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Introduction: Parkinson’s disease (PD) is a progressive movement disorder caused

by a loss of dopaminergic neurons. Previous studies have highlighted the

importance of mitochondria dynamics in the pathogenesis of PD. Dynamin-1-

like (DNM1L) is a gene that encodes dynamin-related protein 1 (DRP1), a GTPase

essential for proper mitochondria fission. In the present study, we evaluated the

relationship between DNM1L variants and PD in the Chinese population.

Methods: A total of 3,879 patients with PD and 2,931 healthy controls

were recruited and burden genetic analysis combined with high-throughput

sequencing was applied.

Results: We identified 23 rare variants in the coding region of DNM1L, while no

di�erence in variant burden was shown between the cases and controls. We also

identified 201 common variants in the coding and flanking regions and found two

significant SNPs, namely, rs10844308 and rs143794289 [odds ratio (OR) = 1.220

and 0.718, p = 0.025 and 0.036, respectively]. We also performed a meta-analysis

to correlate the two SNPs with PD risk. However, none of the common variants

was significant using logistic regression.

Conclusion: Despite the critical role of DRP1, our study did not support the

relationship between DNM1L variants and PD risk in the Chinese population.

KEYWORDS

Parkinson’s disease, DNM1L, DRP1, mitochondria, rare variants, common variants

Introduction

Parkinson’s disease (PD) is the second most common neurodegenerative disorder
affecting 2%−3% of individuals aged above 65 years (1). The major manifestations of PD
are motor deficits, including bradykinesia, resting tremor, rigidity, and postural instability,
mainly resulting from the death of cells in the substantia nigra (2). As widely known, many
PD-related genes are directly associated with mitochondria, a highly dynamic organelle
undergoing continuous fission and fusion (3). The balance between fission and fusion of
mitochondria is fundamental for maintaining mitochondrial morphology, size, position,
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and transport within cells (4). In humans, the dynamin-1-like
(DNM1L) gene encodes dynamin-related protein 1 (DRP1)—a
multidomain GTPase required for mitochondrial fission. Under
various cellular stimuli, DRP1 would translocate from the cytosol
to the mitochondria to initiate the division of mitochondrial
membranes through GTP hydrolysis (5). Dysregulation of
DRP1 can trigger mitochondrial fragmentation and subsequently
mitochondrial depolarization.

Given the close relationship between mitochondria and DRP1,
DNM1L variants are likely related to many mitochondria-related
diseases. In recent years, with the development of sequencing, some
rare neurological diseases were found to be caused by DNM1L

mutations. Previous studies reported that DNM1L variants are
related to encephalopathy with mitochondria fission defects. The
patients might have severe psychomotor retardation, dystonia, and
epilepsy, indicating an essential role of DNM1L in the nervous
system (6–8). Recently, the dysfunction of DRP1 has been identified
in numerous PD models (9, 10). Notably, some studies found
that the expression level of DRP1 was significantly reduced in
the peripheral blood of patients with PD (11). However, there
has been little discussion about the relationship between DNM1L

variants and the risk of PD. Therefore, this study comprehensively
evaluated the association between rare variants of DNM1L in large
PD cohorts. We performed a genetic analysis on 1,917 patients
with familial or sporadic early-onset PD (FPD/sEOPD) and 1,652
healthy controls as well as 1,962 patients with sporadic late-onset
PD (sLOPD) and 1,279 healthy controls from mainland China.
To elucidate the correlation between the variants of DNM1L in
PD risk, burden genetic analysis combined with high-throughput
sequencing was applied.

Materials and methods

Participants

Subjects were enrolled in the large cohort of Parkinson’s Disease
and Movement Disorders Multicenter Database and Collaborative
Network in China (PD-MDCNC, http://www.pd-mdcnc.com/),
as described in a previous study (12). Patients with PD in this
cohort were diagnosed by experienced neurologists according to
the UK Parkinson’s Disease Scoeity (PDS) Brain Bank Criteria
(13) or Movement Disorder Society Clinical Diagnostic Criteria
(14). Meanwhile, neurological disease-free controls were recruited,
with matched ethnicity as a reference. As indicated in our earlier
study, we excluded individuals with pathogenic/likely pathogenic
mutations of 23 PD pathogenic genes from the EOPD and FPD
cohorts. These patients were divided into two separate cohorts,
which were named according to the sequencing method as follows:
(1) the whole-exome sequencing (WES) cohort, containing 1,917
familial or sporadic early-onset PD from Mainland China (mean
age, 52.22 ± 9.03 years; women, 45.4%) and 1,652 race-matched
healthy controls (mean age, 62.03 ± 12.59 years; women, 51.9%),
and (2) the whole-genome sequencing (WGS) cohort, containing
1,962 sporadic late-onset PD from Mainland China (mean age,
66.76 ± 7.078 years; women, 49.8%) and 1,652 race-matched
healthy controls (mean age, 62.32 ± 7.109 years; women, 52.1%).
The WES cohort consisted of 477 familial PD probands (327

AD probands and 150 AR probands) and 1,440 patients with
early-onset PD (age of onset was not more than 50 years).
The WGS cohort contained patients with late-onset sporadic
PD with mean age onset of 61.88 ± 6.927 years. Patients in
both cohorts carrying pathogenic mutations in high-confidence
PD-causing genes were excluded from the analysis. Followed by
informed consent, the basic demographic data, peripheral blooding
samples, and clinical features of all participants were collected. We
collected total genomic DNA from peripheral blooding samples
using standard procedures. The respective ethics committees
of Xiangya Hospital of Central South University approved the
abovementioned protocol.

Sequencing and quality control

As shown in our previous study (15), the WES cohort used
SureSelect Human All Exon Kit V6 (Agilent) to capture the
whole-exome DNA, prepared the sample library, and then used
Illumina HiSeq 10× for pair-end 2 × 150 bp sequencing. The
average sequencing depth was 123×, achieving a coverage of at
least 10× for 99.32% of the target region. WGS was performed
using the Illumina Nova Sequencing platform in a pair-end 2 ×

150 bp mode, and the average depth of coverage was about 12×.
Sequencing data of both groups were processed and analyzed with
the BWA-GATK-ANNOVAR pipeline (16, 17). Quality control was
conducted as described in our previous study (15). Samples would
be removed if they had sex discrepancies, abnormal heterozygosity
(>3 SD), pathogenic or likely pathogenic variants of PD-related
genes, or unusual relatedness (descent > 0.15). In addition, we
performed the principal component analysis (PCA) using PLINK
v1.90 to assess potential population structure stratification. In
subsequent analyses for the WGS cohort, gender, age, and the first
five principal components of population stratification were used as
covariates, whereas for theWES cohort (the control group included
elderly people without neurological diseases), sex and the first five
principal components for population stratification were used (18).

Variant definition and association analysis

In both two cohorts, we targeted the variants in the coding
region of the DNM1L gene (NM_001278466). The variants
with a missing rate of >5% and deviations from Hardy–
Weinberg equilibrium in controls (p < 0.05) were removed
using PLINK v1.90. We annotated the gene regions (hg19
RefSeq), amino acid changes, and allele frequency of each
variant in the Genomic Aggregation Database (gnomAD) and
Exon Aggregation Consortium (ExAC) by ANNOVAR. Next, the
functional impact of each nonsynonymous variant was predicted
by ReVe (threshold, 0.7).

We categorized the variants according to the minor allele
frequency (MAF) as common variants (MAF > 0.01) and rare
variants (MAF < 0.01). Furthermore, we re-extracted the rare
variants withMAF below 0.001 and performed gene analysis of rare
variants with MAF below 0.01 and 0.001, respectively. According
to predicted functions, all the rare nonsynonymous variants were
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classified into three variant groups: missense, potentially damaging
missense (Dmis, ReVe score > 0.7), and loss of function variants
(LoF stop gain/loss, frameshift, and splice site), and the sum of
Dmis and LoF. After adjusting the abovementioned covariates
in two cohorts, sequence kernel association test-optimal (SKAT-
O) was applied to each cohort to assess the combined effect of
rare variants and each variants group. Fisher’s exact test was also
done for common variants to validate the significant relationship
between the common variants of DNM1L and PD. Moreover,
logistic regression analysis based on an allele model was also
performed by PLINK v1.90, and a p-value of< 0.05 was considered
suggestive significant.

Meta-analysis

To confirm the involvement of DNM1L variants in PD
susceptibility, a meta-analysis combining public studies and our
case–control study was conducted. In addition to our data,
summary data from the PD variant browser were included in
the meta-analysis, which comprised four studies: PD Genome
Project, International Parkinson’s Disease Genomic Consortium
(IPDGC) Exomes, IPDGC Resequencing Project, and UK Biobank
(19). Unlike our cohorts, these cohorts mainly contain European
populations, which can increase the power to detect the association
between DNM1L variants and PD. As no rare variants of DNM1L

found in our cohort were seen in included public data, we only
validated the significant association between significant common
variants of DNM1L and PD in meta-analysis. We used the Hardy-
Weinberg equilibrium model to estimate the SNPs in all cohorts
and then excluded the variants with deviations in controls (p <

0.05). To assess the strength of the association between DNM1L

variants and PD risk, a pooled OR and 95% confidence intervals
(CIs) were calculated under five different models (allele, dominant,
recessive, heterozygote, and homozygote model). The Cochrane Q-
test and I2 statistics were used to assess study heterogeneity and a
significant Q-test (p < 0.1 or I2 > 50%) indicated heterogeneity.
Fixed- or random-effects models were selected based on the
presence or absence of heterogeneity. A Z-test determined the
significance of the pooled ORs.We used the FDRmethod to correct
p-values for multiple comparisons for the variant association
analysis. A p-value of< 0.05 was considered statistically significant.
Moreover, the p-values of Egger’s and Begg’s tests were calculated to
estimate the publication bias. All analyses were performed using the
R package “meta.”

Results

DNM1L variants identification

The basic demographic characteristics of the two cohorts are
summarized in Supplementary Table S1. In the WES cohort, a
total of 1,917 familial PD probands or sporadic early-onset cases
and 1,652 controls were included. The WGS cohort included
1,962 sporadic late-onset PD (sLOPD) patients and 1,279 healthy
controls. After variant filtering and classification, we identified
224 variants in the coding region of DNM1L, including 23 rare
nonsynonymous variants and 201 common variants.

As shown in Figure 1 and Table 1, the MAF of the 23 rare
variants was below 0.001. Of these 23 rare variants, 21 of them
were missense mutations, and 12 were predicted to be damaging.
Of the 12 damaging missenses, five of them were only found

FIGURE 1

Rare variants in the coding region of DNM1L. (A) Schematics of rare nonsynonymous variants in the coding region of DNM1L. (B) Location of

potential damaging rare variants in DRP1 protein (NM_001278466). DRP1 contains the GTPase domain, middle (M) domain, variable (V) domain, and

GTPase e�ector domain (GED). The position of each domain was provided by https://www.uniprot.org/uniprot/O00429 (Black: WES cohort; Blue:

WGS cohort; Red: shared by two cohorts).
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TABLE 1 Rare nonsynonymous variants of DNM1L identified in our cohort.

Gene Position
(hg19)

Ref Alt NM
number

AAChange Consequence gnomAD_
exome_
EASa

gnomAD_
genome_
EASa

ExAC_
EASa

ReVeb WES cohort WGS cohort

Case
(n =

1,917)

Control
(n =

1,652)

Case
(n =

1,962)

Control
(n =

1,279)

DNM1L 12:32854394 C G NM_012062 c.148C>G:p.L50V Missense 0 – 0 0.629:T 0 1 0 0

DNM1L 12:32854472 C T NM_012062 c.226C>T:p.R76W Missense 0 0 – 0.755:D 0 1 0 0

DNM1L 12:32854483 A G NM_001278466 c.32A>G:p.Q11R Missense – – – 0.641:T 0 1 0 0

DNM1L 12:32860338 C G NM_001278466 c.122C>G:p.P41R Missense 0.0004 0.0006 0.0005 0.805:D 3 4 5 1

DNM1L 12:32863906 A G NM_012062 c.413A>G:p.N138S Missense 0.0005 0 0.0003 0.333:T 0 1 1 2

DNM1L 12:32866197 C A NM_012062 c.511C>A:p.L171I Missense 0.0001 – 0.0001 0.586:T 9 3 6 4

DNM1L 12:32871595 T C NM_012062 c.638T>C:p.V213A Missense – – – 0.934:D 1 0 0 0

DNM1L 12:32871666 G A NM_012062 c.709G>A:p.V237I Missense – – – 0.575:T 1 0 0 0

DNM1L 12:32875444 T A NM_001278466 c.347T>A:p.L116Q Missense – – – 0.988:D 1 0 0 0

DNM1L 12:32875455 G A NM_001278466 c.358G>A:p.G120S Missense – – – 0.891:D 1 0 0 0

DNM1L 12:32884804 C G NM_001278466 c.764C>G:p.P255R Missense – – – 0.957:D 0 0 1 0

DNM1L 12:32886737 T C NM_001278466 c.926T>C:p.I309T Missense 0.0002 0.0006 0.0003 0.788:D 1 1 2 1

DNM1L 12:32890081 G C NM_001278466 c.973G>C:p.V325L Missense 0.0002 – 0.0001 0.401:T 1 2 0 1

DNM1L 12:32890097 – A NM_001278466 c.987+2_987+3insA Splicing 0 – 0 – 0 1 2 0

DNM1L 12:32890798 – TCT NM_001278466 c.988-1_988insTCT Splicing 0.00005798 – – – 1 0 0 0

DNM1L 12:32890803 C G NM_001278466 c.992C>G:p.S331C Missense – – – 0.449:T 1 0 0 0

DNM1L 12:32890824 C T NM_001278466 c.1013C>T:p.A338V Missense 0.00005798 – 0.0001 0.480:T 0 1 0 0

DNM1L 12:32890850 G A NM_001278466 c.1039G>A:p.A347T Missense 0.00005798 0 0 0.757:D 0 1 0 0

DNM1L 12:32890851 C T NM_001278466 c.1040C>T:p.A347V Missense – – – 0.771:D 0 1 3 0

DNM1L 12:32893068 T A NM_001278466 c.1169T>A:p.L390Q Missense – – – 0.907:D 0 1 0 0

DNM1L 12:32893131 C T NM_001278466 c.1232C>T:p.P411L Missense – – – 0.764:D 0 0 1 0

DNM1L 12:32895611 T G NM_001278466 c.1474T>G:p.L492V Missense – – – 0.519:T 0 1 0 0

DNM1L 12:32895663 A C NM_001278466 c.1526A>C:p.E509A Missense 0.00005798 0 0 0.809:D 0 0 0 1

aVariants minor allele frequencies from gnomAD_genome_EAS, gnomAD_exome_EAS, and ExAC_EAS.
bThe score of prediction software:predictive results; D, damaging; T, tolerate.
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in patients with PD (p.V213A, p.L116Q, p.G120S, p.P255R, and
p.P411L). In addition, we found two shear mutations that may lead
to loss of function (c.987+2_987+3insA and c.988-1_988insTCT).
In detail, c.987+2_987+3insAwas detected in one control from the
WES cohort and in two patients from the WGS cohort, whereas
c.988-1_988insTCT was detected in only one patient from the
WGS cohort.

Association analysis results

Table 2 shows the results of the rare variants association test of
DNM1L. To increase the power to detect association, we performed
the burden analyses on WES and WGS cohorts stratified by the
functional effects of variants. As a result, no relationship between
PD and variants was observed in any variants groups (p > 0.05,
Table 2).

Among the 201 common variants, only two common variants
(rs10844308 and rs143794289) in the WES cohort were significant
in the Fisher’s test. Also, rs10844308 was suggested to cause a 22%
increase in the odds of PD (OR = 1.220, p = 0.036). On the
contrary, rs143794289 was presented as a protective factor of PD
since it caused a 28.2% decrease in the odds of PD (OR = 0.718,
p = 0.025). However, the result of these two SNPs turned negative
in the WGS cohort analysis. Logistic regression with PLINK also
analyzed associations between common variants and PD. Age at
enrollment, sex, and the first five principal components was used
as adjustment covariates. Nevertheless, logistic regression did not
demonstrate any suggestive result between DNM1L and PD (p >

0.05, Supplementary Tables S2, S3).

Meta-analysis of DNM1L common variants
and PD

As mentioned earlier, we found two significant common
variants in the WES cohort—rs10844308 and rs143794289. These
two SNPs were further included in the meta-analysis. For all
included studies, genotypes of these two variants in controls were
consistent with Hardy–Weinberg equilibrium (p > 0.05). With
regard to rs10844308, data were obtained from six cohorts (WES,
WGS, and four public cohorts), including 28,985 patients and
69,206 controls. In both the Chinese population and European
populations, no genetic models showed evidence of heterogeneity
(p for heterogeneity > 0.1, I2 < 50). Therefore, we applied a fixed-
effects model for all the analyses of rs10844308. For the meta-
analysis of all included studies, no genetic model indicated the
significance of rs10844308 in PD risk under the fixed-effect model,
and then, an analysis stratified by ethnicity was conducted. In
the Chinese population, only the allele model (C vs. A) presented
significantly increased PD risk with an OR of 1.18 (95% CI= 1.03–
1.35). However, in the European population, all genetic models
failed to show the significance of rs10844308 in PD risk (Table 3,
Supplementary Figure).

The results of rs143794289 turned out to be more complicated
but interesting. Unlike rs10844308, the homozygous mutation of
rs143794289 was not found in public data, so we only applied T
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TABLE 3 Meta-analysis of rs10844308 and rs143794289 in Parkinson’s disease.

rsID Position Minor
allele

Major
allele

Models Chinese European Overall

OR POR I2 p-
value

OR POR I2 p-
value

OR POR PFDR I2 p-
value

rs10844308
(N = 6)

chr12:32854366 C A C vs. A 1.18 [1.03;
1.35]

0.020 0% 0.58 1.01 [0.98;
1.05]

0.398 0% 0.41 1.02 [0.99;
1.06]

0.168 0.280 33% 0.19

CC+ CA
vs. AA

1.13 [0.97;
1.31]

0.111 9% 0.29 1.02 [0.99;
1.06]

0.224 27% 0.25 1.03 [0.99;
1.07]

0.114 0.285 26% 0.24

CC vs.
CA+ AA

1.69 [0.88;
3.26]

0.116 0% 0.63 0.96 [0.86;
1.07]

0.445 0% 0.52 0.97 [0.87;
1.09]

0.640 0.800 6% 0.38

CA vs.
AA

1.10 [0.95;
1.28]

0.796 0% 0.33 1.03 [0.99;
1.07]

0.145 41% 0.16 1.03 [1.00;
1.07]

0.082 0.409 27% 0.23

CC vs.
AA

1.71 [0.89;
3.30]

0.108 0% 0.61 0.96 [0.86;
1.08]

0.526 0% 0.57 0.98 [0.88;
1.10]

0.740 0.740 2% 0.41

rs143794289
(N = 4)

chr12:32885540 A G A vs. G 0.76 [0.61;
0.94]

0.012 0% 0.56 0.80 [0.66;
0.97]

0.805 0% 0.63 0.80 [0.66;
0.97]

0.023 0.068 0% 0.65

AA+ AG
vs. GG

0.76 [0.61;
0.95]

0.015 0% 0.63 0.95 [0.65;
1.39]

0.804 0% 0.62 0.81 [0.67;
0.98]

0.027 0.027 0% 0.68

AG vs.
GG

0.75 [0.60;
0.94]

0.012 0% 0.88 0.95 [0.65;
1.39]

0.804 0% 0.62 0.80 [0.66;
0.97]

0.023 0.035 0% 0.70

∗N is the number of included studies in the meta-analysis; OR and POR values were calculated by Fisher’s exact test.

The bold value means the p value < 0.05, suggesting significance.
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the allele, dominant, and heterozygote genetic models to analyze
the association between rs143794289 and susceptibility of PD. For
rs143794289, we included four studies (the WGS cohort, the WES
cohort, and two public cohorts) containing 15,072 patients and
20,541 controls. In the overall analysis, all genetic models showed
no evidence of heterogeneity (p for heterogeneity > 0.1, I2 = 0)
and presented significantly reduced risk of PD, with ORs of 0.80
(95% CI = 0.66–0.97), 0.81 (95% CI = 0.66–0.98), and 0.80 (95%
CI = 0.66–0.97) for the allele, dominant, and heterozygote genetic
models, respectively. After correction using the FDR method, the
results of dominant and heterozygote genetic models remained
significant (p = 0.027 and 0.035, respectively). Furthermore, in the
Chinese population, all three genetic models show a protective role
of rs143794289 in PD, while no significant result was found in the
European population (Table 3, Supplementary Figure). All p-values
from Egger’s and Begg’s tests were >0.05, indicating no publication
bias in this meta-analysis.

Discussion

DNM1L encodes DRP1, the main mitochondrial fission
protein, which is strictly regulated to maintain the normal
morphology of mitochondria (20). DRP1 is localized throughout
the neuron, from dendrites and cell bodies to axons, maintaining
the balance of mitochondrial fission and fusion in the neuron
(21). In a previous study, researchers found that double knockout
of DNM1L in mice is due to embryonic lethality, strongly
suggesting that DNM1L is necessary for development and survival
(22). In humans, DNM1L variants can cause lethal neonatal-
onset encephalopathy or diverse degrees of cognitive impairment
and epilepsy, indicating their essential role in the nervous
system (23, 24). To date, no data have directly elucidated the
relationship between DNM1L variants and PD, but numerous
PD models showed dysregulation of DRP1. Therefore, it is
meaningful and interesting to explore the genetic role of DNM1L

in PD.
In this study, we comprehensively analyzed the rare and

common variants in the DNM1L coding region in the Chinese
mainland population. We identified 23 rare variants and 201
common variants totally in the DNM1L coding region. Almost
all of these rare nonsynonymous variants were missense variants,
five of which (p.V213A, p.L116Q, p.G120S, p.P255R, and p.P411L)
were only found in patients with PD. Notably, we also found two
splicing variants (c.987+2_987+3insA and c.988-1_988insTCT),
which might cause the loss of function of DRP1. However, the
rare variants we identified had yet to be previously reported.
The protein of DNM1L has four domains, with most variants
located in the middle and variable domains, while the splicing
variant c.1636-1_1636insTCT is located in the GTPase effector
domain (GED) (25). Since the impairment of DRP1 has been
elucidated in numerous PD models, these variants are more
functionally suggestive of being associated with PD risk and
more experimental studies might be needed. We also conducted
the burden analysis for the rare variants in two cohorts.
Still, we found no significant relationship between DNM1L

rare variants and PD, which revealed that the DNM1L gene

might not play a crucial role in the risk of PD in the
Chinese population.

With regard to common variants, we found that two common
variants (rs10844308 and rs143794289) were significant in Fisher’s
exact test, with the former showing a risk effect and the latter
showing a protective effect against PD. We noted inconsistent
results for these two SNPs in the WES and WGS cohorts;
therefore, we performed a meta-analysis combined with public
data to further confirm their roles in PD risk. In a meta-
analysis, the rs143794289 presented significantly reduced PD
risk in the allele, dominant, and heterozygous genetic models,
while rs10844308 showed no association with PD in all models.
However, in the European population, the rs143794289 was
not significantly associated with PD susceptibility. To note,
rs143794289 is relatively rare in the European population, resulting
in poor reliability in detecting a significant association. Thus,
we cannot rule out a possible role for rs143794289 from
the meta-analysis, and additional sample size is required for
further validation.

To the best of our knowledge, this is the first study
to explore the relationship between DNM1L variants and
PD. However, our study has several limitations, including
methodological bias, sample size, and sample population. First,
different mutations of DNM1L might have diverse functions,
but we did not verify these variants for functions, which
might result in incorrect mutation grouping in the burden
analysis. Some other forms of genetic changes such as copy
number variation were not included in our study. Second,
the sample size was still insufficient for rare variants analysis.
Our cohorts contain only the Chinese mainland population,
leading to discordance in sample ethnicities. Thus, enlarging
sample size and adjusting the population substructure is possible
to get a more reliable conclusion. We also found two novel
splicing variants that may cause a loss of function but further
functional validations in cell or animal models are needed.
Moreover, almost DNM1L-related diseases are severe neurological
disorders in children and teenagers, indicating that DNM1L is
required for neurological development. Therefore, the pathogenic
DNM1L variants are likely to cause widespread and severe
damage to the nervous system rather than specific damage in
dopaminergic neurons.

In conclusion, our study expanded the genetic spectrum
of the DNM1L gene and preliminarily explored the DNM1L

gene in PD. We identified several novel rare variants of
the DNM1L gene and performed a meta-analysis for two
potentially significant common variants. However, there was
no evidence to support that the DNM1L gene’s rare or
common variants could increase the risk for PD in the
mainland China’s population. Therefore, larger sample sizes,
more ethnicities, and more multivariate analysis methods will
be needed.
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