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Objective: This study presents the clinical phenotypes and genetic analysis of 
seven patients with benign familial infantile epilepsy (BFIE) diagnosed by whole-
exome sequencing.

Methods: The clinical data of seven children with BFIE diagnosed at the 
Department of Neurology, Children’s Hospital Affiliated to Zhengzhou University 
between December 2017 and April 2022 were retrospectively analyzed. Whole-
exome sequencing was used to identify the genetic causes, and the variants were 
verified by Sanger sequencing in other family members.

Results: The seven patients with BFIE included two males and five females 
ranging in age between 3 and 7 months old. The main clinical phenotype of the 
seven affected children was the presence of focal or generalized tonic–clonic 
seizures, which was well controlled by anti-seizure medication. Cases 1 and 5 
exhibited predominantly generalized tonic–clonic seizures accompanied by 
focal seizures while cases 2, 3, and 7 displayed generalized tonic–clonic seizures, 
and cases 4 and 6 had focal seizures. The grandmother and father of cases 2, 6, 
and 7 had histories of seizures. However, there was no family history of seizures 
in the remaining cases. Case 1 carried a de novo frameshift variant c.397delG 
(p.E133Nfs*43) in the proline-rich transmembrane protein 2 (PRRT2) gene while 
case 2 had a nonsense variant c.46G > T (p.Glu16*) inherited from the father, and 
cases 3–7 carried a heterozygous frameshift variant c.649dup (p.R217Pfs*8) in the 
same gene. In cases 3 and 4, the frameshift variant was de novo, while in cases 
5–7, the variant was paternally inherited. The c.397delG (p.E133Nfs*43) variant is 
previously unreported.

Conclusion: This study demonstrated the effectiveness of whole-exome 
sequencing in the diagnosis of BFIE. Moreover, our findings revealed a novel 
pathogenic variant c.397delG (p.E133Nfs*43) in the PRRT2 gene that causes BFIE, 
expanding the mutation spectrum of PRRT2.
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Introduction

Benign familial infantile epilepsy [BFIE; pyridoxine dependent 
epilepsy, Online Mendelian Inheritance in Man (OMIM) # 605751] is 
a benign familial neurological disorder with an incidence of 1  in 
10,000 (1). Inheritance is autosomal dominant, and the condition is 
characterized by focal seizures that may progress to secondary 
generalized tonic–clonic seizures. The age of seizure onset in affected 
children usually ranges between 4 and 6 months old. The seizures 
usually occur in clusters and have a good prognosis and usually 
resolve by 2 years old (2, 3).

Benign familial infantile epilepsy is recognized as a genetically 
heterogeneous disorder. The PRRT2 gene, encoding proline-rich 
transmembrane protein 2, is a major causative gene for 
BFIE. PRRT2 located on the short arm 11.2 of chromosome 16, is 
mainly expressed in the nervous system, especially in the cerebral 
cortex, hippocampus, basal ganglia, and cerebellum (4, 5). 
Mutations in PRRT2 are associated with multiple childhood-onset 
neurological disorders, including BFIE [(OMIM) # 605751], 
paroxysmal kinesigenic dyskinesia [PKD; (OMIM) # 128200], and 
infantile convulsions and choreoathetosis [ICCA; (OMIM) # 
602066]. Other genetic mutations, including mutations in SCN2A, 
KCNQ2, SCN8A, and ATP1A2, have also been found to cause BFIE 
(6). However, these genes do not account for all cases of BFIE and 
the causative genes in some patients remain unknown. In this 
study, we summarized the clinical phenotypes of seven affected 
children from the Chinese Han population diagnosed with BFIE 
and analyzed the genetic etiologies underlying the disease in 
these cases.

Materials and methods

The present study was a case series study and was approved by the 
Medical Ethics Committee of the Children’s Hospital Affiliated with 
Zhengzhou University. Informed consent was obtained from the 
children’s guardians. We retrospectively analyzed the clinical data of 
seven children diagnosed with BFIE in the neurology outpatient ward 
of our hospital from December 2017 to April 2022. The diagnosis of 
BFIE was confirmed by clinical features and genetic diagnosis in all 
these patients.

The clinical data of seven children were collected. The laboratory 
tests included routine blood tests, tests for liver, kidney, and thyroid 
function, blood ammonia, pyruvate, lactate, inorganic elements, nine 
vitamins, ceruloplasmin, and genetic metabolic screening of the blood 
and urine. Scale examinations included the pediatric 
neuropsychological screening scale (DQ), imaging tests included 
cranial computed tomography (CT), and magnetic resonance imaging 
(MRI), and electrophysiological tests included long-range video 
electroencephalogram monitoring.

After obtaining informed consent from the children’s guardians, 
2 mL of peripheral venous blood was collected from each child and 
the parents into ethylenediaminetetraacetic acid tubes. Whole-exome 
sequencing was performed on the three members of each family and 
the suspected variants with clinical significance were verified in the 
family members using Sanger sequencing. Genetic sequencing was 
performed by the Beijing Zhiyin Oriental Translational Medicine 
Research Center Co., Ltd., and the relevant data analysis was 

conducted by Henan Provincial Key Laboratory of Children’s Genetics 
and Metabolic Diseases in our hospital.

Results

Clinical characteristics

All the children experienced seizures of varying severity during 
infancy; details of the clinical manifestations of the children are listed 
in Table 1. Cases 1 and 5 mainly displayed generalized tonic–clonic 
seizures accompanied by focal seizures, cases 2, 3, and 7 mainly 
experienced generalized tonic–clonic seizures, and cases 4 and 6 
showed mainly focal seizures. All the cases were effectively controlled 
by anti-epileptic drug treatment. The parents of the seven children 
were non-consanguineous. None of the parents of cases 1, 3, 4, or 5 
had a history of seizures, whereas the grandmother and father of cases 
2, 6, and 7 had a history of seizures. In addition, cases 3 and 5 each had 
a sister, and cases 2 and 6 brothers, and none of these siblings had a 
history of seizures (Figure 1).

Cranial MRI showed varying degrees of cerebral white matter 
hemi-oval central myelin hypoplasia at 6 months old in cases 1 and 4, 
indicating a delay in neuronal development. On the other hand, the 
cranial MRI showed varying degrees of frontotemporal subarachnoid 
widening in cases 1, 2, and 6 (Figure 2). No developmental delays in 
terms of growth and cognitive function compared with normal 
children of the same age were observed in any of the seven cases. 
Video electroencephalograph (EEG) testing in cases 1, 2, 4, and 5 
showed varying degrees of abnormal discharge (Figure 3).

Genetic analysis

Table  2 summarizes variants observed in the PRRT2 
(NM_145239.2) gene in the seven children. Whole-exome sequencing 
analysis showed that among the seven probands, cases 2, 5, 6, and 7 
carried variants inherited from the father, while the variants in cases 
1, 3, and 4 were de novo. Case 1 carried a de novo frameshift shift 
variant c.397delG (p.E133Nfs*43; Figure 4), case 2 carried a nonsense 
variant c.46G > T (p.Glu16*), cases 3 and 4 had de novo frameshift 
variants c.649dup (p.R217Pfs*8), and all the variants in cases 5, 6, and 
7 were frameshift variants c.649dup (p.R217Pfs*8). The c.397delG 
(p.E133Nfs*43) frameshift variant was novel and has not been 
reported previously. The evidence for the pathogenicity of c.397delG 
(p.E133Nfs*43) included PVS1, PS2, PM2, and PP3. The variant was 
predicted to be deleterious by multiple software programs including 
SIFT, Polyphen-2, and MutationTaster. According to the standards and 
guidelines of the ACMG (7), c.397delG (p.E133Nfs*43) was classified 
as a pathogenic variant. The c.649dup (p.R217Pfs*8) and c.46G > T(p. 
Glu16*) variants are known pathogenic variants, as reported in 
previous studies (8–10).

Discussion

Benign familial infantile epilepsy is an autosomal dominant 
epilepsy that was first reported by Vigevano et al. (11) and was named 
BFIE in 2010 by the International League Against Epilepsy (ILAE) 
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(12). The main clinical criteria for diagnosis (13) include (1) first onset 
at 3–12 months old, (2) family history of benign infantile epilepsy, (3) 
normal psychomotor development before and after onset, (4) focal 
seizures, alone or followed by generalized seizures, with ≥2 seizures 
within 24 h, mostly cluster seizures, usually without persistent status 
epilepticus, (5) normal EEG background during interictal periods 
with Rolandic epilepsy, (6) no abnormalities in cranial imaging, (7) 

exclusion of convulsions due to metabolic disorders such as 
hypocalcemia and hypoglycemia, and (8) self-limiting seizures or 
seizures that respond well to antiepileptic drugs, with resolution 
before the age of 2 years old (14, 15). In this study, all the seven affected 
children were within 3–7 months old, and some of them had a family 
history of seizure disorders. Moreover, cases 1 and 5 mainly displayed 
generalized tonic—clonic seizures accompanied by focal seizures, 

TABLE 1 Clinical data of seven children with benign familial infantile convulsions.

ID/
Sex

Age1 Birth history Age2 of 
onset

Types of 
seizures

Initial physical 
examination

Video 
EEG3

Head 
MRI4

Efficacy 
and 
follow-up

Evolution

1F5 6 months 

15 days

G1P1, full term 

cesarean section, 

W: 2.8 kg, no 

history of 

asphyxia or 

resuscitation

4 months (1) GTCS6; (2) 

focal seizures

W: 7 kg, HC7: 42 cm, 

fontanelle 1.5 × 2.0 cm; 

normal pursuit of vision 

and hearing; vertical 

head stability; and 

unable to sit alone

Abnormal Delayed 

myelination, 

and bilateral 

frontotemporal 

subarachnoid 

space widened

LEV8 Control

2M9 4 months 

13 days

G2P2 full term 

cesarean section, 

W: 3.0 kg, no 

history of hypoxia 

or asphyxia

3 months 

and 

13 days

GTCS W: 6 kg, HC: 39 cm, 

vertical head stability; 

poor pursuit response

Abnormal Bilateral 

frontotemporal 

subarachnoid 

space widened

LEV, vitamin 

B6

Improvement 

(seizures 

reduced)

3F 4 months 

20 days

G2P2, 38+5 weeks, 

cesarean section, 

W: 3.9 kg, no 

history of 

asphyxia or 

resuscitation

4 months 

and 9 days

Generalized 

seizure on 

awakening

W: 7 kg, HC: 40.5 cm, 

fontanelle 0.5 × 0.5 cm, 

head raised steadily; 

normal muscle strength 

and tone

Normal Normal VPA10 → PB11 Control

4F 6 months 

5 days

G1P1, 39 weeks 

normal delivery, 

W: 3.2 kg, no 

history of 

asphyxia or 

choking

6 months Focal seizures W: 8 kg, fontanelle 

1.5 × 1.5 cm, head raised 

steadily; unstable sit; 

normal pursuit of vision 

and hearing; normal 

muscle strength and 

tone

Abnormal Delayed 

myelination

OXC12 Control

5 M 5 months G2P2, delivered at 

39+3 weeks, W: 

3.85 kg, no history 

of perinatal 

hypoxic asphyxia

4 months 

10 days

(1) GTCS; (2) 

Focal seizures

W: 7 kg, HC: 41 cm, 

fontanelle 1.5 × 1.5 cm, 

poor tracking vision and 

hearing; head raised 

steadily at 3 months, 

turn over at 4 months

Abnormal Normal LEV, vitamin 

B6 tablets → 

OXC

Control

6F 4 months 

9 days

G2P2, full term 

cesarean section, 

W: 3.85 kg, no 

history of 

perinatal hypoxic 

asphyxia

4 months 

and 3 days

Focal seizures W: 7.5 kg, HC: 40 cm, 

fontanelle 1.0 × 1.0 cm

Normal Bilateral 

frontotemporal 

subarachnoid 

space widened

LEV, vitamin 

B6 tablets → 

OXC

Control

7F 5 months 

15 days

G2P2, full term 

normal birth, W: 

3.6 kg, no history 

of asphyxia or 

resuscitation

5 months 

10 days

GTCS W: 7 kg, HC: 43 cm, 

fontanelle 2.0 × 1.5 cm, 

head raised steadily, 

normal hearing and 

smiling, normal muscle 

strength and tone

Normal Normal LEV, PB Control

1Age, current age; 2Age of onset, Age of first onset; 3Video EEG, Video EEG features; 4Head MRI, Head magnetic Resonance Imaging; 5Female; 6GTCS, generalized tonic–clonic seizure; 7HC, 
head circumference; 8LEV, levetiracetam; 9M, Male; 10VPA, valproic acid; 11PB, phcnobarbital; and 12OXC, oxcarbazepine.
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cases 2, 3, and 7 mainly exhibited generalized tonic—clonic seizures, 
and cases 4 and 6 mainly displayed focal seizures. However, several of 
the cases in this study were found to have varying degrees of myelin 
dysplasia and widening of the frontotemporal subarachnoid space on 
cranial MRI testing.

Multiple causative genes associated with BFIE have been reported, 
including PRRT2, SCN2A, KCNQ2, SCN8A, ATP1A2, KCNA1, 
KCNMA1, BFIE1, and BFIE4 (2, 6). PRRT2 encodes an ion channel 
and was found to be a major causative gene for BFIE by Heron et al. 
(16). The PRRT2 gene, located on chromosome 16p11.2, consists of 
four exons and encodes a protein containing 340 amino acids (17, 18). 

The PRRT2 protein consists of a proline-rich N-terminal sequence 
(N-glycosylation site), two transmembrane structural domains, and a 
C-terminal sequence. The transmembrane region is highly conserved 
and has important physiological functions (4, 19–21). PRRT2 is 
mainly expressed in the presynaptic membrane and cytoplasm of 
neurons in the cerebral cortex, basal ganglia, cerebellum, and 
hippocampus. The PRRT2 protein plays a key role in neurotransmitter 
release by interacting with fusion complexes and calcium sensor 
proteins involved in synaptic vesicle cytokinesis and calcium 
sensitivity. Functional analysis showed that PRRT2 knockout in 
excitatory neurons resulted in slowed cytokinesis kinetics, reduced 

FIGURE 1

Genetic pedigree of the seven children with benign familial infantile epilepsy. Squares represent males. Circles indicate females. Black indicates a 
history of epilepsy. The arrows indicate the proband in the family.

FIGURE 2

Cranial magnetic resonance imaging findings of case 1 (A,B) and case 2 (C,D). A and C were T1 sequences, showed low signal in the widening of 
bilateral frontotemporal subarachnoid space, high signal in T1WI of the bilateral inner capsule forelimb, and delayed myelin sheath development 
compared to children of the same age. B and D were T2 sequences that showed high signal in the widening of the bilateral frontotemporal 
subarachnoid space, and low and fuzzy signal on T2WI of the bilateral inner capsule forelimbs. EEG: 155 new1; Amplitude: 100 μV/cm; Low frequency: 
0.3 s; High frequency: 15 Hz; Trapped wave: 50 Hz; and Multi speed: 3.0 cm/s.
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synaptic transmission, and significantly increased susceptibility to 
chemotaxis. In neuronal networks, deletion of PRRT2 was found to 
lead to increased spontaneous and evoked activity, resulting in 
dysregulation of neuronal excitability in various regions of the brain, 
ultimately triggering paroxysmal movement disorders and seizures 
(8). All of the seven patients in the present study showed seizures of 
varying degrees. Cases 1 and 5 had predominantly generalized tonic–
clonic seizures together with focal seizures, cases 2, 3, and 7 had 
generalized tonic–clonic seizures, while cases 4 and 6 had focal 
seizures. While the grandmother and father of cases 2, 6, and 7 had a 
history of seizures, there was no family history of seizures in the 
remaining cases (Figure 1).

According to the Human Genome Variation Society (HGVS), 
nearly 100 variants have been reported in the PRRT2 gene, including 
missense, nonsense, frameshift, splice site, deletion, and insertion 

variants, with the highest proportion of frameshift variants occurring 
mainly in exon 2, resulting in truncation and decay of the expressed 
protein (2). Among the PRRT2 variants, c.649dupC is by far the most 
common cause of BFIE, accounting for nearly 80% of cases (8, 9, 22). In 
this study, all seven affected children carried heterozygous variants in 
exon 2 with one of the known pathogenic variants, c.649dup 
(p.R217Pfs*8), accounting for 71.4% (5/7) of the cases, consistent with 
previous reports (8, 9). Case 1 carried an unreported variant, c.397delG 
(p.E133Nfs*43), which was predicted to be deleterious and pathogenic 
by multiple software programs. Luo et al. (3) reported that seven family 
members carrying heterozygous mutations in the PRRT2 gene had no 
clinical symptoms associated with PRRT2-related disorders, suggesting 
incomplete penetrance of the PRRT2 mutations. In the current study, 
the variant in case 5 was inherited from the father who showed no 
clinical phenotype, also suggesting incomplete penetrance.

FIGURE 3

Monitoring results for the long-range video electroencephalogram of case 4. Panel (A) is background EEG with low-medium amplitude θ activity in the 
bilateral occipital area at 5–6 Hz; Panel (B) is the EEG in the sleep stage; Panels (C–E) is the EEG in the attack stage and (F) is the EEG at the end of the 
attack stage. Two focal onset attacks were recorded in waking stage with a simultaneous abnormal low-medium sharp wave and sharp slow waves 
well as a simultaneous amplitude sharp wave and sharp slow wave.
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Proline-rich transmembrane protein 2 has analogs in various 
vertebrate species, such as humans, gorillas, macaques, and mice, 
whereas no homologs have been found in invertebrates such as 
nematodes (2, 4). In humans and rodents, PRRT2 is a neuroprotein 
that is most abundantly expressed in the cerebellum, basal ganglia, 
and neocortex. Mutations in PRRT2 are associated with a variety 
of neurological disorders, such as BFIE, paroxysmal kinesigenic 
dyskinesia, and infantile convulsions and choreoathetosis, which 
account for more than 90% of all cases (3, 23). Other rare 
phenotypes, including seizures, ictal ataxia, and hemiplegic 
migraine, have also been reported, suggesting significant 
phenotypic heterogeneity resulting from PRRT2 mutations (24–
26). To date, most PRRT2 mutations have been labeled “benign” 
and lead to self-limited familial infantile epilepsy. However, a small 
number of patients with PRRT2 variants have been reported to 
exhibit severe neurological deficits, such as focal seizures and 
epileptic spasms, severe seizures, cognitive impairment, or complex 
malformations (27, 28). In general, the genotype—phenotype 
correlation of PRRT2 mutations remains unclear, and there are 
numerous genetic variants and loci with no direct correlation 
between genotype and clinical phenotype. In addition to BFIE, 
mutations in PRRT2 also cause paroxysmal kinesigenic dyskinesia 
(PKD), with a prevalence estimated at 1:150,000, characterized by 
recurrent episodes, transient chorea, dystonia, and/or ballismus 
(18). In the present study, none of the seven affected children or 
their family members showed any signs of PKD. Nevertheless, the 
development of PKD at a later stage cannot be ruled out, as the 
children are young. Long-term follow-up might be  required to 
monitor the possible development of PKD.

Cranial MRI is usually nonspecific for BFIE as some patients 
appear normal while others show diffuse hypomyelination, a thin 
corpus callosum, or high signals in the basal ganglia, thalamus, or 
hippocampus (29). In this study, cranial MRI showed no abnormal 
brain changes in cases 3, 5, and 7 while in cases 1 and 4, the 
development of white-matter myelination was delayed. Moreover, 
cases 2 and 6 displayed varying degrees of widening of the 
subarachnoid space (Figure 2). Furthermore, previous studies have 
shown that interictal EEGs in BFIE are usually normal, though some 
BFIEs may exhibit interictal focal epileptiform discharges, mostly 
originating in the parieto-occipital lobe and located in the 
frontotemporal region (12, 30, 31). Here, we found that cases 3, 6, 
and 7 had no abnormal discharges on long-range video in EEG 
monitoring, whereas cases 1, 2, 4, and 5 displayed focal discharges 
of varying degrees during the interictal period. Cases 1, 2, and 5 had 
discharges in the frontotemporal region, consistent with previous 
studies (31).

In terms of treatment, most children with BFIE respond well to 
antiepileptic drugs, and seizures are usually completely controlled by 
2 years old (9). Several studies (32) have shown that in some BFIE 
patients, initial treatment regimens of levetiracetam were not effective, 
and seizures were controlled by switching to oxcarbazepine or sodium 
valproate. Additionally, oxcarbazepine has fewer adverse effects and 
no effect on cognitive function. In the present study, the seven affected 
children underwent treatment and follow-up. Case 1 was well-
controlled with levetiracetam while case 4 was treated with 
oxcarbazepine alone and remained seizure-free. Seizure control was 
achieved in case 3 using sodium valproate combined with 
phenobarbital. Although treatment with levetiracetam resulted in T
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FIGURE 4

PRRT2 gene sequencing of family 1–7 (A–E) and their parents. Family 1 (A) was c.397del (p.E133Nfs*43), a frame-shift newborn mutation (arrow). No 
mutation was found in either parents (arrow). Family 2 (B) had a c.46G > T (p.Glu16*) nonsense mutation (arrow) and the father had a heterozygous 
mutation (arrow). Family 3 (C) and 4 (D) and 4 were c.649dup (p.R217fs*8) newborn frame-shift variation (arrow), and no mutations were found in 
either parents (arrow). Family 5–7 (E–G) and their parents showed a c.649dup (p.R217fs*8) frame-shift variation (arrow), and heterozygous variation 
locus for the father (arrow).
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poor control in the remaining four cases, complete control was 
achieved after switching to oxcarbazepine, which is consistent with the 
findings of previous studies (32).

Early epilepsy (whether secondary or systemic) is 
representative of a number of disorders, often with devastating 
and persistent adverse consequences. Many brain malformations 
and inborn metabolic disorders are caused by genetic factors, 
such as ion channel disease, which may be  associated with 
abnormalities in brain structure. Most children with 
neurometabolic disorders show some signs of disordered 
metabolism, which can be  differentially diagnosed by genetic 
testing. When the diagnostic criteria are unclear, genetic testing 
may be the most effective means of diagnosing these diseases. 
Moreover, genetic testing can also guide the application of 
appropriate antiepileptic drugs and clinical management (33, 34). 
In the current study, the seizures were controlled within 2 years 
of age and there has been no recurrence so far in the seven 
affected children. In addition, the growth and language 
development of the seven children have been normal, and their 
muscle tone is normal. These results indicate that genetic testing 
is beneficial in the clinical diagnosis and treatment of BFIE.

Conclusion

In summary, BFIE is a genetic epilepsy with onset in the first year 
of life. PRRT2 is a major causative gene of BFIE, with mutations in the 
gene showing an expanding clinical spectrum and incomplete 
penetrance. Genetic testing is critical for the diagnosis and clinical 
management of BFIE patients and is beneficial for prognostic 
prediction. Moreover, the current study identified a novel BFIE-
associated variant, c.397delG (p.E133Nfs*43), in the PRRT2 gene, 
thereby expanding the genetic spectrum of BFIE.
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