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The human brain is an exceptionally complex organ that is comprised of billions

of neurons. Therefore, when a traumatic event such as a concussion occurs,

somatic, cognitive, behavioral, and sleep impairments are the common outcome.

Each concussion is unique in the sense that the magnitude of biomechanical

forces and the direction, rotation, and source of those forces are di�erent

for each concussive event. This helps to explain the unpredictable nature of

post-concussion symptoms that can arise and resolve. The purpose of this

narrative review is to connect the anatomical location, healthy function, and

associated post-concussion symptoms of some major cerebral gray and white

matter brain regions and the cerebellum. As a non-exhaustive description of

post-concussion symptoms nor comprehensive inclusion of all brain regions, we

have aimed to amalgamate the research performed for specific brain regions

into a single article to clarify and enhance clinical and research concussion

assessment. The current status of concussion diagnosis is highly subjective and

primarily based on self-report of symptoms, so this review may be able to

provide a connection between brain anatomy and the clinical presentation of

concussions to enhance medical imaging assessments. By explaining anatomical

relevance in terms of clinical concussion symptom presentation, an increased

understanding of concussions may also be achieved to improve concussion

recognition and diagnosis.

KEYWORDS

post-concussion symptoms, brain anatomy, concussion, gray matter, white matter,

cerebellum, superior longitudinal fasciculus, insula

1. Introduction

The field of concussion awareness, prevention, and mitigation is constantly growing. As
a result, the medical knowledge of anatomical and physiological changes post-concussion is
still evolving. To improve concussion diagnosis and personalized treatment, it is important
to first understand brain structures and their respective functions. This review briefly defines
concussion characteristics, but the main focus is on functional brain anatomy and the
relationship of specific damaged brain regions to resulting post-concussion symptoms. The
human brain is an exceptionally complex organ that comprises billions of neurons (1).
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Our brain consists of a large cerebrum, with left and right
hemispheres made up of four lobes (frontal, temporal, parietal, and
occipital), central sub-cortical structures (2), and the cerebellum
(Latin for “little brain”) (3). The cortical surface, or gray matter,
contains the neuronal cell bodies, dendrites, glial cells, axons,
and synapses that produce neuronal signals and are found in the
cortical, sub-cortical, and cerebellar areas as the gray layer (2).
Conversely, white matter contains myelinated and unmyelinated
neuronal axons, which are the physical connection between
neuronal cell bodies that transmit the neuronal signals efficiently
between gray matter regions (2). The cerebellum is an immensely
folded brain region, segmented from the cerebrum, that is involved
in all aspects of human function and cognition (3).

Concussions are complex injuries that can have various acute
and chronic complications (4). A concussion is caused by a blow
to the head, neck, or body that results in the brain becoming
injured by resultant propagating forces (rapid de- or acceleration)
and does not have to involve a loss of consciousness (4). Most
adults who sustain a concussion recover within 10–14 days (∼90%);
however, many people have symptoms persisting longer than a
month (4–6). Concussions are mainly caused by motor vehicle
accidents, falls, assaults, and sports, with domestic events and non-
professional sports being the leaders of this injury (5, 7). The
forces applied to the brain during concussive events can produce
serious shearing and tearing of tissues that trigger a cascade
of neurometabolic changes (8). These structural, functional,
and physiological brain alterations manifest uniquely in each
individual, where these pathophysiological alterations are often
undetectable on conventional clinical neuroimaging exams because
these changes are on the molecular or microvascular scale. A head
injury that results in structural injuries such as brain bleeding and
swelling or a skull fracture would classify as amore severe traumatic
brain injury and not a concussion. Thus, concussion-related brain
damage or injury is most often present as shearing or tearing
of white matter tracts (9) that result in the ionic dysregulation
of sodium-potassium, impaired neurotransmission along axons
(10), or more functional implications such as abnormal cerebral
blood flow (11) and decreased blood-oxygen level-dependent
(BOLD) signal, measured using functional magnetic resonance
imaging (fMRI) scans (12), of focal brain regions (13) and across
functional networks (14). With that information, this review will
remain unspecific to the root injury pathophysiology (e.g., ionic
dysregulation, decreased cerebral blood flow, or neurovascular
uncoupling) when describing concussion symptoms to concussion-
related brain damage. Furthermore, this review will focus on
specific and focal brain regions as functional brain networks
deserve a review of their own.

2. Regional brain anatomy and
associated post-concussion
symptoms

The brain has been the subject of extensive research, typically
conducted as anatomical dissection, histology, and medical
imaging, but also as cell/tissue culture and biochemical/genetic
assays, which have allowed for an ever-improving understanding of

normal and pathological brain function. This review focuses on 15
cerebral gray matter (Figure 1) and 10 cerebral white matter brain
regions (Figure 2) that are physically large and have been shown in
the literature to have important and specific functional relevance
to concussions (21–25). The cerebellum and its subdivisions
(Figure 3) were also examined to discuss its involvement in
post-concussion symptoms, emphasize the influence it has over
neurocognitive function, and encourage increased clinical and
research attention to this important but often overlooked part of
the human brain. This review is a non-exhaustive compilation of
brain regions and concussion symptoms and is intended to be a
reference point for researchers and clinicians. Neuroplasticity can
alter regional brain function in specific individuals, especially post-
injury, but the inclusion of all possible neuroplastic possibilities
falls outside the scope of this review.

Brain regions will be discussed in terms of their location
within the human brain, their healthy functional involvement,
and common alterations found post-concussion expressed as
somatic, cognitive, emotional, or sleep-related symptoms (4, 27,
28) (Table 1). Somatic post-concussion symptoms can include
headaches, nausea, vomiting, balance problems, visual problems,
dizziness, light-headedness, fatigue, sensitivity to light, sensitivity
to noise, numbness, tingling, bodily pain, and motor control
problems. Cognitive post-concussion symptoms can include
feeling “slow”, feeling “foggy”, difficulty concentrating, difficulty
remembering, confusion, repetitive speech, and language problems.
Emotional post-concussion symptoms can include irritability,
sadness, feeling hopeless, nervousness, anxiousness, and feeling
more emotional. Finally, sleep-related post-concussion symptoms
can include trouble falling asleep, sleeping more or less than
usual, and drowsiness. The variety of post-concussion symptoms
indicates how a range of brain regions could be implicated during a
single concussive injury, and why damage to specific brain regions
may explain patient-specific symptoms.

2.1. Gray matter brain regions

2.1.1. Amygdala
The amygdala is a symmetric deep brain structure that

comprises a group of neurons located antero-medial to the
hippocampus and sub-cortical to the temporal lobe (Figure 1A).
It is almond-shaped and subdivided into the centro-medial,
latero-basal, and superficial groups (29). The main role of the
amygdala involves emotional and cognitive processing linked to
the limbic system (30–32). Emotional responses related to pain,
fear, incoming threats, reward-related activities, empathy, personal
importance/significance, and facial expressions are all governed by
the amygdala (33–36). Moreover, the amygdala has been noted to
play roles in social attention, social responses, salience tagging,
interpreting visual signals, tactile learning, explicit memory, and
implicit learning (29, 37).

Damage to the amygdala can lead to deficits in emotional
processing, emotional learning, and memory, which can be
further manifested in autism spectrum disorder, psychopathy,
and loss of the “cognitive control” system in adolescents (36, 38–
42). Furthermore, sensitivity to fearful facial expressions, fear
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FIGURE 1

Gray matter brain regions (colored blue) relevant to concussion-related damage that is organized as (A–O): (A) amygdala, (B) anterior intra-parietal

sulcus, (C) Broca’s area, (D) hippocampus, (E) inferior parietal lobule, (F) insula, (G) lateral geniculate body, (H) mammillary body, (I) medial geniculate

body, (J) premotor cortex, (K) primary motor cortex, (L) primary somatosensory cortex, (M) secondary somatosensory cortex, (N) superior parietal

lobule, and (O) visual cortex. These brain regions are overlayed onto the MNI152 1mm standard space T1-weighted brain from the (left to right) right

sagittal, anterior frontal, and superior axial perspectives. These brain regions were from the Juelich Histological atlas (15–17).
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FIGURE 2

White matter brain regions (colored blue) relevant to concussion-related damage that is organized as (A–J): (A) acoustic radiation, (B) callosal body,

(C) cingulum, (D) corticospinal tract, (E) fornix, (F) inferior occipito-frontal fascicle, (G) optic radiation, (H) superior longitudinal fasciculus, (I) superior

occipito-frontal fascicle, and (J) uncinate fascicle. These brain regions are overlayed onto the MNI152 1mm standard space T1-weighted brain from

the (left to right) right sagittal, anterior frontal, and superior axial perspectives. These brain regions were from the Juelich Histological atlas (15–17)

and the JHU DTI-based white matter atlases (18–20).

conditioning to social responses, alterations in vigilance, reduced
self-motivation, and deficits in socio-emotional function can be
caused by a damaged amygdala (29, 36, 43). This was corroborated
in adolescents with persistent concussion symptoms who had
elevated incidence of emotional/behavioral symptoms (e.g.,
depression, anxiety, and anhedonia) with decreased amygdala
activity in response to an emotional face-processing task (44).
With respect to sleep, a study using [18F]-fluorodeoxyglucose
positron emission tomography (FDG PET) to measure the effect
of combat-caused mild traumatic brain injuries on the relative
cerebral metabolic rate of glucose (rCMRglc) found that head
trauma was associated with lower rCMRglc while awake and during
rapid-eye movement (REM) sleep in the amygdala, hippocampus,
parahippocampal gyrus, thalamus, insula, uncus, culmen,
visual association cortices, and midline medial frontal cortices
(45). Based on the previously mentioned research on healthy
and injured amygdala function, the common post-concussion
symptoms related to the amygdala could result in somatic
[e.g., headaches (46)], cognitive [e.g., feeling “slow” or “foggy”,

difficulty concentrating, or difficulty remembering (29, 37)],
emotional [e.g., irritability, sadness, nervousness, more emotional
(33, 44)], or sleep symptoms [e.g., trouble falling to sleep, loss of
sleep (45)] (Table 2).

2.1.2. Anterior intra-parietal sulcus lobule
(anterior wall of the intraparietal sulcus)

The anterior intra-parietal sulcus lobule occupies the antero-
lateral bank of the deep intraparietal sulcus that spans the surface
of the parietal lobe (Figure 1B) (29). The anterior intra-parietal
lobule can be further subdivided into three zones (hlP1, hlP2, and
hlP3) based on cytoarchitecture (47, 48). Regions hlP1 and hlP2
are situated in the lateral wall of the anterior intra-parietal sulcus,
while the hlP3 region lies more medial and has a distinctly different
laminar pattern from the rest of the other superior parietal lobe
gray matter, which ends posteriorly at the base of the intra-parietal
sulcus (48). The anterior intra-parietal sulcus lobule communicates
with the cingulum (33), superior longitudinal fasciculus (49),
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TABLE 1 A summary table for the four primary categories of

post-concussion symptoms—somatic, cognitive, emotional, and

sleep—along with a list of the corresponding post-concussion symptoms

within each category.

Symptom category Post-concussion
symptoms

Somatic • Headaches
• Nausea
• Vomiting
• Balance problems
• Visual problems
• Dizziness
• Light-headedness
• Fatigue
• Sensitivity to light
• Sensitivity to noise
• Numbness
• Tingling
• Bodily pain
• Motor control problems

Cognitive • Feeling “slow”
• Feeling “foggy”
• Difficulty concentrating
• Difficulty remembering
• Confusion
• Repetitive speech
• Language problems

Emotional • Irritability
• Sadness
• Feeling hopeless
• Nervousness
• Anxiousness
• Feeling more emotional

Sleep • Trouble falling asleep
• Sleeping more or less than

usual
• Drowsiness

sensory and motor cortices (50, 51), insula (52), the temporal (50)
and occipital lobes (53), and neighboring parietal structures such as
the inferior and superior parietal lobules (48, 52).

The anterior intra-parietal sulcus lobule mainly contributes
to visuomotor functions including finger manipulation (49, 51),
tactility (53), eye movements (51, 54), vestibular and egocentric
attention (55), auditory coordinate location (56), and hierarchical
structure processing (50). The anterior intra-parietal sulcus lobule
also plays a role in manipulating objects with responsiveness to
size, shape, and surfaces of specific geometries (57, 58), temporal
relations with regard to grasping (57), memorizing geometry
(57), coordinated defensive movements (59, 60), and writing-
related functions (61). Visual-dominant neurons, found only in
the anterior intra-parietal sulcus lobule, activated differently with
respect to ambient light levels (60, 62). A study on patients with
moderate and severe traumatic brain injuries found the anterior
intra-parietal sulcus to have decreased functional connectivity
in relation to sensory processing and integration and attention
networks (63). Damage to the anterior intra-parietal lobule has
also been shown to manifest as reduced ability to manipulate
objects (62, 64) such as ideomotor apraxia (64, 65), reduced
grip (64, 66), reduced tactile sensitivity (58, 67), an inability to
grasp objects (57, 62, 64), difficulty visualizing object rotation

TABLE 2 A summary of 15 gray matter brain regions and their associated

functions and concussion-related symptoms.

Brain
region

Associated
functions

Concussion-related
symptoms

Amygdala • Emotional processing
and learning

• Memory
• Fearfulness sensitivity
• Self-motivation
• Socio-

emotional function

• Headache
• Feeling “slow” or “foggy”
• Difficulty concentrating
• Difficulty remembering
• Irritability
• Sadness
• Nervousness
• More emotional
• Trouble falling asleep
• Loss of sleep

Anterior
intra-parietal
sulcus

• Visuomotor functions
• Finger manipulation
• Tactility
• Eye movements
• Vestibular and

egocentric attention
• Auditory coordinate

location
• Hierarchical structure

processing
• Memorizing geometry
• Affected by light levels

• Light sensitivity
• Noise sensitivity
• Motor control problems
• Visual problems
• Feeling “slow”

Broca’s area • Language processing
• Motor control

with speech

• Feeling “slow” or “foggy”
• Difficulty concentrating
• Difficulty remembering
• Speech and

language problems

Hippocampus • Every aspect of
memory

• Learning new tasks
• Understanding verbal

and spatial cues
• Motivation
• Executive function

• Feeling “foggy”
• Difficulty remembering
• Feeling more emotional
• Sadness
• Nervousness

Inferior
parietal lobule

• Visuospatial
navigation

• Sound perception
• Auditory memory
• Saccadic eye

movements
• Egocentric

decision-making
• Emotional empathy
• Speech and language

processing
• Reading and writing

• Headache
• Balance problems
• Dizziness
• Light Sensitivity
• Noise Sensitivity
• Visual problems
• Motor control problems
• Feeling “slow” or “foggy”
• Difficulty concentrating
• Difficulty remembering

Insula • Somatic, motor, and
emotion

• Tactility
• Auditory
• Taste
• Pain
• Speech production
• Gastric motility
• Patterned motor

movements
• Cardiovascular

function
• Decision-making tasks

• Headache
• Nausea
• Vomiting
• Sensitivity to noise
• Bodily pain
• Feeling “slow” or “foggy”
• Language problems
• Irritability
• Feeling more emotional

Lateral
geniculate
body

• Relay of visual input • Visual problems
• Sensitivity to light
• Sensitivity to noise

Mammillary
body

• Memory
• Olfactory

• Headache
• Loss of smell

(Continued)
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TABLE 2 (Continued)

Brain
region

Associated
functions

Concussion-related
symptoms

• Inability to
understand smells

• Spatial abilities

• Difficulty remembering

Medial
geniculate
body

• Auditory processing
• Speech comprehension

• Headache
• Sensitivity to noise
• Nervousness

Premotor
cortex

• Generate and plan
motor movements

• Proprioception and
spatial awareness

• Fine and gross
motor coordination

• Headache
• Nausea
• Balance problems
• Dizziness
• Fatigue
• Motor control problems
• Feeling “slow”
• Difficulty remembering
• Language problems

Primary motor
cortex

• Motor control
• Movement execution
• Sensory feedback

• Headache
• Nausea
• Vomiting
• Balance problems
• Fatigue
• Motor control problems
• Feeling “slow”

Primary
somatosensory
cortex

• Interpretation of all
sensory information

• Distinct localization of
where sensory
input originated

• Headache
• Nausea
• Vomiting
• Balance problems
• Sensitivity to light
• Sensitivity to noise
• Bodily pain
• Numbness
• Visual problems

Secondary
somatosensory
cortex

• Secondary processing
and interpretation of
sensory information

• Headache
• Nausea
• Vomiting
• Balance problems
• Dizziness
• Sensitivity to light
• Sensitivity to noise
• Numbness
• Visual problems
• Bodily pain

Superior
parietal lobule

• Somatosensory and
visual interpretation
for specific motor
movements

• Egocentric tasks
• Emotion-relevant

behavior
• Auditory association

• Headache
• Balance problems
• Dizziness
• Sensitivity to light
• Motor control problems
• Visual problems
• Feeling “slow”
• Difficulty remembering
• Confusion

Visual cortex • Processing of all visual
information

• Colors, shapes,
motion, and light

• Headache
• Nausea
• Vomiting
• Balance problems
• Dizziness
• Sensitivity to light
• Visual problems

(68), spatial neglect (69–71), and autotopagnosia (67). Post-
concussion symptoms associated with the anterior intra-parietal
sulcus lobule are somatic [e.g., light sensitivity (58, 60, 62),
noise sensitivity (55, 56), motor control problems (49, 57),

visual problems (62, 72)] and cognitive symptoms [e.g., feeling
“slow” (63)] (Table 2).

2.1.3. Broca’s area
This area resides in the inferior and lateral aspect of the

pars opercularis of the inferior frontal lobe, which is bordered
by the Sylvian fissure and its ascending anterior ramus ventrally
and the precentral sulcus dorsally in the dominant, and typically
left, hemisphere (Figure 1C) (73). Broca’s area is the language
processing area and is fundamentally involved in the motor aspect
of speech (73). Neurological signals generated from Broca’s area
help initiate the movement of musculature in the throat, mouth,
and tongue to produce meaningful sounds and initiate complex
speech (29). This area is the neural mechanism for language
and plays a vital role in word decoding, language production,
phonology, articulation, and ensuring proper grammar, and
is associated with all language-related tasks (29, 42, 74, 75).
Structurally, Broca’s area can be further subdivided into two parts,
Brodmann’s Area (BA) 44 and BA45 (which is located in the
pars triangularis of the frontal operculum of the inferior frontal
lobe, which is bordered by the Sylvian fissure and its horizontal
ramus ventrally and its ascending anterior ramus posteriorly), and
the arcuate fasciculus pathway links Wernicke’s area to Broca’s
area to produce the complete motor and sensory aspects of
language and speech (64, 76). BA44 is more involved in language
production, whereas BA45 is further involved in semantics and
fluency, temporal or affective encoding (77).

Damage to Broca’s area includes, but is not limited to,
conduction aphasia, difficulty initiating speech, effortful
speech production, difficulty forming sentences, impairment
in speech melody, poor articulation, semantic and phonemic
paraphasia, slurring, production of telegraphic sentences,
abnormal grammatical forms, and omitting the ending of words
(29, 73, 74, 76–78). The overall absence of auditory comprehension
can also lead to a reduced ability to imitate other people’s spoken
words and difficulties with reading and writing (29, 78). One
study on symptomatic adolescents at 1 month post-concussion
found that Broca’s Area had decreased activation during the
working memory 1-back > 0-back contrast task, and symptomatic
participants felt significantly more slowed down, mentally foggy,
had difficulties remembering and concentrating, had a lower
neurocognitive index, and complex attentional test scores (25).
Post-concussion, injury of Broca’s Area could manifest as cognitive
symptoms [e.g., feeling “slow” or “foggy”, difficulty concentrating
or remembering (25), or speech and language impairments
(77, 78)] (Table 2).

2.1.4. Hippocampus
The hippocampus is a symmetrically elongated brain structure

that lies deep near the brain’s hemispheric midline toward the
splenium of the corpus callosum and follows it anteriorly but
also has lateral extensions to the temporal lobe (Figure 1D). The
hippocampus can be separated into head, body, and tail segments,
with subdivisions of the hippocampal head that include the cornu
ammonis, dentate gyrus, and the subiculum (29). The hippocampal
entorhinal cortex facilitates learning, memory, emotion, and social
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behavior (43, 79), whereas the subiculum focuses on episodic
memory functions (80). The hippocampi are a central structure
that connects with and affects all brain functions (33, 79, 81, 82),
with a closer influence over the premotor cortex (83), medial
geniculate bodies (84), mammillary bodies (33, 79), and other deep
brain structures in the diencephalon (29, 33, 85). The thalamus,
hypothalamus, amygdala, mammillary body, and fornix also have
key hippocampal connections to comprise the limbic system and
enable memory facilitation (43, 84). Furthermore, important white
matter structures such as the cingulum (33, 86), uncinate fasciculus
(43, 81), and corticospinal tract (82) facilitate other functions of
the hippocampus.

The main role of the hippocampi is to execute every aspect of
memory (33, 42, 86), but other vital roles include learning new tasks
(29), understanding verbal and spatial cues (29, 68, 87), motivation
(43), egocentric and allocentric coding (88, 89), and executive
function (33).

Damage to the hippocampus often manifests in a variety of
memory impairments (81, 90) affecting verbal (29), spatial (29, 91),
and episodic (29, 33, 79) memory functions (Table 2). Furthermore,
hippocampal atrophy due to aging (92), concussions (93), and
chronic stress (35) can produce cascading cell loss and/or gliosis
(40) leading to myopathy, weakness, fatigue, bone decalcification,
and further neural degeneration (94). Among other conditions, the
sustained degradation of the hippocampus has been shown to cause
amnesia (95), mild cognitive impairment (96, 97), Alzheimer’s
Disease (98), depression (99), and anxiety disorders (100). Since
hippocampi are so crucial to learning, damage has also been
shown to impair social conditioning and certain motor tasks
(91). Concussions have been shown to cause cerebral blood flow
and activity in the hippocampus which would be related to the
presence of memory-related symptoms (13). Thus, in summary,
common post-concussion symptoms related to focal hippocampus
damage could be cognitive [e.g., feeling “foggy”, or difficulty
remembering (13, 79)] or emotional symptoms [e.g., feeling more
emotional, sadness, and nervousness (99, 100)]. Fortunately, in
unilateral damage, the option of some compensation through
the communication of the contralateral hippocampus, along
with memory training, has been shown to initiate compensatory
neuroplastic processes (33) to diminish impairments caused by
pathology (80).

2.1.5. Inferior parietal lobule
The inferior parietal lobule is a large symmetric lobule (i.e.,

grouping) on the inferior aspect of the parietal lobe below the
inferior parietal sulcus (Figure 1E) (29). The inferior parietal
lobule also harbors the upswing of the long, deep arcuate intra-
parietal sulcus behind the lower postcentral gyrus which then
slashes posteriorly across the convex surface of the parietal lobe
(29). The inferior parietal lobule can be further separated into
3 subregions based on cytoarchitecture into the anterior, middle,
and posterior subdivisions (101). The connectivity of the inferior
parietal lobule with all major semantic areas of the brain lends
itself to communicating with aspects of the temporal lobe (43,
102), occipital lobe (103), cerebellum (64), neighboring superior
and anterior intraparietal lobules (33, 43, 75), sensory and motor

cortices (43, 49, 102), and deep brain structures such as the
insula (104), amygdala (34), medial geniculate bodies (105), and
hippocampi (30). Additionally, white matter bundles such as
the arcuate fasciculus (106), cingulum (33, 43), and superior
longitudinal fasciculus (43, 107) form long U-shaped fibers (74)
that connect Broca and Wernicke’s area for the left inferior parietal
lobule to aid in the language (43, 108).

Overall, the inferior parietal lobule interfaces with several areas
of information convergence to facilitate a variety of sensorimotor
and behavior-related actions (52, 109). Visuospatial navigation is
primarily carried out by the inferior parietal lobule, which plays
roles in visuomotor mechanisms (49, 110, 111), velocity/timing
information (112), grasping (49), and complex tool use (49).
Bilaterally, the inferior parietal lobule also plays roles in sound
perception and auditory memory despite the primary auditory
cortex being in Heschl’s gyrus in the superior temporal lobe (103,
113), saccadic eye movements (114), egocentric decision-making
(60), and emotional empathy (34). The left inferior parietal lobule is
involved in speech and language processing (108) and reading and
writing (75), while the right inferior parietal lobule is responsible
for natural handwriting tempo (115).

Damage to the inferior parietal lobules generally causes reduced
visuospatial and motor control abilities (52, 74, 86, 116), auditory
agnosia (117), increased egocentric or allocentric behavior (55),
and language deficits (108). Damage to the inferior parietal lobule
is also related to speech pathology and shown to cause phonemic
paraphasias (74), dysgraphia causing difficulties in reading and
writing (52, 75, 118), disrupted phonological processing, and
speech arrest (74). Specific to concussion, a study by Zuleger et al.
found that the inferior parietal lobule was significantly altered post-
concussion and significantly connected to the primary motor and
sensory cortices and the inferior temporal gyrus; suggesting that
sensorimotor, attention, cognition, and proprioception functions
would be affected by concussion (119). In general, common
post-concussion symptoms arising from inferior parietal lobule
damage would include somatic [e.g., headaches, balance problems,
dizziness, light or noise sensitivity (103, 113, 119) visual and motor
problems (49, 119)] and cognitive symptoms [e.g., feeling “slow” or
“foggy”, difficulty concentrating or remembering (103, 113, 119)]
(Table 2).

2.1.6. Insula
The insula is a large triangular region that lies deep into the

lateral cerebral fissure (i.e., Fissura Sylvi), covered by the lower
parietal and frontal lobes and transitions to form the temporal lobes
(Figure 1F) (29, 120). The central sulcus of the insula separates
the small gyri (usually 3) from the long gyri (usually 2). The
insula is cytoarchitectonically distinguishable from surrounding
brain regions by lamination patterns and degrees of granularity
(37, 120, 121). The insula can be subdivided into three main
subregions known as the anterior granular, posterior granular,
and intermediate dysgranular cortices (37, 120, 121). The anterior
and posterior granular cortices are a central node within the
limbic, frontal, and auditory pathways (37, 121); whereas the
intermediate dysgranual cortex mainly facilitates vestibular and
somatic sensations (122). Apart from its subdivisions, the insula’s
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unique anatomical position allows for communication with many
brain regions including the larger frontal, parietal, temporal, and
occipital lobes (120, 123), and with more distinct structures such
as the amygdala (43), hippocampus (43), thalamus (124), midbrain
(125), medial geniculate nucleus (126), auditory cortex (126),
somatosensory cortices (37), motor cortices (127), and Broca’s area
(128), and also has connections to the cerebellum (124). White
matter bundles connected to the insula also consist of the cingulum
(43, 124), corpus callosum (129), and arcuate fasciculus (76).

Given its multiple communication pathways, the insular system
carries out a variety of somatic and motor functions and is involved
with emotional behaviors (120). Sensorially, the insula interprets
contralateral, and occasionally ipsilateral (130), tactility (37, 43)
with regard to feelings of warmth (37, 131, 132) and vibration
(133). Processing information for auditory (126), taste (37, 134),
and pain (37, 135, 136) stimuli are also insular somatosensory
functions. Because of its connections to the motor cortex, the insula
is also involved in speech production (122, 125, 134, 137), gastric
motility (37, 135, 138), repetitive motor movements (43, 139),
cardiovascular function (37, 140), and also to other afferent vagal
nerve fibers (141). Finally, the insula may allow the production
of the appropriate emotional responses to stimuli (142) and
connect feelings with decision-making (120, 143). Emotions such
as empathy (60), body awareness (37, 86), decision-making tasks
(37, 132), and disgust (37, 144) all have insular involvement.

Pathology associated with the insula is often characterized
by spontaneous somatosensory sensations that cause discomfort
and pain along with a series of other impairments (Table 2).
Somatosensory discomfort can include warmth and thermal
sensitivity, violent and painful electric current sensations in the
face, mouth, and upper limbs, abdominal heaviness, and difficulty
breathing (37, 134). As the insula forms part of a central pain
pathway (145), patients with insular lesions may suffer from
pseudothalamic syndrome (146, 147), painful paresthesias (37),
nociceptive sensitivity, analgesia/hyperalgesia (146), and difficulties
processing pain (37, 148). Insular pathologies can result in
auditory impairments (131), including hearing loss (105), auditory
agnosia (149), or auditory hallucinations (150), olfactory (29,
42) or gustatory impairments such as unpleasant and metallic
tastes (37), alterations in gastro-intestinal movement/motility
and tone (130), and deficits in discriminating size, texture,
and shape of objects (151). Moreover, speech-related problems
can manifest as conduction aphasia (76, 103), effortful speech,
articulation impairments, semantic and phonemic paraphasias,
telegraphic sentences, abnormal grammatical form, and dysphonic
and dysarthric speech (37, 134). Other symptoms that have been
noted due to insular damage includemental confusion (130), short-
term memory deficits (76), and nausea (67). Isnard et al. also found
that patients with insular lesions could suffer from hypersalivation,
clonic jerks in the arm or face, anxiety, compulsive swallowing, and
impaired consciousness (134). Untreated insular damage could lead
to empathy or emotional deficits (86), disruptive behavior disorders
in adolescents (86, 152), depression in adults (34, 153), anxiety
(154), and a tendency toward substance abuse (155). A recent MRI
study found significantly reduced insular functional connectivity
and damaged white matter connections along with slower times
on completing all cognitive tasks and lower test scores compared
to controls (156). Another recent study on post-concussion

headaches compared persistent concussion symptoms patients with
migraine patients and identified numerous functional connectivity
differences between brain regions, including the insula, cingulate,
temporal pole, cuneus, secondary somatosensory cortex, ventro-
medial prefrontal cortex, and others (46). In summary, insular
damage caused by a concussion could result in somatic [e.g.,
headache (46, 157), nausea, vomiting (67, 130), noise sensitivity
(105, 134), and motor problems (120, 134), or bodily pain (145,
148)], cognitive (e.g., feeling “slow” or “foggy” (156), or language
problems (120, 134)], or emotional symptoms [e.g., irritability or
feeling more emotional (86, 142, 153)] (Table 2).

2.1.7. Lateral geniculate body
The lateral geniculate bodies, also referred to as the lateral

geniculate nuclei, are a pair of dense, symmetric neurons that lie
directly lateral to the medial geniculate bodies (Figure 1G) (158).
The lateral geniculate bodies play a significant role in relaying visual
impulses from the retina by integrating pathways from the optic
radiation, optic nerve, Meyer’s loop, corpus callosum, brainstem,
occipital cortex, and other visual-related nodes (31, 158). The
lateral geniculate bodies are also considered to have a large thalamic
component and thus are the first stage at which feedback signals
affect visual processing (159, 160). The thalamic connection to the
lateral geniculate bodies governs selective attention control related
to visual inputs (158).

Pathology associated with the lateral geniculate bodies is
characterized by an overall loss of visual experience, lack of
visual awareness, and a reduced ability to understand visual
inputs (Table 2) (158, 161). In addition, due to the link to
selective attention, lateral geniculate body damage can also produce
blindsight in particular areas and lead to difficulty concentrating
on visual objects (158, 161, 162). A diffusion MRI case study on
a 35-year-old mild traumatic brain injury female patient found
auditory deficits and deafness in connection to white matter injury
between the lateral geniculate body and occipital pole (163). Based
on the neuroanatomical role of the lateral geniculate body and the
diffusion case study, common post-concussion symptoms related
to lateral geniculate body impairment could result in somatic
symptoms (e.g., visual problems and sensitivity to noise and light).

2.1.8. Mammillary body
The mammillary bodies are a pair of spherical structures within

the inferior hypothalamus paramedian of the brain that lies directly
adjacent to the rostral-anterior aspect of the brainstem (Figure 1H)
(79, 164). The mammillary bodies are part of the limbic system and
part of the Papez circuit, which facilitates memory and emotion (31,
79). The mammillary bodies are particularly involved in long-term
memory function, word recognition, recall of episodic information,
spatial processing, and the ability to understand olfactory inputs
(33, 165, 166).

Damage to the mammillary bodies can lead to a variety of
memory, olfactory, and spatial deficits, however, because it is
considered a relay station in the Papez circuit, the bodies can
undergo atrophy due to damage in its other connecting nodes
such as the amygdala, fornix, hippocampus, and thalamus (31, 167)
or due to chronic alcohol consumption (168). The functions of
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these structures have also been associated with dementia, epilepsy,
schizophrenia, amnesia, and the loss of smell and/or the inability
to process or understand the sense of smell (31, 165, 166). A
recent article on chronic traumatic encephalopathy (CTE) found
that mammillary bodies were frequently atrophied in CTE patient
brains, and thus could apply to individual concussion cases (169).
Post-concussion, damage to the mammillary bodies could result in
somatic [e.g., headaches and loss of smell (33, 165)] and cognitive
symptoms [e.g., difficulty remembering (33)] (Table 2).

2.1.9. Medial geniculate body
The medial geniculate bodies, often referred to as the medial

geniculate nuclei, are a pair of symmetric structures that lie
directly adjacent to the brainstem and medial to the lateral
geniculate nuclei (Figure 1I) (170, 171). The medial geniculate
bodies can be subdivided into ventral (172), dorsal, and medial
(173). Connections from the medial geniculate bodies to the
inferior colliculus and the auditory cortex also form pathways
to create a detailed association between speech and sound (173).
The medial geniculate bodies are mainly responsible for relaying
auditory impulses or sounds from the ear to the temporal lobe via
acoustic radiation and the thalamus (173, 174).

Auditory frequencies processed in the medial geniculate
bodies are organized such that complex and higher-order sounds
are processed with the neuronally denser lemniscal pathway
that integrates auditory and multisensory information, whereas
secondary sounds, such as sharp responses to tones, are processed
by less neuron-rich regions (171). The extralemniscal pathway
then processes responses to basic tones (150, 174). The medial
geniculate bodies have also been known to facilitate the efficient
transmission of auditory linguistic signals in speech to preserve
and perceive environmental sounds (175). Pathology associated
with the medial geniculate body is generalized auditory agnosia
and a reduced ability to understand auditory inputs (171, 176).
Partially because of the close connection between the medial
geniculate bodies and other subcortical structures such as the
hippocampus and amygdala, a rodent model traumatic brain injury
study found abnormally increased activity in the medial geniculate
bodies in connection to auditory-induced post-traumatic stress
and amygdala dysfunction (177). Based on the functions of the
medial geniculate body and its connections to other subcortical
structures, concussion-related damage could manifest as somatic
symptoms [e.g., headaches and noise sensitivity (171, 177)] and
possibly emotional symptoms [e.g., nervousness (177)] (Table 2).

2.1.10. Premotor cortex
The premotor cortex spans a substantial portion of the frontal

lobe and lies directly anterior to the primary motor cortex
(Figure 1J) (29). The premotor cortex can be subdivided into
ventral and dorsal regions and interacts with the primary motor
cortex, corticospinal tract, colliculi projections, acoustic radiation,
auditory cortex, basal ganglia, cerebellum, and the limbic system
to generate and plan motor movements (29, 124). Information
from multimodal sensory inputs is sent to the premotor cortex
where spatial coordinates are transformed into an appropriate
visuomotor 3D representation of space for the primary motor

cortex to convert abstract goals into planned motor actions
(124, 178). The premotor cortex is therefore utilized in precise,
fine-motor hand movements (43, 62, 178). The premotor cortex
also combines tactile, visuospatial, proprioceptive, and cognitive
information to carry out specialized tasks (43, 49, 52, 60, 64, 84,
178). Studies have further shown that the premotor cortex plays
roles in particular social behaviors such as language and articulation
processes (52, 60), writing tasks (75), music cognition (150), early
phases of learning (64), imitation and empathy (60), understanding
intentions and actions (106), vigilance (179), and motivation (180).

Pathology associated with the premotor cortex mainly
manifests in reduced motor control which can cause difficulties
in chewing and performing facial expressions (29), performing
coordinated movements (64), learning a new skilled movement
(64), and ideomotor apraxia (181). Premotor cortex damage
can also affect precise hand movements, errors in limb position
and trajectory, and praxis in hand and finger movements (64).
Due to its involvement with speech, premotor pathology can
also cause hearing impairments (150), complete speech arrest
(74), articulatory disturbances (182), anarthria, or dysarthria
(74, 122), and in severe cases can lead to Pick’s disease (64). It is
also important to note that significant crosstalk occurs between the
bilateral premotor cortices and the ipsilateral primary motor cortex
in which symptoms can sometimes be expressed (64). A study on
acutely concussed adolescents found that the premotor cortex was
one of several brain regions that had significantly reduced BOLD
activity during working memory tasks (183). Meanwhile, a recent
study on a different group of adolescents found that increased
connectivity between the default mode network (DMN) and the
lateral premotor cortex was correlated with motor impairments
post-concussion (184). A study on white matter projections from
the corpus callosum found that concussed female athletes had
a lower white matter volume and fewer tracts projecting to the
premotor cortex; related symptoms were not reported but would
be related to motor movements and coordination (185). Specific
to post-concussion headaches, a recent resting-state fMRI study
found that the premotor cortex was consistently abnormal in those
with mild, moderate, and severe post-concussion headaches (157).
Post-concussion symptoms that could arise from premotor cortex
injury would primarily be somatic [e.g., headaches (157), nausea,
balance problems, dizziness, fatigue, and motor control problems
(64, 184, 185)], but could also include cognitive symptoms [e.g.,
feeling “slow”, language problems (60, 74, 75), or difficulty
remembering (64, 183)] (Table 2).

2.1.11. Primary motor cortex
The primary motor cortex is located on the superior aspect of

the frontal and parietal lobes, on either side of the central sulcus
and anterior to the primary somatosensory cortex, and has some
anatomical overlap with the premotor cortex (Figure 1K) (29). The
primary motor cortex is closely connected to the premotor cortex,
somatosensory cortex, thalamus, hippocampus, corpus callosum,
and brainstem to effectively perform motor movements (29, 60,
186). Closely linked by proximity and functional communication
to the somatosensory homunculus (187–189), the primary motor
cortex is also organized somatotopically where specific zones are
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responsible for directing the action of specific groups of muscles,
joints, and limbs (186). The organization of the primary motor
cortex begins inferolaterally with the tongue, continuing superiorly
in the order of lips, squinting, and fingers, with zones for the wrist,
forearm, and elbow interspersed on the superolateral aspect of the
primary motor cortex, with the lower limb and foot zone located on
the superomedial aspect (29, 186).

Regarding function, the primary motor cortex is responsible
for the execution of voluntary bodily movement. Once a specific
motor task has been decided upon, a “blueprint” for the motor
task is sent to the spinal cord or the cranial nerves for task
execution (29, 186). Information from the primary motor cortex
is transmitted through the brainstem’s pyramidal desiccations
to the contralateral corticospinal tract (i.e., motor plans for the
right arm are generated by the left primary motor cortex) (29,
186). To ensure proper coordination, the primary motor cortex
also incorporates important sensory feedback through touch,
proprioception, autonomic functions, pain, temperature, strength
of muscle contractions, and audiovisual inputs (124, 189). Apart
from directly controlling movements, the primary motor cortex is
also involved in writing tasks (75), executive control (190, 191),
imitation (60), and early phases of learning (64).

Pathology associated with the primary motor cortex
traditionally follows the loss of function in contralateral muscles,
muscle weakness, and reduced motor skills and muscle selectivity
(192, 193). Other pathological symptoms can include impairments
to gait, balance, skilled movements, muscle paresis, muscle
atrophy (29, 64), facial palsy, spasticity, and hearing loss (Table 2)
(150, 194). Similar to the premotor cortex, the primary motor
cortex also exhibits cross-talk between hemispheres, therefore,
subtle abnormalities in ipsilateral limbs may also be present (64).
However, if injuries persist, limb-kinetic apraxia can develop into
corticobasal degeneration and further into Pick’s disease (64, 195).
Fortunately, the primary motor cortex is highly adaptive and
has shown a high capacity for plasticity during injury recovery
(196, 197). A 1H-MR spectroscopy study on acutely concussed
young adults found that the primary motor cortex had significantly
decreased glutamate (i.e., main excitatory neurotransmitter) and
N-acetylaspartate that correlated with symptom severity (198).
Another study, using transcranial magnetic stimulation, found that
concussion severity and subsequent concussions had long-term
effects resulting in subclinical motor cortex dysfunction (199).
The primary motor cortex is involved in many functions, and
as such these post-concussion symptoms could arise as somatic
[e.g., headaches, nausea, vomiting, balance problems, fatigue, and
movement impairments (29, 64, 199)] or cognitive symptoms [e.g.,
feeling “slow” (64, 190)] (Table 2).

2.1.12. Primary somatosensory cortex
The primary somatosensory cortex is a large brain region

that is symmetric and directly posterior to the primary motor
cortex and the central gyrus, with some anatomical overlap with
the premotor cortex (Figure 1L) (29). The primary somatosensory
cortex stretches from the longitudinal fissure to the Sylvian fissure
(Lateral sulcus) approximately along the gyri immediately posterior
to the central sulcus. The primary somatosensory cortex can be

further subdivided into four cytoarchitectonic areas arranged from
anterior to posterior termed Brodmann areas BA3a, BA3b, BA1,
and BA2 that connect to other brain structures to process all
sensory sensations of the human body (29, 200).

Mechanoreceptive somatosensory inputs from the primary
sensory areas including the visual, auditory, vestibular, and
other nervous systems send information through the spinal cord
to the primary somatosensory cortex to contextualize sensory
information to aid future motor-based decisions (29, 37). The
primary somatosensory cortex is therefore processing the sensory
information for proprioception (29, 55, 64, 180), vision (47,
180), motor control (201), regulating cortical excitability (67),
involuntary movement activation (202), working memory (29), fast
perceptual learning (203), and pain (204–206). Like the primary
motor cortex, the primary somatosensory cortex is organized
somatotopically in discrete zones, described by the somatosensory
homunculus (187, 188). Furthermore, each subdivision has been
demonstrated to have complete maps of the contralateral body
surface (187). Neuroplasticity and cortical reorganization are
present in the primary somatosensory cortex (207, 208), which
indicates that cortical maps are in a constant state of fluctuation
(203) and that neural representation is dependent on triggered
stimuli (67).

Damage to the primary somatosensory cortex can cause an
overall reduction in sensory input and interpretation, which can
manifest as reduced tactile ability, poor grip, object manipulation,
uncoordinated finger movements (29), impaired recognition of
facial expressions (67, 209), and praxis errors involving orientation,
limb coordination, and motor control (Table 2) (64, 201).
Discomfort and pain are also commonly elicited as paresthesia,
pins and needles, numbness, tingling, and warmth affecting the
lips, cheek, face, tongue, upper limbs, and lower limbs (37, 134,
210). Additionally, deficits in pain processing occur where pain
can be generated sporadically (94) or create phantom limb pain
(67). A recent longitudinal fMRI study found that the functional
connectivity of the primary somatosensory cortex significantly
reduced at 1 month post-concussion but recovered after 5 months,
and that improved somatosensory connectivity was correlated
with symptom resolution (211). Thus, post-concussion symptoms
would be expected in the presence of primary somatosensory
injury as primarily somatic symptoms [e.g., headaches (46), nausea,
vomiting, balance problems, light sensitivity, noise sensitivity,
bodily pain, numbness, or visual problems (180, 201, 211)]
(Table 2).

2.1.13. Secondary somatosensory cortex
The secondary somatosensory cortex is another large brain

region that is symmetric and lies directly posterior to the primary
somatosensory cortex on the inferolateral aspect of the parietal lobe
(Figure 1M) (29). Similar to the primary somatosensory cortex,
the secondary somatosensory cortex can be further subdivided
into four segments based on their cytoarchitecture and functional
differences: Operculum (OP) 1 (lateral dorsal), OP2 (posterior
ventral), OP3 (anterior ventral), and OP4 (anterior) (212, 213).

The secondary somatosensory cortex carries out similar sensory
processing functions as the primary somatosensory cortex (29,
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55, 64, 139). Also, like the primary somatosensory cortex, the
secondary cortex is organized inferolaterally to superomedially
in a somatotopic form in the order of face, hands, trunk, and
legs (139, 213). The secondary somatosensory cortex sets itself
apart in the ability to localize the origin of somatic sensations
and communication with the parietal cortex (48) and limbic
system (94). Moreover, the localization abilities are attributed
to enlargements of representation maps (203, 208, 214) and
less consistent somatotopic organization (139, 151, 215), where
variability in activation improves discrimination abilities (203,
216).

Damage to the secondary somatosensory cortex oftenmanifests
in reduced psychophysical performance (203), reduced tactile
sensitivity, memory problems (29), phantom limb pain (203, 217),
and praxis errors (64). However, pathology is predominantly
presented as diverse and unpleasant sensations of paresthesia,
pins and needles, numbness, tingling, electrical current, warmth,
electric discharge, and pain in the lips, cheek, face, tongue, upper
and lower limbs, neck, and torso (29, 37, 62, 134). Fortunately,
the secondary somatosensory cortex is known to have strong
cortical reorganization abilities that drive plastic changes, along
with similar contralateral somatotopy to reduce effects due to
pathology (139, 151, 203). Similar to the primary somatosensory
cortex, concussion-related damage to the secondary somatosensory
cortex could result in somatic symptoms [e.g., headaches (46,
157), nausea, balance problems, dizziness, light sensitivity, noise
sensitivity, numbness, visual problems, or bodily pain (134, 203)]
(Table 2).

2.1.14. Superior parietal lobule
The superior parietal lobule is a large symmetric brain region

on the superior aspect of the parietal lobe and is situated directly
superior to the intra-parietal sulcus and incorporates a substantial
amount of the cortical parietal lobe tissue posterior to the primary
motor and somatosensory cortices (Figure 1N) (218). The superior
parietal lobule can be further subdivided into five subregions (218).
The main function of the superior parietal lobule is to integrate
multimodal somatosensory and visual inputs to create specific
motor movements and is thus highly connected to motor and
sensory brain regions (29, 218). In addition to motor and sensory
integration, the superior parietal lobule plays a role in egocentric
tasks (219, 220), emotion-relevant behavior (86, 221), and auditory
association (222, 223).

Damage to the superior parietal lobule mainly manifests in
visuospatial navigation impairments (68, 111) causing a variety
of praxis errors (64, 75), particularly in the dark (64), such as
apraxic dysgraphia (52), autotopagnosia (64, 67), poor balance
(48), and poor posture (64). Superior parietal lobule pathology has
also been shown to reduce attention spans in youth (86) and is
strongly correlated with pathology attributed to the inferior parietal
lobe (52). A study on acutely concussed adolescents performing
a navigational memory task had their fMRI BOLD signal change
from baseline was negatively correlated with post-concussion
symptom severity in the superior and inferior parietal lobes,
premotor cortex, and parahippocampus (224). Another study on
post-concussion adolescents also found verbal and visual memory

impairments related to the superior and inferior parietal lobules
(225). Post-concussion symptoms associated with superior parietal
lobe injury could include somatic [e.g., headaches (46), balance
problems, dizziness, light sensitivity, motor control problems,
or visual problems (48, 64, 218)] or cognitive symptoms [e.g.,
feeling “slow”, difficulty remembering, and confusion (224, 225)]
(Table 2).

2.1.15. Visual cortex
The visual cortex is a large region that covers much of the

occipital lobe (Figure 1O) (29). More specifically, the primary
visual cortex is located at the most posterior point of the occipital
lobe, which is medial and close to the longitudinal fissure (29).
The secondary and association visual areas cover most of the
remaining aspects of the occipital lobe, which is superolateral to the
primary visual cortex (29). Based on the description provided by
Purves et al. the visual cortex can be separated into eight different
brain regions, where V1 is the primary visual cortex and V2 is
the secondary visual cortex, while V3, V3a, V4, ventral posterior
(VP), middle temporal (MT), and middle superior temporal
(MST) comprise the remaining association visual areas (226).
The calcarine sulcus runs transversely through the primary visual
cortex, the secondary visual cortex wraps around the primary visual
cortex, V3 and V3a are superior to the secondary visual cortex, and
VP and V4 are inferior to it (201). The MT and MST regions are
small and slightly separated from the other visual cortex regions,
found on the inferior, lateral aspects of the occipital lobe (226).

In general, the visual cortex is responsible for receiving,
processing, and interpreting visual information that travels from
the retina, along the optic nerve, passing through the thalamus,
and arriving at the primary visual cortex (29). This includes
the processing of color, brightness, shape, and motion captured
with the visual sensory system (226). Visual information is also
processed on the contralateral side of the brain than the eye.
The cortical visual regions of V3A, MT, and MST are involved
in motion perceptions (226–228), whereas V4 is involved with
color interpretation and processing (Table 2) (226, 227). A study on
seven acutely concussed young adults found numerous oculomotor
impairments related to the visual cortex during the first-week post-
injury and after 30 days (229). Another study examining concussion
patients exhibiting vestibular symptoms noted vestibular, visual,
and sensory processing networks to be affected (230). Due to
the visual implications of concussion-related injury to the visual
cortex, concussion-related visual cortex damage would primarily
present as somatic symptoms [e.g., headaches, nausea, vomiting,
balance problems, dizziness, light sensitivity, and visual problems
(226, 229, 230)] (Table 2).

2.2. White matter brain regions

2.2.1. Acoustic radiation
Acoustic radiation is a white matter tract that originates at

the medial geniculate nucleus of the thalamus and travels anterior
and lateral toward the primary auditory cortex on the transverse
temporal gyri of the temporal lobe (Figure 2A) (174, 231). It is
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essential to transmitting auditory information from the thalamus
to the temporal cortex and is therefore essential to auditory and
language comprehension (174, 232, 233).

Damage to the acoustic radiation could lead to a range
of auditory impairments (Table 3). Studies have shown that
damage to acoustic radiation is associated with hearing and
language disorders, auditory processing deficits, and decreased
speech comprehension (174). More serious damage could lead
to cortical (central) deafness (117, 149), environmental sound
agnosia, total auditory agnosia of all sounds (149), or verbal
deafness (word agnosia) (175, 176). Additionally, an individual
can experience auditory hallucinations (i.e., the experience of
hearing music in the absence of any external stimuli) (150)
or tinnitus (234). Language impairments may be more likely
if an injury occurs to the left acoustic radiation as research
has shown a more substantial acoustic radiation asymmetry
and predicted that the more developed left acoustic radiation
may be due to language processing being performed in the left
hemisphere (232). One study found acoustic radiation damage
in association with concussions (235), while another found
increased acoustic radiation connectivity in association with years
of soccer played (236); however, neither reported associations
with those abnormalities in relation to concussion symptoms.
Extrapolating from those concussion-related abnormalities
and the normal function of the acoustic radiation, post-
concussion symptoms could include somatic [e.g., noise sensitivity
(149)] or cognitive symptoms [e.g., language problems (232)]
(Table 3).

2.2.2. Callosal body
The callosal body, also known as the corpus callosum, is a large

commissural tract that connects the left and right hemispheres
by way of more than 200 million nerve fibers (Figure 2B) (237,
238). The callosal body resides in the center of the brain and
connects with and crosses many other white matter tracts (31, 238).
The corpus callosum can be subdivided into anterior, middle,
and posterior sections, respectively, named the genu, body, and
splenium of the corpus callosum (239).

Due to its substantial inter-hemispheric connection, the callosal
body is essential to most facets of cognitive function. Therefore,
injury to this important white matter structure could cause a wide
range of cognitive and neurological complications. These could
include visual, motor, and visuospatial perception, information
processing speed and ability, moral reasoning, tactile and
somatosensory perception, behavior, higher cognitive functions,
and learning bimanual tasks (31, 238, 240, 241). White matter
injury to the callosal body following a concussion has been shown
extensively in research (185, 242). Due to the vast connective
importance of the corpus callosum, injury to it could result
in the following post-concussion symptoms, and a review of
concussion-related callosal body damage suggested that somatic
(e.g., headaches, dizziness, motor control problems) and cognitive
symptoms (e.g., feeling “slow” or “foggy”, difficulty concentrating,
or remembering) would be present, with a more serious axonal
present in women (243) (Table 3).

TABLE 3 A summary of 10 white matter brain regions and their associated

functions and concussion-related symptoms.

Brain
region

Associated
functions

Concussion-related
symptoms

Acoustic
radiation

• Auditory and language
comprehension

• Auditory processing
deficits

• Language processing
(left hemisphere)

• Noise sensitivity
• Language problems

Callosal body • Inter-hemispheric
connection

• Visual
• Motor
• Visuospatial

perception
• Information

processing speed and
ability

• Moral reasoning
• Tactile and

somatosensory
perception

• Behavior
• Higher cognitive

functions
• Learning

bimanual tasks

• Headache
• Dizziness
• Motor control problems
• Feeling “slow” or “foggy”
• Difficulty concentrating
• Difficulty remembering

Cingulum • Executive control
• Attention
• Episodic memory
• Pain sensation
• Psychiatric disorders
• Depression
• Anxiety
• Psychosis

• Bodily pain
• Nervousness
• Anxiousness
• Trouble falling asleep
• Excessive sleep
• Loss of sleep
• Feeling “slow” or “foggy”
• Difficulty remembering

Corticospinal
tract

• Voluntary
motor control

• Headaches
• Balance problems
• Motor control problems
• Feeling “foggy”
• Language problems
• Irritability

Fornix • Episodic memory
• Learning capabilities
• Attention

• Feeling “slow” or “foggy”
• Difficulty concentrating
• Difficulty remembering

Inferior
occipito-
frontal
fascicle

• Social cognition
• Episodic memory
• Attention and

multitasking
• Behavioral-cognitive

flexibility
• Executive function
• Decision-making
• Language
• Hearing
• Visual

conceptualization
and recognition

• Visual problems
• Feeling “slow” or “foggy”
• Difficulty concentrating
• Difficulty remembering
• Language problems

Optic
radiation

• Visual field
• Retinal function
• Light perception

• Balance problems
• Light sensitivity
• Visual problems
• Motor control problems

Superior
longitudinal
fasciculus

• Dorsal
◦ Visuospatial
attention (right)
◦Motor (bilateral)

• Ventral
◦ Attention and social
cognition (right)

• Motor control problems
• Feeling “slow” or “foggy”
• Difficulty concentrating or

remembering
• Language problems

(Continued)
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TABLE 3 (Continued)

Brain
region

Associated
functions

Concussion-related
symptoms

◦ Language, auditory
comprehension, and
articulation processing
(left)

◦Motor (bilateral)
• Posterior

◦ Auditory and
visuospatial
comprehension (right)
◦ Auditory
comprehension,
reading, and lexical
access (left)

• Arcuate fasciculus
◦ Social and
visuospatial cognition
(right)
◦ Phonological
language
processing (left)

Superior
occipito-
frontal
fascicle

• Speech
• Motor
• Language
• Sensory
• Visual field
• Visuospatial cognition
• Spatial working

memory
• Processing speed and

simple reaction time

• Balance problems
• Visual problems
• Light sensitivity
• Motor control problems
• Feeling “slow” or “foggy”
• Difficulty concentrating
• Language problems

Uncinate
fascicle

• Mood regulation
• Emotional expression
• Interpreting facial

expressions
• Learning and memory
• Language (left)

• Feeling “slow” or “foggy”
• Difficulty concentrating
• Difficulty remembering
• Confusion

2.2.3. Cingulum
The cingulum, also referred to as the cingulum bundle, is a

substantial white matter structure that nearly forms a complete
circle within the medial cortex (Figure 2C) (33). From a sagittal
perspective of either hemisphere, the cingulum encircles the corpus
callosum with connections to the orbitofrontal regions before
posteriorly traveling anterior to the body of the corpus callosum
toward the occipital lobe, and then diving inferiorly and anteriorly
toward the temporal pole (33, 244).

As a result of its structure, the cingulum is highly connected to
various brain regions and has been linked to have important roles
in executive control (81), attention (245), and episodic memory
(Table 3) (33, 246–248). Additionally, the cingulum has also been
linked to pain sensation processing (33, 94) and the development
of psychosis or schizophrenic behavior (249), obsessive-compulsive
(33, 250), anxiety (251), and depression disorders (252, 253). This
is of interest specific to post-concussion assessment because anxiety
and depression commonly occur following concussions (254, 255).
A recent study found that concussed adolescents had significantly
higher anxiety which was also associated with lower neurite
density index in their bilateral cingulum and bilateral forceps
minor, with older female adolescents with the cingulum differences
(256). Another study found that adults with persistent concussion
symptoms had significantly reduced fractional anisotropy of their

cingulum which also significantly correlated with the number
of symptoms and the self-paced saccades task outcome (257).
Additionally, one study found that concussed adolescents who were
experiencing lower sleep quality had lower white matter neurite
density index across 18 of the 19 tracts examined, with significant
findings present in the cingulum, optic radiation, and the superior
longitudinal fasciculus (258). Finally, a study found a complex set of
cingulum bundle abnormalities in concussed adolescents that was
correlated with compromised memory and learning scores (259).
Thus, post-concussion symptoms related to cingulum injury could
be somatic [e.g., bodily pain (94)], cognitive [e.g., Feeling “slow”
and difficulty remembering (259)], emotional [e.g., nervousness
and anxiousness (256, 257)], or sleep symptoms [e.g., trouble falling
asleep and sleeping more or less than usual (258)] (Table 3).

2.2.4. Corticospinal tract
The corticospinal tracts are well-documented bilateral white

matter structures that descend from the motor cortex, travel
through the medullary pyramid in the brainstem, and then cross
to continue descending contralaterally down the spinal cord to the
dorsolateral funiculus (Figure 2D) (260). Thus, the left and right
corticospinal tracts travel contralaterally within the spinal cord.

The corticospinal tracts are essential to motor control including
spinal reflexes and motor neuron control (261). Thus, one of
the primary deficits associated with impairment of this region is
reduced voluntary motor control (262, 263). With a concussion,
injury to the corticospinal tracts could affect motor control from
the neck down. Injury to the corticospinal tracts, within the brain or
spinal cord, could also lead to ipsilaterally impaired proprioception,
paralysis, decreased muscle tone, spasticity, power production, and
mass (264, 265). A study on white matter integrity in retired
professional American-style football players found significantly
increased axial diffusivity in the superior longitudinal fasciculus,
corticospinal tract, and anterior thalamic radiations; however, the
neuropsychological function was only compared to the superior
longitudinal fasciculus (266). Although not directly compared,
the retired athletes reported worse memory, executive function,
language, sensory, behavior, constitutional, and headache scores
(266). Post-concussion, injury of the corticospinal tract could
manifest primarily as somatic symptoms[e.g., headaches, balance
problems, and motor control problems (261, 262, 266)], but
could also present as cognitive [e.g., feeling “foggy” and language
problems (266)] or emotional symptoms [e.g., irritability (266)]
(Table 3).

2.2.5. Fornix
The fornix is a thin, arched white matter structure within the

medial aspect of the cerebral hemispheres (Figure 2E) (79, 267).
Due to the arched structure, the fornix can be separated into several
sections including the alveus, subiculum, fimbria, crura, body, and
columns (267). The fornix is a major hippocampal output tract and
resultantly travels from the medial temporal lobe regions, where
the alveus is formed medially to the inferior aspect of the temporal
horn of the lateral ventricle (267). The alveus bundles together to
form the fimbria, which curves posteriorly and superiorly, before
forming the crura which curves anteriorly and superiorly (79, 267).
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The forneal crura travel underneath the splenium of the corpus
callosum and project to connect to form the structure known as
the dorsal hippocampal commissure (79, 267). The crura come
together and form the forneal body, which arches superior to the
thalamus and travels anteriorly before splitting, at the anterior
commissure, into the left and right columns that descend into the
anterior forebrain (79, 267).

As the primary white matter structure connected to the
hippocampus, the fornix is closely related to memory and
learning capabilities. Thus, damage to the fornix could involve
decreased episodic memory function, learning capabilities, and
attention impairment (Table 3) (79, 267). Several concussion
and mild traumatic brain injury studies have found decreased
fornix microstructural integrity and volume following an injury
that was correlated with injury severity (268–270). Furthermore,
atrophy of the fornix has been linked to several neurodegenerative
diseases such as Alzheimer’s Disease, Parkinson’s Disease, Multiple
Sclerosis, epilepsy, and schizophrenia (79). A study on adults
with persistent concussion symptoms found the fornix to have
significantly reduced fractional anisotropy compared to healthy
controls and was significantly correlated with lower processing
speed and reaction time (271). Another study on adult women∧

with persistent concussion symptoms found that reduced FA
values were correlated with higher total Graded Symptom Scale
Checklist scores (272). Finally, a study by de Souza et al. found
that decreased fractional anisotropy and increased mean diffusivity
were correlated with worse executive function and immediate,
visual, and verbal memory performances (273). Based on the
healthy function of the fornix and the results of those concussion
studies, a concussion-related fornix injury could present as
cognitive symptoms [e.g., feeling “slow” or “foggy”, difficulty
concentrating, or remembering (271, 273)] (Table 3).

2.2.6. Inferior occipito-frontal fascicle
The inferior occipito-frontal fascicle is one of the long and

highly connected white matter bundles in the human brain,
however, its distinction from other white matter structures has
been a point of controversy for decades (Figure 2F) (274, 275).
Fortunately, the evolution of diffusion magnetic resonance imaging
(dMRI) has recently allowed for highly detailed fiber tracking of
the inferior occipito-frontal fascicle that can be corroborated with
cadaveric brain dissections (123, 275, 276). The posterior aspect of
the inferior occipito-frontal fascicle originates in the lateral, inferior
portion of the occipital lobe and travels through the occipital
lobe lateral to the ventricle horns (123, 276). The tract remains
lateral through the temporal lobe before veering medially into the
anterior portion of the insular short gyri and terminating anteriorly
in the orbitofrontal cortex (123, 276). This white matter tract is
also close in proximity and functional involvement to the inferior
longitudinal fasciculus.

Based on its anterior-to-posterior anatomical structure, the
inferior occipito-frontal fascicle is associated with many important
functions that can involve anatomically distant regions (123).
Furthermore, dMRI studies have found the inferior occipito-frontal
fascicle to be specifically involved in various tasks. Due to its
anterior connections within the frontal lobe, Brodmann’s Area (BA)

10, the inferior occipito-frontal fascicle is associated with many
complex cognitive functions such as social cognition, episodic
memory, attention, and multitasking (123, 191). Obsessive-
compulsive disorder, and its associated behavioral-cognitive
flexibility, executive function, and decision-making deficits, has
been linked to the inferior occipito-frontal fascicle’s connection of
the frontal lobe with the temporal and occipital lobes (123, 277,
278). Additionally, the fronto-temporal fiber section of the inferior
occipito-frontal fascicle is associated with language and hearing,
where the left region connects to Broca–Wernicke language
centers (279) and is affected by auditory verbal hallucinations
in individuals with schizophrenia (280). Finally, there has been
some evidence of the inferior occipito-frontal fascicle being
implicated with visual conceptualization and recognition (124). To
the best of our knowledge, no study has directly explored post-
concussion symptoms in specific relation to the inferior occipito-
frontal fascicle. Therefore, potential post-concussion symptoms are
extrapolated from the normal function of this white matter tract.
Thus, injury to the inferior occipito-frontal fascicle could present as
somatic (e.g., visual problems) or various cognitive symptoms [e.g.,
feeling “slow” or “foggy”, difficulty concentrating or remembering
(123, 191), or language problems (279)] (Table 3).

2.2.7. Optic radiation
Optic radiation is a vital white matter tract responsible for

transmitting visual information from the eye to the visual cortex
in the occipital lobe (Figure 2G) (281). Optic radiation is a
hook-shaped white matter structure that originates at the lateral
geniculate nucleus, a transfer point in the thalamus receiving visual
information from the optic tracts and terminates in the primary
visual cortices in the occipital lobe (281).

The visual information transmitted to the primary visual cortex
via optic radiation is contralateral to the eyes. Thus, the main
deficit associated with optic radiation damage is visual impairment
(282). An injury to the optic radiation can lead to decreased
visual field and light perception (283, 284) and reduced retinal
function (285). A case study on two mild traumatic brain injury
patients with complex visual field loss had significantly abnormal
volume and diffusion characteristics (286). Another study found
that adults with persistent symptoms after a mild traumatic brain
injury experienced significantly reduced fractional anisotropy of
the optic radiation that correlated with light sensitivity (287).
Finally, a study on visuomotor function post-concussion found
that significantly reduced optic radiation fractional anisotropy
correlated with poorer visuomotor performance (288). Based on
the normal role of the optic radiation and the previously mentioned
concussion studies, a concussion could injury the optic radiation
and present with somatic symptoms [e.g., balance problems, motor
control problems (288), sensitivity to light, or visual problems
(286, 287)] (Table 3).

2.2.8. Superior longitudinal fasciculus
The superior longitudinal fasciculus is another large white

matter structure that due to its many branches and tracts has
left researchers and clinicians with some ambiguity surrounding
its exact anatomy (Figure 2H) (289). Generally, the superior

Frontiers inNeurology 14 frontiersin.org

https://doi.org/10.3389/fneur.2023.1136367
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org


Danielli et al. 10.3389/fneur.2023.1136367

longitudinal fasciculus connects most cortical regions of the
parietal lobe to the frontal lobe, with some temporal connections as
well (289). Due to the numerous names associated with the tracts
and segments of the superior longitudinal fasciculus, one recent
study (289) proposed a simplified naming convention separating
the superior longitudinal fasciculus into four segments named
dorsal, ventral, posterior, and arcuate fasciculus segments (289–
292). The dorsal segment would be what has been previously
referred to as the superior longitudinal II, the ventral segment to
the arcuate fasciculus anterior and superior longitudinal fasciculus
III, the posterior segment to the arcuate fasciculus posterior and
temporoparietal segment of the superior longitudinal fasciculus,
and the arcuate fasciculus to the arcuate fasciculus or the arcuate
fasciculus long segment (289). The dorsal segment originates in
the inferior parietal lobe and terminates in the superior and
middle frontal gyri, while the ventral segment also originates in
the inferior parietal lobe, slightly anterior and inferior to the dorsal
segment, and terminates in the middle and inferior frontal gyri
(289). The posterior segment originates in the superior, middle,
and inferior temporal gyri and terminates within the inferior and
superior parietal areas (289). Finally, the arcuate fasciculus segment
originates across the superior, middle, and inferior temporal gyri
before traveling posteriorly and arcing around the Sylvian fissure
and insula to terminate anteriorly in the posterior aspects of the
inferior and middle frontal gyri (289). To note also, the inferior
longitudinal fasciculus follows a similar path through the brain as
the superior longitudinal fasciculus and is often examined in the
context of concussions.

Based on the four-segment naming convention proposed by
Nakajima et al., each segment can be related to specific cognitive
functions related to the cortical regions it connects (Table 3) (289).
As proposed by Nakajima et al. and based on previous literature,
the function of each superior longitudinal fasciculus segment
can be classified as bilaterally or hemisphere-specific (289). The
dorsal segment is involved in visuospatial attention in the right
hemisphere and bilaterally in motor control, the ventral segment is
involved in attention and social cognition in the right hemisphere,
language, auditory comprehension, and articulation processing in
the left hemisphere, and motor control bilaterally, the posterior
segment is involved in auditory and visuospatial comprehension
in the right hemisphere and auditory comprehension, reading and
lexical access in the left hemisphere, and the arcuate fasciculus
is involved in social cognition and visuospatial cognition in the
right hemisphere and phonological language processing in the
left hemisphere (289). A recent study on varying degrees of
traumatic brain injuries found that the fractional anisotropy of
superior longitudinal fasciculus was positively correlated with
executive function, memory, and attention (293). Therefore, in
summary, common post-concussion symptoms related to superior
longitudinal fasciculus would include some somatic symptoms
[e.g., motor control (289)], but primarily cognitive symptoms [e.g.,
feeling “slow” or “foggy”, difficulty concentrating or remembering,
or language problems (289, 293)] (Table 3).

2.2.9. Superior occipito-frontal fascicle
The superior occipito-frontal fascicle is a long association

white matter tract that connects the frontal and occipital cortices

(Figure 2I). The tract travels parallel to the corticospinal tracts
and corpus callosum between the corticospinal tracts and the
lateral ventricles, and inferiorly to the corpus callosum (294,
295). Anterior and posterior to the corpus callosum, the superior
occipito-frontal fascicle projects superiorly (295).

Due to the location, length, and connection of the frontal
and occipital cortices, the superior occipito-frontal fascicle is
associated with several functions. A study of 90 awake glioma
craniotomy patients found that the superior occipito-frontal
fascicle had mapping points associated with specific characteristics
for speech disorder (27.2%), motor disorder (24.7%), language
disorder (16.1%), sensory disorder (15%), and several other
functions with less distinction (295). The study also found that the
superior occipito-frontal fascicle was positively associated with the
visual field, visuospatial cognition, and spatial working memory
(295). Another study found that young adults with Multiple
Sclerosis had reduced processing speed and simple reaction time
correlated with negative abnormalities in their superior occipito-
frontal fascicle, corpus callosum, and corticospinal tracts (296).
Thus, confirming that the superior occipital-frontal fascicle relays
important information among the visual, motor, and executive
functioning brain regions (296). Similar to the inferior occipito-
frontal fascicle, there has been little to no research to this point
on the direct effects of concussion on the superior occipito-frontal
fascicle. Therefore, based on the healthy role of this brain structure
and symptom presentation found in relation to abnormalities
from other conditions, the damage could present as somatic [e.g.,
balance problems, visual problems, sensitivity to light, motor
control problems (295)] or cognitive symptoms [e.g., feeling “slow”
or “foggy”, difficulty concentrating, or language problems (296)]
(Table 3).

2.2.10. Uncinate fascicle
The uncinate fascicle is an important white matter tract that

connects the temporal cortex with the prefrontal cortex (Figure 2J).
The structure originates in the temporal pole and travels posteriorly
to the amygdala before the body of the uncinate fascicle curves
superiorly through the external capsule medial to the insular cortex,
and then has a unique hook shape to turn antero-medially toward
the prefrontal cortex (297–299). The body of the uncinate fascicle
then branches in three directions toward the lateral orbital gyri,
frontopolar cortex, and subgenual cingulate cortex (297, 298).

Based on the anatomical location of this structure and its
close connection to the prefrontal cortex and amygdala, it has
been shown that the uncinate fascicle is involved in mood
regulation, emotional expression, and depression (252, 297), and
even problems interpreting facial expressions (300). The uncinate
fascicle also passes close to the hippocampus and due to its presence
in the temporal lobe has been associated with learning and memory
(301, 302). Furthermore, it has also been linked to language
due to its position within the parietal lobe (82, 301, 303). One
study found that the uncinate fascicle had significantly decreased
fractional anisotropy post-mild traumatic brain injury correlated
with worse memory test performances (304). Other studies have
found uncinate fascicle damage that correlated with attention,
memory, cognitive reaction time, and learning in concussion
or mild traumatic brain injury patients (305–307). Therefore, a
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concussion-related injury to the uncinate fascicle would likely be
exhibited as cognitive symptoms [e.g., feeling “slow” or “foggy”,
difficulty concentrating or remembering, and confusion (304–307)]
(Table 3).

2.3. Cerebellum

The cerebellum is a unique part of the brain that is located
posteriorly within the skull, inferior to the occipital lobe. Despite
the cerebellum being substantially smaller than the cerebrum, it
has been shown to contain about four times as many cells as the
entire cerebrum (308). Similar to the cerebrum, the cerebellum
is separated into two hemispheres by the cerebellar vermis and
consists of three lobes; the anterior, posterior, and flocculonodular
lobes (26, 308, 309). Each lobe is also separated into lobules, which
can be further separated into folia (308). The cerebellum has 12
lobules known as I, II, III, IV, V, VI, Crus I, Crus II, VIIb, VIII,
IX, and X on each cerebellar hemisphere (Figure 3) (26, 309). These
lobule regions are organized with distinctions between lobules from
the superior to the inferior external surface (26, 309). There are
also an additional set of cerebellar regions that are located along
the proximal and medial aspect of the cerebellum between the two
lobes, known as the cerebellar vermis (26, 309), but they will not
be discussed in this review as they are smaller and have had little
concussion-related research examining them to date.

From a cognitive and functional perspective, our understanding
of the cerebellum has undergone a revolution. For around 200
years, the cerebellum was believed to be strictly involved with
motor control (3). However, the advent of functional medical
imaging techniques has allowed for the realization that the
cerebellum is involved in motor control, language, attention,
working memory, emotion, and social processing (3, 310, 311).
Functional MRI studies have shown that the cerebellum and its
lobules can be subdivided into two motor regions and three non-
motor regions (267). Based on a summary article by Guell and
Schmahmann, lobules I–VI make up the first motor region, lobule
VI and crus I make up the first non-motor region, crus II and
VIIb make up the second non-motor region, lobule VIII makes
up the second motor region, and lobules XI and X make up the
third non-motor region (310). Although the primary functions
of the cerebellum, motor, attentional/executive, and default mode
network activation, are expressed quite generally across the lobules,
the less involved functions of emotional, vestibular, language, and
social processing are exhibited in more specific cerebellar regions
(Table 4) (310). Emotional processing has been found close to the
cerebellar vermis and thus is more associated withmedial aspects of
the lobules VI, crus I, and crus II (310, 312). Vestibular activation
has been found in the verbal aspects of lobules crus I, crus II,
and VII, and lobules IX and X (313); however, this activation may
overlap with visual, emotional, and other motor functions (310).
Similar to the lateralization of the cerebrum, language activation is
lateralized contralaterally to the cerebrum and found in the right
cerebellar hemisphere (310, 314). Finally, social cognition overlaps
greatly with the default mode network activation in the cerebellum,
which can be generally seen in lobules crus I, crus II, XI, and X
(310, 312).

TABLE 4 Cerebellar regions and their associated functions and

concussion-related symptoms are based primarily on the summary

provided by Guell and Schmahmann (310).

Brain
region

Associated
functions

Concussion-related
symptoms

I • Motor • Balance problems
• Feeling “slow”
• Motor control problems

II • Motor • Balance problems
• Feeling “slow”
• Motor control problems

III • Motor • Balance problems
• Feeling “slow”
• Motor control problems

IV • Motor • Balance problems
• Feeling “slow”
• Motor control problems

V • Motor • Balance problems
• Feeling “slow”
• Motor control problems

VI • Motor
• Attention
• Executive functions
• Working memory
• Attentional and

executive processing

• Balance problems
• Feeling “slow”
• Motor control problems
• Difficulty remembering
• Difficulty concentrating

Crus I • Attention
• Executive functions
• Default mode processing
• Emotion
• Vestibular
• Social cognition

• Balance problems
• Dizziness
• Irritability
• Sadness
• Nervousness
• More emotional
• Feeling “slow” or “foggy”
• Difficulty concentrating

Crus II • Attention
• Executive functions
• Default mode processing
• Emotion
• Vestibular
• Social cognition

• Balance problems
• Dizziness
• Irritability
• Sadness
• Nervousness
• More emotional
• Feeling “slow” or “foggy”
• Difficulty concentrating

VII • Attention
• Executive functions
• Default mode processing
• Vestibular

• Balance problems
• Dizziness
• Feeling “slow” or “foggy”
• Difficulty concentrating

VIII • Motor • Balance problems
• Feeling “slow”
• Motor control problems

IX • Attention
• Executive functions
• Default mode processing
• Vestibular
• Social cognition

• Balance problems
• Dizziness
• Feeling “slow” or “foggy”
• Difficulty concentrating

X • Attention
• Executive functions
• Default mode processing
• Vestibular
• Social cognition

• Balance problems
• Dizziness
• Feeling “slow” or “foggy”
• Difficulty concentrating

Concussions have been linked to cerebellar abnormalities.
Functional connectivity of the cerebellum is significantly associated
with the number of previous concussions some have had and
concussion recovery time (315). A recent study on symptomatic
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FIGURE 3

Visualization of the cerebellum subdivisions overlayed onto the MNI152 1mm standard space T1-weighted brain from the posterior, frontal plane

perspective. There are 12 cerebellar regions in this figure, with lobules I–IV amalgamated, organized as follows: (A) I–IV, (B) V, (C) VI, (D) crus I, (E)

crus II, (F) VII, (G) VIII, (H) IX, and (I) X. These brain regions were from the Probabilistic (FNIRT) cerebellar atlas (26).

and asymptomatic acutely concussed youth found that cerebellar
inflammation was associated with acute symptom severity and that
the cerebellum had significantly increased functional connectivity
with the precuneus and inferior parietal lobule which was not
present in asymptomatic concussed participants (316). Meanwhile,
an older study by Jantzen et al. found that cerebellar abnormalities
in concussed college football players were associated with worse
movement sequencing, working memory, and motor control
performance (317). However, due to the vast number of functions
associated with the cerebellum, further research is required to
determine the risk of injury to the cerebellum during a concussive
event. However, common post-concussion symptoms could be
somatic [e.g., balance problems, fatigue, bodily pain, motor control
problems (186, 317)], cognitive [e.g., feeling “slow”, difficulty
concentrating (310, 317)], or emotional in nature [e.g., irritability,
feeling more emotional (310, 314)] (Table 4).

3. Discussion

This review aimed to highlight the intimate connection
between post-concussion symptoms in the event of concussion-
related damage to specific brain regions. Complete incorporation
of all brain structures and post-concussion symptoms was not
feasible, especially considering spatial resolution limitations of
medical imaging techniques for very small brain regions, and thus
this review is understandably not exhaustive at that scale. Further
research is also required to connect common post-concussion
symptoms more concretely to specific brain regions.

3.1. Clinical concussion diagnosis

The diagnosis of a concussion is primarily based on emergency
physician examination, patients reporting their symptoms, and
potentially basic medical imaging, but could include further
testing if more serious brain damage is suspected (5). Despite
efforts to improve concussion recognition and management
protocols (4, 318), diagnosis can still be highly variable due
to the subjectivity of patient self-reporting, varying concussion
assessment guidelines, and clinician interpretation (319). Some of
the tests used to diagnose concussions can be self-administered,
while some must be administered by a trained clinician (320, 321).
Commonly used concussion diagnosis tests include Immediate
Post-Concussion Assessment and Cognition Tool (ImPACT)
(322), Sport-related Concussion Assessment Tool-−5th Edition
(SCAT5) (323), CogSport (324), the Post-Concussion Symptom
Scale (28), and the Rivermead Post-Concussion Symptoms
Questionnaire (325), with others described in detailed review
articles (326).

3.2. Potential to incorporate research into
clinical practice

Although symptom-based diagnosis and recovery
tracking remains the clinical gold standard, structural
computed tomography (CT) and magnetic resonance
imaging (MRI) scans are used to rule out skull fractures
and bleeding in more serious concussion and traumatic
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brain injury cases (327). However, advances in MRI have
provided powerful insights into brain function following
a concussion using safe, non-invasive, objective, and
reproducible methods. Routine clinical 3-dimensional T1-
weighted and T2-weighted MRI scan protocols usually
fail to identify any concussion-related damage (327).
Susceptibility-weighted imaging (SWI) might depict sheering
and microbleed injuries.

The MRI scan techniques used in research with promising
clinical potential include diffusion MRI (dMRI), functional MRI
(fMRI), MR spectroscopy (MRS), and arterial spin labeling (ASL).
Those techniques have all been shown to identify microstructural,
functional, metabolic, or tissue perfusion alterations, respectively,
in acute and chronic concussion patients (27, 327). Instead of
MRI being limited to ruling out serious brain bleeding and skull
fractures, symptom-based testing can be supplemented by highly
sensitive MRI techniques. These more advanced MRI techniques
can provide extensive information but are not yet implemented for
clinical concussion diagnoses. Incorporation of these techniques
can inform clinicians of a concussion patient’s current brain
health, track recovery, and objectify post-concussion symptoms
(i.e., nausea) with data acquired from highly reproducible MRI
scans and post-scan analyses.

4. Conclusion

The heterogeneity of concussions has challenged clinicians and
patients alike. However, connecting the functional and anatomical
brain characteristics may highlight opportunities for personalized
treatments and be useful in determining an individual concussion
patient’s recovery prognosis. Unfortunately, identifying that a
concussion patient is suffering from light sensitivity and has visual
cortex and optic radiation abnormalities, for example, currently
does not guarantee their complete recovery. However, the summed
knowledge we present here aims to allow clinicians and researchers
alike to focus their efforts on developing injury and patient-specific
treatment options.
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