitotic machinery affecting the

proliferation and/or differentiation of neural precursor cells. Several

MCPH-associated genes are known to be key regulators of mitotic

spindles and centrosomes (17). NUP85 and several other NUPs have

been reported to interact with cytoskeletal structures and nuclear

lamins for structural integrity and regulation of gene expression (2). It

was shown that mutant NUP85 in patient fibroblasts downregulated

the group of cytoskeletal proteins and diminished the actin stress

fibers and actin arcs (8). In this study, reduced cell viability of patient

fibroblasts might be due to the effect of mutant NUP85 on mitotic

spindle morphology and cell cycle process.

In summary, we report an individual with NUP85 variants

with MCPH phenotype, thereby expanding the clinical phenotype

spectrum of NUP85-associated diseases and highlighting the role of

NUP85 in brain development. Further clinical and functional studies

will help to extend the phenotypic spectrum of nucleoporopathies

and understand the specific underlying pathomechanism behind the

phenotypic variability.
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