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Introduction: Childhood absence epilepsy (CAE) is a well-known pediatric

epilepsy syndrome. Recent evidence has shown the presence of a disrupted

structural brain network in CAE. However, little is known about the rich-club

topology. This study aimed to explore the rich-club alterations in CAE and their

association with clinical characteristics.

Methods: Di�usion tensor imaging (DTI) datasets were acquired in a sample of

30 CAE patients and 31 healthy controls. A structural network was derived from

DTI data for each participant using probabilistic tractography. Then, the rich-

club organization was examined, and the network connections were divided into

rich-club connections, feeder connections, and local connections.

Results: Our results confirmed a less dense whole-brain structural network

in CAE with lower network strength and global e�ciency. In addition, the

optimal organization of small-worldness was also damaged. A small number of

highly connected and central brain regions were identified to form the rich-

club organization in both patients and controls. However, patients exhibited a

significantly reduced rich-club connectivity, while the other class of feeder and

local connections was relatively spared. Moreover, the lower levels of rich-club

connectivity strength were statistically correlated with disease duration.

Discussion: Our reports suggest that CAE is characterized by abnormal

connectivity concentrated to rich-club organizations and might contribute to

understanding the pathophysiological mechanism of CAE.

KEYWORDS

childhood absence epilepsy, di�usion tensor imaging, probabilistic tractography, graph

theory, rich-club

1. Introduction

The human brain is a network. The brain function is not solely attributable to the

properties of individual regions or individual connections but rather emerges from the

effective communication among regions linked within a complex network of white matter

pathways, known as the human connectome (1). Conversely, brain dysfunction may also

result from abnormal wiring of the brain’s network.

Childhood absence epilepsy (CAE) is defined by the presence of multiple absence

seizures in previously healthy developing children without a particular history of neurologic

diseases. Typical seizures usually begin between 4 and 10 years of age (2). In the

ILAE definition, the typical absence seizure is characterized by sudden cessation of

ongoing activities with or without automatisms, usually lasting 30–60 s. The classic

electroencephalogram (EEG) shows a generalized symmetrical and synchronous spike-wave

discharges (GSWDs) pattern at 3Hz with normal background activity. It affects 10–17%

of all children with epilepsy, making it the most common form of generalized epilepsy

syndrome in school-aged children (3). Although labeled “benign,” children with CAE may
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experiencemany times daily, including both clinical and subclinical

seizures, which can impair memory processing and sustained

attention. There is a strong association between CAE and

significant cognitive deficits, behavioral disorders, and psychosocial

difficulties (4–7). Given the “not so benign nature” of CAE, more

attention is needed for this common childhood epileptic syndrome.

Based on some modern research studies (8, 9), the ILAE

has recommended epilepsy as a network disease in their latest

guidelines (10). Although the absence seizure is classified as

a generalized onset, the generalized seizure is traditionally

considered as the entire brain may be homogeneously embraced.

There is emerging evidence supporting that generalized seizures are

not truly generalized but rather rising in some regions and rapidly

engaging bilaterally distributed networks containing the original

regions (2).

The densely interconnected and central brain regions, so-called

hub nodes, play a key role in sustaining efficient communication

across the global brain network (11–13). In the cases of possible

disruptions of information integration in epilepsy, the hub nodes

may be of particular interest because hub regions have been

suggested to be more vulnerable than non-hub regions in many

brain disorders (14, 15). In the human brain, network hubs

show higher connectivity with each other, beyond what would be

expected based on their degrees, giving rise to the presence of the

so-called “rich-club” phenomenon. The rich-club topology plays

a pivotal role in the integrative capacity among regions of the

whole-brain network (16). In our previous study, 12 hub regions

and disrupted global integration of information have been detected

in CAE (17). However, it is unclear whether these patients got

disturbed wiring of rich-club topology and whether the global

disruptions were concentrated to the rich-club connections.

In this study, diffusion tensor imaging (DTI) scans were

acquired from 30 patients diagnosed with CAE and 31 healthy

controls (HCs), and probabilistic tractography was employed to

reconstruct the structural network. Based on the graph theory,

the rich-club organizations of the structural brain network

were compared between CAE and HCs. We hypothesized

that the disturbed rich-club topology may contribute to the

pathophysiology of CAE.

2. Materials and methods

2.1. Participants

A total of 30 clinically definite CAE patients and 31 healthy

controls were recruited from the Department of Neurology at

Nanjing Brain Hospital Affiliated with Nanjing Medical University

and the Department of Neurology at the AffiliatedHuai’anHospital

of Xuzhou Medical University. The CAE was diagnosed according

to the guideline from the International League Against Epilepsy

(ILAE) (2). This study was performed according to the Declaration

of Helsinki and approved by the Ethics Committee of the Nanjing

Brain Hospital Affiliated with Nanjing Medical University and

the Affiliated Huai’an Hospital of Xuzhou Medical University.

Informed consent was signed by all participants or their legal

guardians prior to participation. All subjects are right-handed. The

populations did not receive a significant difference in terms of age

TABLE 1 Baseline characteristics of participants.

CAE (n = 30) HCs (n = 31) P-value

Age (years,

mean± SD)

8.30± 1.66 8.52± 1.61 0.61

Gender (F/M) 16/14 18/13 0.71

Disease duration

(months, mean± SD)

9.33± 5.93 NA -

Seizure frequency

(times/day,

mean± SD)

8.27± 5.55 NA -

M, male; F, female; CAE, childhood absence epilepsy; HCs, healthy controls; SD,

standard deviation; NA, not applicable.

(CAE, mean and standard deviation of 8.30 ± 1.66; HCs, mean

and standard deviation of 8.52 ± 1.61; t-test p-value = 0.61) or

gender (16 female participants and 14 male participants for CAE;

18 female participants and 13 male participants for HCs; chi-

squared test p-value = 0.71). More details of the demographic and

clinical characteristics of each group are summarized in Table 1.

The inclusion criteria for patient recruitment were as follows: (1)

routine video-EEG showing bilateral, symmetrical spike-waves at

approximate 3Hz on normal background activity accompanied by

clinical absence seizure; (2) normal neurologic development and

no other seizure types; and (3) normal findings in the 3.0 T MRI.

Among the 30 patients, either monotherapy or polytherapy of anti-

seizure medications (ASMs) were accepted (for details, please see

Supplementary Table S1).

2.2. MRI acquisition and processing

The MR acquisition has been described previously (17). In

brief, neuroimaging data were acquired on a Siemens 3.0 T scanner

(Erlangen, Germany) equipped with a 12-channel head coil for

sensitivity-encoding parallel imaging. Each subject underwent MRI

scans as their head was restrained by foam pads to minimize head

motion. Diffusion-weighted data were acquired using a single-

shot echo planar imaging sequence (TR = 6600ms, TE = 93ms,

acquisition matrix = 128 × 128, FOV = 240 × 240 mm2, 45

axial slices, slice thickness = 3mm, and inter-slice gap = 0mm).

The diffusion weighting was isotropically distributed in 30 non-

collinear directions (b= 1000m2/s) with one additional acquisition

without diffusion weighting (b = 0m2/s). High-resolution T1-

weighted MRI was also obtained using a 3D rapid acquisition

gradient echo sequence with the following scanning parameters: TR

= 1900ms, TE= 2.48ms, acquisition matrix= 512× 512, FOV=

250× 250 mm2, 176 sagittal slices, slice thickness= 1mm, and flip

angle= 9◦.

Using Diffusion Toolbox in FSL (FMRIB Software Library,

http://fsl.fmrib.ox.ac.uk/fsl) (18), the DTI data were pre-processed

to correct for eddy currents and head motion (19, 20). After fitting

the diffusion tensor to the corrected images (21), the fractional

anisotropy (FA) map was produced using the Diffusion Toolbox

in FSL. In addition, the skull and surrounding soft tissues were

removed using the FSL Brain Extraction Toolbox (BET) (22).
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2.3. Construction of structural brain
networks

In graph theory, a network consists of a set of nodes connected

by edges and can be mathematically expressed as a graph: G = (V,

E), with V indicating a finite set of nodes and E indicating the set

of edges between them (23). See Figure 1 for an overview of the

analytical flowchart. This is the same as our previous study (17).

2.4. Network node definition

The procedure to define network nodes was completed

following our previous study (17). In brief, the automated anatomic

labeling (AAL) atlas was employed to generate 90 cortical and sub-

cortical regions in diffusion native space (45 for each hemisphere,

see Supplementary Table S2) (24). First, T1 images were non-

linearly converted to the ICBM152 T1 template in the MNI space.

Then, the AAL atlas was warped to the DTI native space by using

the inverse transformation matrix. Of note, a nearest-neighbor

interpolationmethod was employed in this step to preserve discrete

labeling values. Finally, 90 AAL regions were executed and served

as network nodes in the subsequent topological analyses.

2.5. Tractography-based structural
connections

To define the edges of the brain network, probabilistic

tractography was carried out using the FSL Diffusion Toolbox

(FDT) (25). The bedpostx was run to estimate distributions on

diffusion parameters at each voxel, and the probtrackx tool was

used to conduct probabilistic tracking. From each voxel in the

seed region, 5,000 samplings from the distributions of voxel-

wise principal diffusion directions were repetitively performed.

For each time, we can get a probabilistic streamline. After that,

the connectivity probability from the seed region to each of the

other 89 regions was calculated. As a result, a 90 × 90 network

matrix N for each subject was generated. In the network matrix

N, the element Nij means the connectivity probability from i to

j. However, considering the dependence of tractography on the

seeding location, the connectivity probability from i to j is not

necessarily equivalent to that from j to i. Therefore, we computed

the undirected connectivity probability Nij between regions i and

j by averaging these two probabilities and defined it as the edge

weight. To minimize possible false-positive fiber streamlines, edges

with a weight value below 0.01 were considered potentially spurious

and were removed from the network matrix, which was consistent

with our previous research (17). The same threshold was applied

to both patients and controls in order not to artificially inflate

any group difference. As a result, an individual-specific 90 ×

90 weighted network matrix was generated for each participant.

Moreover, to define the rich-club topology, the unweighted brain

networks were obtained as connections were represented in a

binary fashion (connection present = 1, connection absent = 0).

In detail, the edges with a connectivity probability above 0.01 were

assigned a value of 1, and the edges with a connectivity probability

below 0.01 were assigned a value of zero. Then, an individual-

specific binary network matrix was generated for each participant.

Next, for both patients and healthy controls, a group-averaged

binary network was generated by selecting all the edges that were

present in at least 75% of the subjects for each group. These steps

were also reported in previous articles (16, 26) and were considered

helpful for alleviating noise caused by inter-subject variability.

2.6. Graph analysis of connectome
topology

2.6.1. Global network metrics
To examine the possible differences in whole-brain network

topology between patients and controls, several characteristic

graph properties of the brain network of interest were computed

using the Brain Connectivity Toolbox (http://sites.google.com/

a/brain-connectivity-toolbox.net/bct/metrics) (27). All properties

were calculated based on weighted networks to better describe

the information of the existing connections. The global network

topological properties were described in terms of the global

connection strength, global efficiency, and small-worldness (details

described in Supplementary material). Each metric provided a

specific viewpoint to characterize the main features of the large-

scale architecture.

2.6.2. Rich-club organization
The focus of our study was the investigation of rich-club

organization of the structural brain network in CAE patients.

The so-called rich-club phenomenon in networks is said to be

present when a small set of these highly connected hub regions

tend to be more densely interconnected among each other than

expected by chance (16). The rich club is thought to facilitate

the integration of brain functions by providing shorter and faster

routes of information transfer across widespread brain networks.

In this study, the rich-club organization was delineated in the

binary network. A detailed description of the unweighted rich-

club coefficient is given in the Supplementary material. In short,

for the given nodal degree k (the number of connections attached

to each network node), the subnetwork comprising nodes with

a degree larger than k was selected. For the remaining network,

the rich-club coefficient Φ(k) was calculated as the ratio of

connections present in the subnetwork and the total number

of possible connections that would be present when all these

remaining nodes would be fully connected. Then, the normalized

rich-club coefficient Φnorm(k) was obtained by comparing and

normalizing the rich-club coefficient to a set of 1000 comparable

random networks with the same number of nodes, edges, and

preserved degree distribution. By definition, a normalized rich-club

coefficientΦnorm(k)>1 over a range of k is indicative of a rich-club

organization in a network (16).

2.6.3. Node and edge classification
Once a rich-club organization has been identified, network

nodes can be classified as rich-club nodes and non-rich-club nodes,
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FIGURE 1

Flowchart for the construction of brain network. (A) Automated anatomical labeling (AAL) atlas, high-resolution T1-weighted MRI, and di�usion

tensor images. (B) The connectivity matrix is generated using the probabilistic tractography algorithm after the brain is parcellated into a number of

segregated regions and normalized to standard MNI space. (C) A weighted network is rendered by a 3D visualization model in BrainNet Viewer

(BrainNet Viewer 1.53, Beijing Normal University, http://www.nitrc.org/projects/bnv/). The edges are encoded with their connection weights at the

threshold of 0.01.

and existing connections in the network were classified into three

categories: (1) rich-club connections only linking rich-club nodes

among each other, (2) feeder connections linking rich-club to

non-rich-club nodes, and (3) local connections only linking non-

rich-club nodes among each other (Figure 3C). This classification

was commonly adopted in several analyses and helpful for the

estimation and statistical comparison of multiple aspects of brain

connections (16, 26).

For each individual dataset, rich club, feeder, and local

connection strength were computed as a sum of all the weights of

their connections, respectively.

2.7. Statistical analysis

To evaluate the group differences in graphic metrics between

patients and healthy controls, permutation testing (10000) was

used for randomizing group assignments (28, 29). For rich-

club analysis, a p-value was corrected for the number of

rich-club levels.

In addition, to investigate how impairments in rich-club

topology relate to clinical characteristics in CAE, we used Pearson’s

correlations to assess how rich-club connectivity related to disease

duration and seizure frequency for patients.
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FIGURE 2

Comparisons of global network metrics between CAE patients and healthy controls (HC). The asterisk shows a significant between-group di�erence

(*p < 0.05). The error bar indicates the standard deviation.

FIGURE 3

Rich-club organization. (A) Normalized rich-club coe�cient (Φnorm) at di�erent rich-club levels expressed as a nodal degree for patients and

healthy controls. (*) Significantly reduced Φnorm in CAE subjects compared with healthy controls. (B) Network representation of rich-club regions

(brown). (C) Schematic illustration of rich-club (red) and non-rich-club (gray) nodes and local (gray), feeder (yellow), and rich-club (red) connections.

3. Results

3.1. Global network metrics

Consistent with our previous report on global network

topology in CAE patients (17), this study further confirmed

the topological alterations with a larger sample. The bivariate

comparison showed that the strength and global efficiency

of the structural network were significantly reduced in

patients relative to healthy controls (p = 0.01 and p = 0.03,

respectively) (Figure 2). Moreover, both groups got a small-world
organization within the structural brain network as the value

of σ >1, while the small-worldness was reduced in patients

(p= 0.04) (Figure 2).
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FIGURE 4

Di�erences of rich-club organization between patients and controls. The group di�erences in strength for rich-club connections, feeder

connections, and local connections were displayed, respectively (*p < 0.05, #p > 0.05). The error bar indicates the standard deviation.

FIGURE 5

Relationship between disease duration and rich-club strength in patients group. Significantly negative correlations are revealed (r = −0.514, p =

0.002).

3.2. Rich-club organization

Group averaged rich-club curves of both the patient and control

networks are illustrated in Figure 3A. Based on the definition

of Φnorm(k) > 1, both patients and controls had a rich-club

organization in structural networks, but patients showed a reduced

rich-club coefficient. Notably, the reduction in Φnorm in patients

was most pronounced at the level of k = 16 (p = 0.008). Rich-

club regions were then selected based on this level, including

the bilateral posterior cingulate gyrus, bilateral median cingulate

and paracingulate gyri, bilateral precuneus, bilateral cuneus, left

superior occipital gyrus, right supplementary motor area, and left

inferior parietal gyrus (Figure 3B). This decision was in line with

previous studies (16, 30).

Further analysis of the connections revealed a lower rich-club

connectivity strength in patients (p = 0.002, Figure 4). In contrast,

this alteration was not significant for feeder connections and local

connections (p= 0.27 and p= 0.99, respectively, Figure 4).

Correlation analysis showed that the reduction in rich-

club strength was significantly related to disease duration (r =

−0.514, p = 0.002, Figure 5), while no significant correlation was

detected between the rich-club topology and seizure frequency

(Supplementary Figure S1).

4. Discussion

This study investigated the structural network, especially the

rich-club topology, in CAE using the DTI dataset and graph

theory. Lower network strength and global efficiency were detected

in this study, indicating a less efficient network in childhood

absence epilepsy. The weakening shift of brain topology had been

consistently reported in previous studies (17, 31). The small-world

topology falls between regular and random networks and can

support both segregated and integrated information processing

(32). In this research, small-world topology was proven in both

patients and controls following the criterion of small-worldness

index (σ) > 1 (33). However, the index of σ decreased significantly

in patients, which may correspond to a disruption of the balance

between information integration and segregation.
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The main focus of this study was the alteration of structural

rich-club topology in clinical CAE patients. As referred, the

densely connected and highly centralized hub brain regions had

a strong tendency to be connected among themselves to form

a “rich club,” which might serve as a connectivity backbone in

the structural networks of the human brain (26). Although rich-

club architecture in rodents and many human neuropsychiatric

disorders have been extensively explored in recent years (34–38),

it is still unclear in CAE. Our study was the first to explore the

rich-club topology of the structural brain network in CAE using

graph theory. Previous studies had provided new insights into

the topological organization of structural connectome in CAE;

however, they were limited to network-based analysis or global

metrics and were not able to address the selective vulnerability of

rich-club organizations.

In this study, we were able to show that the structural brain

network of CAE derived from the DTI dataset by probabilistic

tractography indeed got a rich-club organization, but the

rich-club connectivity in patients with CAE was significantly

reduced, reflecting a lower level of connectivity among hub

brain regions. Immature rich-club topology might be related to

some neurodevelopmental disorders (39). Recently, emerging

evidence of brain network abnormalities has been reported

in patients with CAE, such as impaired attention network

(40) and salience network (41), altered effective connectivity

(42), and disrupted structural connectivity in orbitofrontal and

sub-cortical regions (31). Going beyond these findings, our

study revealed an impaired rich-club organization while the

feeder and local connections seem to be relatively reserved.

This may be explained by the vulnerability of rich-club

regions in brain disorders as these regions are characterized

by not only high topological value but also high biological

cost (14).

Furthermore, the association between the impaired rich-

club organization and disease effects was found in this study.

Lower rich-club connection strength was statistically correlated

with longer disease duration of absence epilepsy, implying

the longer the duration, the worse the impairment. This

was in good agreement with previous reports concerning

the long-standing burden of epileptic discharges on brain

dysfunction (43–45). Although whether the structural

abnormalities are reasons or consequences of frequent absence

seizure still remains unclear, we tentatively speculate that

impaired rich-club topology might be the consequence of

long-term injurious effects of epileptic activity. As a result,

an altered rich-club organization may serve as a potential

biomarker for disease progression in CAE, which needs to be

further discussed.

5. Limitations

Although we reported some promising findings in this study,

there were also some issues that should be considered when

interpreting these results. First, node definition is an important

issue. The results may vary with the number of parcellated

regions, region size, or their locations when using graph theory

to analyze brain networks (46). It was strongly suggested that the

high-resolution network keeps a great consistency with regional

analysis in investigating the existence of a densely interconnected

rich club in the brain connectome (16). However, replicating

the current dataset in an alternative parcellation scheme is

still deserved in future work to get a more convincing result.

Second, given the correlation between rich-club alterations and

disease duration, we supported the hypothesis that rich-club

impairments might be the consequence of long-term frequent

epileptic discharges, but this hypothesis might be preliminary

due to the cross-sectional nature of our study and relatively

small sample size (47). Therefore, future longitudinal studies

with larger samples are advisable to further examine the causal

relationship between epileptic activity and rich-club changes in

this regard. Finally, it is the trouble of the network model. In

addition to the binary network, there were also some other

weighted networks, such as the streamline-weighted network

and FA-weighted network, which had been widely discussed

in previous studies (16, 35). Unfortunately, there has been

no consensus on the selection of a network model in rich-

club analysis.

6. Conclusion

Our study further confirmed the severely disrupted

connectome in CAE with a larger sample as network strength,

global efficiency, and small-worldness significantly decreased.

More importantly, this study detected an abnormal rich-club

organization in CAE, and these impairments were significantly

correlated with disease duration. All these findings highlight the

role of the rich club as a backbone for the brain connectome and

provide a novel perspective to understand the pathophysiological

mechanism of CAE.

Data availability statement

The original contributions presented in the study are included

in the article/Supplementary material, further inquiries can be

directed to the corresponding author.

Ethics statement

The studies involving human participants were reviewed

and approved by the Ethics Committee of Nanjing Brain

Hospital Affiliated to Nanjing Medical University and the Ethics

Committee of Huai’an Hospital Affiliated to Xuzhou Medical

University. Written informed consent to participate in this

study was provided by the participants’ legal guardian/next

of kin.

Author contributions

YY, WQ, XC, and YZ designed the research.

MQ, YT, and JT analyzed the data. Participants were

Frontiers inNeurology 07 frontiersin.org

https://doi.org/10.3389/fneur.2023.1135305
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org


Yu et al. 10.3389/fneur.2023.1135305

recruited and images were acquired by WZ and XC.

The manuscript’s textual content was written by YY

and MQ and revised by WQ. All authors approved the

final submitted version and agreed to be accountable for

its content.

Funding

This study was supported by the Science Foundation of

Huai’an Commission of Health (Grant no. HAWJ202113) and

the Third Phase of Huai’an Project 533 Scientific Research

Funding Schemes.

Acknowledgments

We would like to thank all partners in the Department

of Radiology at the Huai’an Hospital Affiliated with Xuzhou

Medical University for their help in MRI acquisition.

We also thank all the subjects and their parents for

their support.

Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be

construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the

authors and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.

Supplementary material

The Supplementary Material for this article can be found

online at: https://www.frontiersin.org/articles/10.3389/fneur.2023.

1135305/full#supplementary-material

References

1. Sporns O, Tononi G, Kotter R. The human connectome: a structural description
of the human brain. PLoS Comput Biol. (2005) 1:e42. doi: 10.1371/journal.pcbi.0010042

2. Berg AT, Berkovic SF, Brodie MJ, Buchhalter J, Cross JH. Revised terminology
and concepts for organization of seizures and epilepsies: report of the ILAE
commission on classification and terminology, 2005-2009. Epilepsia. (2010) 51:676–
85. doi: 10.1111/j.1528-1167.2010.02522.x

3. Berg AT, Shinnar S, Levy SR, Testa FM. Newly diagnosed
epilepsy in children: presentation at diagnosis. Epilepsia. (1999) 40:445–
52. doi: 10.1111/j.1528-1157.1999.tb00739.x

4. Caplan R, Siddarth P, Stahl L, Lanphier E, Vona P. Childhood absence
epilepsy: behavioral, cognitive, and linguistic comorbidities. Epilepsia. (2008) 49:1838–
46. doi: 10.1111/j.1528-1167.2008.01680.x

5. Pavone P, Bianchini R, Trifiletti RR, Incorpora G, Pavone A.
Neuropsychological assessment in children with absence epilepsy. Neurology.
(2001) 56:1047–51. doi: 10.1212/WNL.56.8.1047

6. Kanner AM, Helmstaedter C, Sadat-Hossieny Z, Meador K. Cognitive disorders
in epilepsy I: clinical experience, real-world evidence and recommendations. Seizure.
(2020) 83:216–22. doi: 10.1016/j.seizure.2020.10.009

7. Baggio M, Toffoli L, Baggio M, Toffoli L, Da Rold M. Neuropsychological
and behavioral profiles of self-limited epileptic syndromes of childhood:
a cross-syndrome comparison. Child Neuropsychol. (2022) 28:878–
902. doi: 10.1080/09297049.2022.2028754

8. Blumenfeld H. What is a seizure network? Long-range network consequences of
focal seizures. Adv Exp Med Biol. (2014) 813:63–70. doi: 10.1007/978-94-017-8914-1_5

9. Centeno M, Carmichael DW. Network connectivity in epilepsy:
resting state fMRI and EEG-fMRI Contributions. Front Neurol. (2014)
5:93. doi: 10.3389/fneur.2014.00093

10. Fisher RS, Cross JH, French JA, Higurashi N, Hirsch E. operational classification
of seizure types by the international league against epilepsy: position paper of
the ilae commission for classification and terminology. Epilepsia. (2017) 58:522–
30. doi: 10.1111/epi.13670

11. Sporns O, Honey CJ, Kotter R. Identification and classification of hubs in brain
networks. PLoS ONE. (2007) 2:e1049. doi: 10.1371/journal.pone.0001049

12. Hagmann P, Cammoun L, Gigandet X, Meuli R, Honey CJ.
Mapping the structural core of human cerebral cortex. PLoS Biol. (2008)
6:e159. doi: 10.1371/journal.pbio.0060159

13. van den Heuvel MP, Sporns O. Network hubs in the human brain. Trends Cogn
Sci. (2013) 17:683–96. doi: 10.1016/j.tics.2013.09.012

14. Crossley NA, Mechelli A, Scott J, Carletti F, Fox PT, McGuire P. The hubs of the
human connectome are generally implicated in the anatomy of brain disorders. Brain.
(2014) 137:2382–95. doi: 10.1093/brain/awu132

15. Li S, Chen Y, Ren P, Li Z, Zhang J, Liang X. Highly connected and
highly variable: a Core brain network during resting state supports Propofol-
induced unconsciousness. Human Brain Mapping. (2023) 4:841–53. doi: 10.1002/h
bm.26103

16. van den Heuvel MP, Sporns O. Rich-club organization of the human
connectome. J Neurosci. (2011) 31:15775–86. doi: 10.1523/JNEUROSCI.3539-11.2011

17. Qiu W, Yu C, Gao Y, Miao A, Tang L, Huang S, et al. Disrupted topological
organization of structural brain networks in childhood absence epilepsy. Sci Rep. (2017)
7:11973. doi: 10.1038/s41598-017-10778-0

18. Jenkinson M, Beckmann CF, Behrens TE, Woolrich MW, Smith SM. FSL.
Neuroimage. (2012) 62:782–90. doi: 10.1016/j.neuroimage.2011.09.015

19. Jenkinson M, Smith S. A global optimisation method for robust
affine registration of brain images. Med Image Anal. (2001) 5:143–
56. doi: 10.1016/S1361-8415(01)00036-6

20. Jenkinson M, Bannister P, Brady M, Smith S. Improved optimization for
the robust and accurate linear registration and motion correction of brain images.
Neuroimage. (2002) 17:825–41. doi: 10.1006/nimg.2002.1132

21. Basser PJ, Pierpaoli C. Microstructural and physiological features of tissues
elucidated by quantitative-diffusion-tensor MRI. J Magn Reson B. (1996) 111:209–
19. doi: 10.1006/jmrb.1996.0086

22. Smith SM. Fast robust automated brain extraction. Hum Brain Mapp. (2002)
17:143–55. doi: 10.1002/hbm.10062

23. Bullmore E, Sporns O. Complex brain networks: graph theoretical
analysis of structural and functional systems. Nat Rev Neurosci. (2009)
10:186–98. doi: 10.1038/nrn2575

24. Tzourio-Mazoyer N, Landeau B, Papathanassiou D, Crivello F, Etard O, Delcroix
N, et al. Automated anatomical labeling of activations in SPM using a macroscopic
anatomical parcellation of the MNI MRI single-subject brain. Neuroimage. (2002)
15:273–89. doi: 10.1006/nimg.2001.0978

25. Behrens TE, Berg HJ, Jbabdi S, Rushworth MF, Woolrich MW. Probabilistic
diffusion tractography with multiple fibre orientations: what can we gain?Neuroimage.
(2007) 34:144–55. doi: 10.1016/j.neuroimage.2006.09.018

26. van den Heuvel MP, Kahn RS, Goni J, Sporns O. High-cost, high-capacity
backbone for global brain communication. Proc Natl Acad Sci U S A. (2012) 109:11372–
7. doi: 10.1073/pnas.1203593109

Frontiers inNeurology 08 frontiersin.org

https://doi.org/10.3389/fneur.2023.1135305
https://www.frontiersin.org/articles/10.3389/fneur.2023.1135305/full#supplementary-material
https://doi.org/10.1371/journal.pcbi.0010042
https://doi.org/10.1111/j.1528-1167.2010.02522.x
https://doi.org/10.1111/j.1528-1157.1999.tb00739.x
https://doi.org/10.1111/j.1528-1167.2008.01680.x
https://doi.org/10.1212/WNL.56.8.1047
https://doi.org/10.1016/j.seizure.2020.10.009
https://doi.org/10.1080/09297049.2022.2028754
https://doi.org/10.1007/978-94-017-8914-1_5
https://doi.org/10.3389/fneur.2014.00093
https://doi.org/10.1111/epi.13670
https://doi.org/10.1371/journal.pone.0001049
https://doi.org/10.1371/journal.pbio.0060159
https://doi.org/10.1016/j.tics.2013.09.012
https://doi.org/10.1093/brain/awu132
https://doi.org/10.1002/hbm.26103
https://doi.org/10.1523/JNEUROSCI.3539-11.2011
https://doi.org/10.1038/s41598-017-10778-0
https://doi.org/10.1016/j.neuroimage.2011.09.015
https://doi.org/10.1016/S1361-8415(01)00036-6
https://doi.org/10.1006/nimg.2002.1132
https://doi.org/10.1006/jmrb.1996.0086
https://doi.org/10.1002/hbm.10062
https://doi.org/10.1038/nrn2575
https://doi.org/10.1006/nimg.2001.0978
https://doi.org/10.1016/j.neuroimage.2006.09.018
https://doi.org/10.1073/pnas.1203593109
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org


Yu et al. 10.3389/fneur.2023.1135305

27. Rubinov M, Sporns O. Complex network measures of brain
connectivity: uses and interpretations. Neuroimage. (2010) 52:1059–
69. doi: 10.1016/j.neuroimage.2009.10.003

28. Berry KJ, Mielke PW, Mielke HW. The Fisher-Pitman permutation
test: an attractive alternative to the F test. Psychol Rep. (2002) 90:495–
502. doi: 10.2466/pr0.2002.90.2.495

29. Suckling J, Bullmore E. Permutation tests for factorially designed neuroimaging
experiments. Hum Brain Mapp. (2004) 22:193–205. doi: 10.1002/hbm.20027

30. Schmidt A, Crossley NA, Harrisberger F, Smieskova R, Lenz C, Riecher-Rössler
A. Structural network disorganization in subjects at clinical high risk for psychosis.
Schizophr Bull. (2017) 43:583–91. doi: 10.1093/schbul/sbw110

31. Xue K, Luo C, Zhang D, Yang T, Li J. Diffusion tensor tractography reveals
disrupted structural connectivity in childhood absence epilepsy. Epilepsy Res. (2014)
108:125–38. doi: 10.1016/j.eplepsyres.2013.10.002

32. Bassett DS, Bullmore E. Small-world brain networks. Neuroscientist. (2006)
12:512–23. doi: 10.1177/1073858406293182

33. Humphries MD, Gurney K. Network ’small-world-ness’: a quantitative
method for determining canonical network equivalence. PLoS ONE. (2008)
3:e0002051. doi: 10.1371/journal.pone.0002051

34. Liang X, Hsu LM, Lu H, Sumiyoshi A, He Y. The rich-club organization in rat
functional brain network to balance between communication cost and efficiency. Cereb
Cortex. (2018) 28:924–35. doi: 10.1093/cercor/bhw416

35. Li K, Liu L, Yin Q, DunW, Xu X. Abnormal rich club organization and impaired
correlation between structural and functional connectivity in migraine sufferers. Brain
Imaging Behav. (2017) 11:526–40. doi: 10.1007/s11682-016-9533-6

36. Zhang P, Wan X, Ai K, Zheng W, Liu G. Rich-club reorganization and related
network disruptions are associated with the symptoms and severity in classic trigeminal
neuralgia patients. Neuroimage Clin. (2022) 36:103160. doi: 10.1016/j.nicl.2022.103160

37. Huang W, Hu W, Zhang P, Wang J, Jiang Y. Early changes in the
white matter microstructure and connectome underlie cognitive deficit and
depression symptoms after mild traumatic brain injury. Front Neurol. (2022)
13:880902. doi: 10.3389/fneur.2022.880902

38. Peng L, Zhang Z, Chen X, Gao X. Alternation of the rich-club organization
of individual brain metabolic networks in Parkinson’s disease. Front Aging Neurosci.
(2022) 14:964874. doi: 10.3389/fnagi.2022.964874

39. Watanabe T, Rees G. Age-associated changes in rich-club organisation in
autistic and neurotypical human brains. Sci Rep. (2015) 5:16152. doi: 10.1038/
srep16152

40. Killory BD, Bai X, Negishi M, Vega C, Spann MN, Vestal M,
et al. Impaired attention and network connectivity in childhood absence
epilepsy. Neuroimage. (2011) 56:2209–17. doi: 10.1016/j.neuroimage.20
11.03.036

41. Luo C, Yang T, Tu S, Deng J, Liu D, Li Q, et al. Altered intrinsic functional
connectivity of the salience network in childhood absence epilepsy. J Neurol Sci. (2014)
339:189–95. doi: 10.1016/j.jns.2014.02.016

42. Wu C, Xiang J, Jiang W, Huang S, Gao Y, Tang L, et al. Altered effective
connectivity network in childhood absence epilepsy: a multi-frequency MEG study.
Brain Topogr. (2017) 30:673–84. doi: 10.1007/s10548-017-0555-1

43. Leiva-Salinas C, Quigg M, Elias WJ, Patrie JT, Flors L, Fountain NB, et al.
Earlier seizure onset and longer epilepsy duration correlate with the degree of temporal
hypometabolism in patients with mesial temporal lobe sclerosis. Epilepsy Res. (2017)
138:105–9. doi: 10.1016/j.eplepsyres.2017.10.023

44. Chiang S, Levin HS, Wilde E, Haneef Z. White matter structural connectivity
changes correlate with epilepsy duration in temporal lobe epilepsy. Epilepsy Res. (2016)
120:37–46. doi: 10.1016/j.eplepsyres.2015.12.002

45. Kim JB, Suh SI, Seo WK, Oh K, Koh SB. Altered thalamocortical
functional connectivity in idiopathic generalized epilepsy. Epilepsia. (2014) 55:592–
600. doi: 10.1111/epi.12580

46. Cohen AL, Fair DA, Dosenbach NU, Miezin FM, Dierker D. Defining
functional areas in individual human brains using resting functional connectivity MRI.
Neuroimage. (2008) 41:45–57. doi: 10.1016/j.neuroimage.2008.01.066

47. Kraemer HC, Yesavage JA, Taylor JL, Kupfer D. How can we learn about
developmental processes from cross-sectional studies, or can we? Am J Psychiatry.
(2000) 157:163–71. doi: 10.1176/appi.ajp.157.2.163

Frontiers inNeurology 09 frontiersin.org

https://doi.org/10.3389/fneur.2023.1135305
https://doi.org/10.1016/j.neuroimage.2009.10.003
https://doi.org/10.2466/pr0.2002.90.2.495
https://doi.org/10.1002/hbm.20027
https://doi.org/10.1093/schbul/sbw110
https://doi.org/10.1016/j.eplepsyres.2013.10.002
https://doi.org/10.1177/1073858406293182
https://doi.org/10.1371/journal.pone.0002051
https://doi.org/10.1093/cercor/bhw416
https://doi.org/10.1007/s11682-016-9533-6
https://doi.org/10.1016/j.nicl.2022.103160
https://doi.org/10.3389/fneur.2022.880902
https://doi.org/10.3389/fnagi.2022.964874
https://doi.org/10.1038/srep16152
https://doi.org/10.1016/j.neuroimage.2011.03.036
https://doi.org/10.1016/j.jns.2014.02.016
https://doi.org/10.1007/s10548-017-0555-1
https://doi.org/10.1016/j.eplepsyres.2017.10.023
https://doi.org/10.1016/j.eplepsyres.2015.12.002
https://doi.org/10.1111/epi.12580
https://doi.org/10.1016/j.neuroimage.2008.01.066
https://doi.org/10.1176/appi.ajp.157.2.163
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org

	Impaired rich-club connectivity in childhood absence epilepsy
	1. Introduction
	2. Materials and methods 
	2.1. Participants
	2.2. MRI acquisition and processing
	2.3. Construction of structural brain networks
	2.4. Network node definition
	2.5. Tractography-based structural connections
	2.6. Graph analysis of connectome topology
	2.6.1. Global network metrics
	2.6.2. Rich-club organization
	2.6.3. Node and edge classification

	2.7. Statistical analysis

	3. Results 
	3.1. Global network metrics
	3.2. Rich-club organization

	4. Discussion
	5. Limitations
	6. Conclusion
	Data availability statement
	Ethics statement
	Author contributions
	Funding
	Acknowledgments
	Conflict of interest
	Publisher's note
	Supplementary material
	References


