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Myelin Oligodendrocyte Glycoprotein Antibody Disease (MOGAD) is a spectrum

of diseases, including optic neuritis, transverse myelitis, acute disseminated

encephalomyelitis, and cerebral cortical encephalitis. In addition to distinct

clinical, radiological, and immunological features, the infectious prodrome ismore

commonly reported in MOGAD (37–70%) than NMOSD (15–35%). Interestingly,

pediatric MOGAD is not more aggressive than adult-onset MOGAD, unlike in

multiple sclerosis (MS), where annualized relapse rates are three times higher

in pediatric-onset MS. MOGAD pathophysiology is driven by acute attacks

during which T cells and MOG antibodies cross blood brain barrier (BBB).

MOGAD lesions show a perivenous confluent pattern around the small veins,

lacking the radiological central vein sign. Initial activation of T cells in the

periphery is followed by reactivation in the subarachnoid/perivascular spaces

by MOG-laden antigen-presenting cells and inflammatory CSF milieu, which

enables T cells to infiltrate CNS parenchyma. CD4+ T cells, unlike CD8+ T cells

in MS, are the dominant T cell type found in lesion histology. Granulocytes,

macrophages/microglia, and activated complement are also found in the lesions,

which could contribute to demyelination during acute relapses. MOG antibodies

potentially contribute to pathology by opsonizing MOG, complement activation,

and antibody-dependent cellular cytotoxicity. Stimulation of peripheral MOG-

specific B cells through TLR stimulation or T follicular helper cells might help

di�erentiate MOG antibody-producing plasma cells in the peripheral blood.

Neuroinflammatory biomarkers (such as MBP, sNFL, GFAP, Tau) in MOGAD support

that most axonal damage happens in the initial attack, whereas relapses are

associated with increased myelin damage.

KEYWORDS

MOGAD, T cells, MOG (myelin oligodendrocyte glycoprotein), blood brain barrier (BBB),
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Introduction

MOG is a transmembrane protein found on the outer surface of the central nervous
system myelin and a marker of mature oligodendrocytes (1, 2). It constitutes only a small
portion of the myelin (0.05%), and its possible roles include cell adhesion, microtubule
stability, and receptor function (1, 3, 4).

High titers of autoantibodies targeting MOG are identified in various demyelinating
diseases, including optic neuritis, transverse myelitis, acute disseminated encephalomyelitis
(ADEM), and cerebral cortical encephalitis. These are now recognized as a spectrum of
diseases associated with MOG antibodies, MOGAD (5). Despite heterogeneous presentation
and clinical overlap between MOGAD, multiple sclerosis (MS), and neuromyelitis optica
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spectrum disease (AQP4-IgG+, NMOSD), distinctive radiologic,
pathological, lab, and clinical features of MOGAD have been
identified (Table 1), and most recently an international MOGAD
diagnostical criteria has been proposed (63).

Autoimmunity in MOGAD starts at the periphery by
activation of T cells and production of autoantibodies and
eventually transfer of these immune mediators into the CNS
(5, 38). How humoral immunity and cellular immunity
cooperate in MOGAD pathogenesis is an intriguing subject.
This review will highlight major distinctive clinical, radiological,
and histopathological features of MOGAD and summarize how
different immune compartments contribute disease pathogenesis.
For this purpose, we will use evidence from human and animal
studies such as MOG-induced experimental autoimmune
encephalomyelitis (EAE) models, as some of these models
closely resemble MOGAD compared to MS due to relapsing
and remitting course (vs. progressive disease) and MOG as the
autoimmune trigger (64–66).

Distinctive features of MOGAD

Distinctive clinical, radiological, and histopathological
features and laboratory findings of MOGAD are summarized
below (Table 1).

Clinical findings

MOGAD most commonly presents as bilateral optic
neuritis, transverse myelitis, ADEM, or, less commonly,
cerebral cortical encephalitis. Brainstem demyelination could
also occur in MOGAD; however, area postrema syndrome or
internuclear ophthalmoplegia is associated with NMOSD or MS,
respectively (5, 67).

The monophasic course is more common in MOGAD
(40–50%), and the remaining half of the MOGAD cases
experience a relapsing course, which is associated with persistent
high titers of MOG-IgG (15, 16). In contrast, most NMOSD
patients (90%) have a relapsing course (6). In MS, most
patients first experience a relapsing-remitting phase (90%),
half of which develop secondary progressive disease (17).
Progression inMOGADorNMOSD is relapse dependent; however,
progression independent of relapse activity is well-established
with MS (20, 21).

Pediatric MOGAD is not more aggressive than adult-
onset MOGAD. The overall annualized relapse rate (ARR) in
MOGAD, excluding the first attack, is 0.23 in pediatric and
0.35 in adult MOGAD patients (5). This is different from
MS, where pediatric MS patients display a more inflammatory
phenotype and therefore have higher ARR than adult-onset MS
patients, with an ARR of 1.13 in pediatric-onset vs. 0.40 in
adult-onset MS (18).

An infectious prodrome (at least once during the disease
course) is commonly reported with MOGAD, varying from 37
to 70% (7–10). MOG-IgG+ optic neuritis patients had 37% and
67% preceding infection in two series (3/8 and 6/9) (7, 8).
In MOG-IgG+ ADEM patients preceding infection was present

in 70% (12/17, including three patients with vaccinations) (9).
Jarius et al. reported an infectious prodrome in 40% (15/37)
of MOGAD patients, which included mostly optic neuritis or
myelitis patients but also some ADEM or cerebellitis cases (10). In
NMOSD, the infectious prodrome is reported in 15–35% (6, 11, 12).
Earlier studies with multiple sclerosis showed that 27–48% of all
MS relapses were associated with infections if patients followed
longitudinally (13, 14).

Radiological findings

Optic neuritis is bilateral and lengthier (compared to MS),
and the anterior optic pathway is more commonly involved (vs.
posterior in NMOSD) in MOGAD (Figure 1) (22, 23, 68). Optic
nerve head swelling and perineural sheath enhancement are other
typical features of MOGAD, indicating increased blood—optic
nerve barrier breakdown (22, 68).

Spinal cord involvement is seen as longitudinal extensive
transverse myelitis (LETM) in MOGAD and NMOSD (22, 24,
25). Multiple spinal cord lesions are frequent in MOGAD and
MS (both >60%) (24). Gray matter restricted (H sign) or
central cord involvement is a typical appearance of MOGAD
lesions on axial MRI (24, 25). On the other hand, shorter
and dorsal/lateral spinal cord lesions are more typical of MS
(25). Conus medullaris involvement is seen in MOGAD or
MS (22).

Typical brain involvement in MOGAD is ADEM-like fluffy
lesions (25). The number of supratentorial lesions is fewer in
MOGAD and NMOSD than in MS (22). High AQP4 expressing
regions such as diencephalon (hypothalamus and thalamus)
or dorsal midbrain (area postrema) are commonly affected in
NMOSD (26). In MS, more supratentorial lesions are typically
found in cortical, juxtacortical, or periventricular areas (27).

Contrast (Gadolinium) enhancement is a measure of BBB
breakdown commonly found in MOGAD lesions. Within 4 weeks
of the symptom onset, ON has enhancing pattern in most MOGAD
(94%), NMO (100%) and MS (75%) patients (23). Myelitis, on
the other hand, has an enhancement rate of 27–70% of MOGAD
patients and around 75% of NMO or MS patients within 4 weeks of
the symptom onset (24, 28).

Leptomeningeal enhancement, an indicator of leptomeningeal
inflammation, was less frequently reported in MOGAD than in
MS (29–31, 69). Gadde et al. reported the presence of LME in
33% (7/21) of a pediatric cohort. In comparison, Cobo-Calvo et al.
reported in 6% (3/49) of their adult cohort (29, 30). Further studies
are needed to determine if LME prevalence is higher (using 7T
MRI) and if LME presence is associated with relapse activity in
MOGAD. In MS, LME presence is reported as 79% with 7T MRI,
while with lower field (1.5 or 3T MRI), prevalence is 21% (31). In
NMOSD, it is also infrequent (6%) (31).

Central vein sign, defined as lesions with central vein
identifiable by MRI, is commonly seen in MS (>40%), while
their frequency is much lower in MOGAD (≈10%) or NMOSD
(<10%) (22).

Slowly expanding lesions are not present in MOGAD, while
present in MS (25, 32). Paramagnetic rim lesions (PRL) associated
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TABLE 1 Distinctive features of MOGAD.

MOGAD NMOSD MS

Clinical findings

Presentation at onset Optic neuritis Optic neuritis Optic neuritis

Transverse myelitis Transverse myelitis Transverse myelitis

Brainstem demyelination Brainstem demyelination Brainstem demyelination

ADEM Area postrema syndrome Internuclear ophthalmoplegia

Cerebral cortical encephalitis

Infectious Prodrome (6–14) 37.5–70% (at least once) 15–35% (at least once) 27–48% (of all relapses)

Course (6, 15–17) Monophasic (40–50%) Monophasic (10%) Relapsing Remitting (90%)

Relapsing (50–55%) Relapsing (90%) Secondary Progressive (half of relapsing
remitting patients develop secondary
progressive disease)

Primary Progressive/Relapsing
Progressive (10%)

Annualized Relapse Rate (excluding the
first attack) (5, 18, 19) [Overall: treated
and untreated]

0.23 (pediatric, overall)
0.35 (adult, overall)

0.91 (adult, untreated)
0.18 (adult, treated)

1.13 (pediatric, overall)
0.40 (adult, overall)

Progression independent of relapse
activity (PIRA) (20, 21)

No No Yes

Radiology

Optic nerve (22, 23) Bilateral Bilateral Unilateral

Lengthier Lengthier Shorter

Anterior optic pathway involvement Posterior optic pathway involvement

ON head swelling

Perineural sheath enhancement

Spinal cord (22, 24, 25) LETM LETM Shorter lesions

Multiple lesions Central cord Multiple lesions

H-sign (gray matter restricted lesion) Dorsal/lateral lesions

Central cord Conus medullaris

Conus medullaris

Brain (22, 26, 27) Less supratentorial lesions Less supratentorial lesions More supratentorial lesions

ADEM-like lesions Diencephalon (i.e., hypothalamus
and thalamus)

Cortical/juxtacortical lesions

Dorsal midbrain (i.e., area postrema)

Contrast Enhancement rate within 4
weeks of the attack (Indication of BBB
damage) (23, 24, 28)

ON (94%)
Myelitis (26–70%)

ON (100%)
Myelitis (78%)

ON (75%)
Myelitis (75%)

Leptomeningeal enhancement (29–31) 33% (Pediatric) 6% 21% (1.5 or 3 T field)

6% (Adult) 79% (7 T field)

Central Vein sign (average CVS+ rate)
(22)

≈10% <10% >40%

Slowly expanding lesions (25, 32) No Not studied Yes

Paramagnetic rim lesions (32–34) Not studied Rare Yes (due to iron laden
microglia/macrophage)

Lab

Serum ab test (35–37) High Mog-IgG titer High AQP4-IgG titer Low Mog-IgG titer possible

Longitudinal ab testing (38–40) Some patients become seronegative Rarely becomes seronegative NA

(Continued)
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TABLE 1 (Continued)

MOGAD NMOSD MS

Oligoclonal bands (30, 41–46) 5–13% 10–16% 95%

Increased Qalb rate (% higher than the age
normal; indication of Blood-CSF barrier
damage) (10, 45–48)

32–35% (all patients) ON (15%) myelitis (64%) 25% (all patients)

CSF pleocytosis (during acute attack)
(42, 45, 47)

Optic neuritis: 34% Myelitis: 85%
Brain/Brainstem: 60%

Optic neuritis: 24%
Myelitis: 65%

50%

Pathology

White matter lesions (49) Perivenous confluent around small
veins

Perivenous confluent/focal Focal lesions around large veins

Deep white matter High AQP4 expressing regions
(hypothalamus, area postrema), but
also supratentorial

Periventricular

Chronic active lesions absent Chronic active and slowly expanding
lesions

Iron rim lesions absent Iron rim lesions present

Cortical lesions (50–54) Perivenous confluent intracortical
demyelination

No cortical demyelination Band-like subpial demyelination
underneath the meningeal inflammation

Neuronal loss in cortical layers II-IV Ectopic meningeal lymphoid follicles

Dominant T cell type (50, 55–57) CD4 Increased activated CD4T cells
(OX40+) reported

CD8

Activated complement deposition
(49, 50, 58)

Present Present Present

Astrocytes (49, 50, 58–61) Relative sparing Pronounced loss Activated and contribute to inflammation

Normal GFAP (CSF) Increased GFAP (CSF) Increased GFAP (CSF and serum) in
progressive MS

Oligodendrocytes (49, 50, 58, 62) Variable loss Variable loss Variable loss (Type III demyelination)

Preserved progenitor cells

with iron-laden microglia and macrophages, are present in MS;
however, they have not been investigated in MOGAD (32–34).

Histopathological findings

White matter lesions in MOGAD exhibit a confluent pattern
around small veins, while in MS, focal lesions form around larger
veins detectable by MRI (central vein sign) (50). Chronic active
or slowly expanding lesions and iron rim lesions are absent in
MOGAD while present in MS (50).

Cortical lesions in MOGAD also have perivenous confluent
patterns and intracortical demyelination (50). In MS, subpial
demyelination underneath themeningeal inflammation is common
(51, 52). There are also ectopic lymphoid follicles found in
MS, which are important aspect of chronic and progressive
inflammation. In NMOSD, there is no cortical demyelination, while
there is a neuronal loss in cortical layers II-IV (53, 54).

The dominant T cell type is CD4 in MOGAD, whereas
CD8 is in MS (50, 55, 56). Astrocytes are spared in MOGAD,
while pronouncedly decreased in NMOSD, and activated and
proinflammatory in MS (49, 50, 58). Differential astrocyte
involvement in these three diseases is also supported byGFAP levels
in serum and CSF (59–61). GFAP-CSF levels are increased in the

NMOSD patients but not in MOGAD compared to HC (60). In
MS, progressive patients have higher GFAP both in serum and CSF
compared to RRMS and HC (59). Conversely, oligodendrocytes are
variably lost in all three diseases, while inMOGAD, progenitor cells
are preserved as they do not yet express MOG (49, 50, 58, 62).

Laboratory findings

Oligoclonal band presence is low in MOGAD (5–13%), similar
to NMOSD (10–16%) (30, 41–43, 45, 46). In MS, however, OCB
positivity is found in the majority of the cases (95%) (44).

CSF pleocytosis in MOGAD is quite common during relapses
and even higher in the spinal cord (85%) or brain/brainstem (60%)
involvement compared to optic neuritis (34%) (42). In NMOSD,
a similar trend is present, with CSF pleocytosis in 24% of optic
neuritis and 65% of myelitis (45). In MS, 50% of the patients have
pleocytosis during relapses (47).

Increased albumin CSF/serum ratio (QAlb), a measure of
blood-CSF barrier dysfunction, is also a feature of MOGAD. In
two separate studies, almost one-third of MOGAD patients (32 and
32.4%) had increased albumin CSF/serum ratio (QAlb) (10, 46).
This ratio was even higher in patients with a history of a spinal
cord, brain, or brainstem involvement (10/21; 47.6%) (10). Elevated
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FIGURE 1

Typical optic nerve involvement in MOGAD. Bilateral and longer

lesions involving anterior parts of the optic nerve.

QAlb values are reported at a similar frequency with MS (29.5%, n
= 606) (70). On the other hand, QAlb levels are reported variably
for NMOSD (increased in up to 50–80% of patients), which implies
implying blood-CSF barrier dysfunction in MOGADmay not be as
severe as it is in NMOSD (45, 46, 71).

CSF cytokine/chemokine profile of MOGAD shows
increased proinflammatory cytokines (Figure 2, created with
BioRender.com), including Th1 (TNF-α, IFNγ), Th2 (IL13), Th17
(IL6, IL8, G-CSF, GM-CSF), Treg (IL10) and B cell (CXCL12,
APRIL, BAFF, CXCL13, CCL19) related and other (IL-1ra, MCP-1,
MIP-1a) cytokines/chemokines (72, 73).

Autoimmune etiology of MOGAD

The prevailing concept for autoimmunity in MOGAD is the
outside-inmodel, where autoantibodies and activated immune cells
in the peripheral blood cross the blood-brain barrier at the time of
attack/relapse (Figure 2) (41, 74).

The central tolerance toward MOG may not be well developed
in the thymus, preventing the elimination of MOG reactive T cells
by negative selection (1, 75, 76). In the thymus, the expression
of a self-antigen in the epithelial cells eliminates lymphocytes
with a strong affinity to a self-antigen (central tolerance) and also
allows some self-reactive T cells to develop into Tregs (peripheral
tolerance) (77). MOG expression in the human thymus is variably
reported. In two studies analyzing the thymus, MOG RNA was not
detected, while in another study, MOG was detected in isolated
medullary thymic epithelial cells (78–81). There is no protein-level

study assessing MOG expression in human thymic tissue. Even if
MOG expression in the thymus is low or present, central tolerance
is not a perfect process, and peripheral tolerance mechanisms are
needed to suppress self-reactive lymphocytes. Peripheral tolerance
mechanisms include anergy or apoptosis of self-reactive T cells
through the absence of costimulatory molecules or the presence of
inhibitory molecules (such as PD1 or CTLA) and regulatory T cells
(77). From MOG-induced EAE models and human MOGAD, we
know that tolerance against MOG could be disrupted.

MOG reactive T cells, present due to a compromised
tolerance against MOG, could be activated upon antigen-specific
or non-specifically through mechanisms such as MOG peptide
presentation, molecular mimicry, or bystander activation. MOG
peptides could be present in the periphery, such as in cervical
lymph nodes draining CNS, or rarely in a tumor expression MOG
(82, 83). MOG antibodies, on the other hand, could facilitate
recognition of trace amounts of MOG present in the periphery
leading to T cell activation (84). Infections could cause bystander
activation and molecular mimicry. Milk protein Butyrophilin
and small Hepatitis B surface antigen are reported to have
cross-immunoreactivity with MOG; however, pathophysiological
consequences of these molecular mimicries have not been
established (85, 86).

Immunogenetics

Genetic risk factors associated with the autoimmune etiology
of MOGAD are not widely explored. HLA genotyping studies did
not identify a significant allele in two Dutch and UK cohorts
(87, 88). However, a study in the Chinese Han cohort observed
that DQB1∗05:02 and DRB1∗16:02 alleles and DQB1∗05:02-
DRB1∗16:02 haplotype were more frequent in pediatric-onset
MOGAD patients and DQB1∗05:02-DRB1∗16:02 haplotype was
associated with higher initial EDSS and relapse risk (89).

Role of infections in MOGAD

An infectious prodrome is commonly reported in MOGAD
patients (37.5 to 70%) (7–10). An infectious prodrome could
stimulate the underlying autoimmune processes by bystander
activation, molecular mimicry, and epitope spreading. Infections
could also disrupt peripheral tolerance by increasing costimulatory
molecules and MHC-II expression on antigen-presenting cells
(APCs) (90). This would lead to increased avidity of the interaction
between APCs and self-reactive CD4+ T cells, which would
otherwise go to anergy or apoptosis due to weak T cell stimulation.

Bystander activation of self-reactive B and T cells is one
mechanism that could explain infectious prodrome commonly
preceding attacks. In fact, pro-inflammatory cytokines that increase
during infections, such as IL6 and TNFα, are also found to
increase in CSF of MOGAD patients (38, 72, 73). In addition, Toll-
Like receptor (TLR) activation caused by viruses could convert
MOG-specific B cells into MOG-ab secreting plasmablasts (91).
Separately, infections could directly or indirectly affect BBB as well
(92, 93).
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FIGURE 2

Pathophysiological actors in MOGAD.

Since the COVID-19 breakout, multiple case studies reported
COVID-19 infection preceding MOGAD onset (94, 95). The
median time between COVID-19 to MOGAD diagnosis was 6 days
(range: −7 to 45 days), while in a few cases, MOGAD diagnosis
preceded or was concomitant with COVID-19 (94, 95). Further
studies will show if the MOGAD incidence rate has increased after
the pandemic.

Anti-MOG IgG

The serum level of MOG IgG is an essential diagnostic
and clinical biomarker. There is no consensus cut-off
value for a diagnostic titer, which changes from center
to center (35). Autoantibodies detected in MOGAD
patients are of IgG1 type (96). MOG IgM levels do not
correlate with anti-MOG IgG levels and could provide false
positive results (96, 97). Persistent MOG-IgG positivity is
associated with increased relapse risk (9). In monophasic
MOGAD, MOG-IgG titers decrease over time, whereas
in relapsing MOGAD, MOG-IgG titers tend to stay
high (98).

Paired serum and CSF MOG-IgG positivity is found in
more than half (56%) of the MOGAD patients (99). Some
MOGAD patients are MOG-IgG seronegative and CSF positive,
and CSF-restricted MOG-IgG may not always coexist with OCB
positivity or elevated IgG index in the CSF (71). Therefore,
in a strong clinical context (such as seronegative NMOSD or
ADEM), CSF testing could help with MOGAD diagnosis (99, 100).
Furthermore, CSF MOG-IgG positivity is associated with worse
outcomes (99).

Detection of MOG-IgG antibodies in the serum by a live cell-
based assay is the gold standard for diagnosis (35). Patient serum
samples are incubated with live HEK293 cells expressing full-
length MOG protein on their membrane, followed by secondary
staining with anti-human IgG (H+L or Fc) or IgG1 (Fc) secondary
antibodies. The analysis is done either by immune fluorescence
microscopy or flow cytometry (35, 36).

Antibody response toMOG could bemonoclonal or polyclonal.
Mayer et al. tested the human MOG IgG binding pattern for seven
different mutant human MOG proteins and mouse MOG proteins
(101). They found that half of the patients showed decreased
binding only to P42S (Proline to Serine) mutant, whereas about a
third of the patients showed decreased binding tomultiple mutants.
These results indicated that an epitope containing P42 (proline
at position 42) is the primary target of MOG IgG in half of the
patients, and many patients have a polyclonal antibody response.
Interestingly, immunoreactive epitopes are temporally stable, and
there is no evidence of intramolecular epitope spreading (96,
101).

Pathogenicity of patient-derived purified MOG-IgGs was
shown by Spadaro et al. by intrathecally injecting human MOG
IgGs in an adoptive transfer EAEmodel (induced byMBP orMOG-
specific T cells transferred to Lewis rats) (102). In this experiment
MOG-antibodies were not pathogenic alone, and provided a second
hit when interacted with T cells. When coupled with MBP-
specific T cells, which are alone encephalitogenic and disrupt BBB,
MOG abs mediated MS type II demyelination, characterized by
complement (C9neo) and immunoglobulin deposition. On the
other hand, when coupled with MOG-specific T cells, which do
not induce clinical disease by themselves, MOG abs enhanced T cell
recruitment and activation.
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The source of the MOG abs in the CNS is mostly peripheral,
although sometimes intrathecal production might be possible (41,
71, 74, 100). Through an impaired BBB (provided by activated
T cells, infections, coexisting autoantibodies etc.), these MOG
antibodies could enter the perivascular spaces and CNS, where they
could contribute to disease pathology.

Suggested mechanisms for MOG antibody pathogenicity
include opsonization of MOG, complement activation, antibody-
dependent cellular cytotoxicity (ADCC), and anti-MOG ab-
induced intracellular signaling cascade (3, 50, 84, 103, 104).

MOG-IgG opsonizes MOG and could activate myeloid
antigen-presenting cells (APC) through Fc receptor binding
(84, 104). These activated APCs can further stimulate MOG-
specific T cells in the periphery or in perivascular spaces in
the CNS (56).

The role of complement activation in MOGAD is still
debated. IgG1 is a complement-fixing subtype, and there is
evidence of C9neo deposition in the MOGAD histopathology
(50). Furthermore, oligodendrocytes express relatively less surface
complement regulatory proteins such as CR1, MCP, and HRF,
making themmore vulnerable to complement activation (106). In a
multinational cohort study, serum-activated complement proteins
(C3a, C5a, and Bb) were elevated in MOGAD patients compared
to control groups (107). However, there was no correlation
between activated complement protein levels in the serum and
the clinical presentation (relapsing vs. monophasic or ADEM
vs. ON vs. TM). On the other hand, complement activation in
MOGAD is to a lesser extent, compared to AQP4 NMO (108).
This might be because MOG-IgG has a bivalent binding pattern
(both Fab subunits should bind to MOG), whereas AQP4-IgG
has a monovalent binding pattern, which activates complement
more efficiently (103, 108–111). This also indicates that anti-
complement therapy may not be as successful as in NMO
for MOGAD.

Another pathogenic mechanism is ADCC. Brilot et al. showed
that MOG IgG binding to MOG induces Natural Killer cell-
mediated killing of MOG-expressing cells in vitro (104).

MOG abs also have a direct downstream effect on
oligodendrocytes (3). When Mog ab binds alone, it activates
MAPK and AKT survival pathways and increases intracellular
calcium levels, whereas cross-linking of the MOG abs leads
to the activation of stress-related pathways and reduced
cytoskeletal integrity.

B cells

B cells are part of the disease pathogenesis through the
production of MOG antibodies; however, there is much to discover
about their contribution to the MOGAD. For example, anti-CD20
therapy is relatively ineffective in most patients. In a large cohort,
rituximab decreased the relapse rate by 37%, and only 33% of
patients remained relapse-free after 2 years (105). Failure of B cell
depleting therapy suggests alternative pathogenic mechanisms in
these patients, which could be used for enhanced T cell activation
and MOG ab production. Serum MOG ab levels and circulating
MOG-specific B cells did not correlate in MOGAD patients, raising

the possibility of different MOG ab sources (for example, CD20-
plasma cells) (91).

CXCR4 expression is increased in CD19+ B cells in PBMCs
from MOGAD patients (112). Interestingly, CXCL12 (also called
stromal cell-derived factor 1), a ligand of CXCR4, is also found
increased in the CSF (compared to MOG ab- demyelination)
and serum (compared to MS) of MOGAD patients (73, 113).
As, CXCL12/CXCR4 axis is related with chemotaxis, increased
CXCL12 could contribute immune cell infiltration (such as T, B,
and monocytes) in the MOGAD (114). B cells are present in the
lesions of MOGAD, although fewer than T cells (56). However, the
source of MOG-IgGs is presumably the periphery, except in some
patients with intrathecal production or CSF-restricted positivity
(41, 50, 56, 71, 74, 100). Therefore, it is not certain if B cells cross
BBB during MOGAD relapses and contribute to lesion formation
within the CNS.

Altered regulatory B cells in MOGAD are reported in a study
(115). Decreased Breg/Bmem ratio and decreased IL10+ CD19+
cell frequency are accompanied by increased circulating follicular
T helper cells in MOGAD (115).

T cells

T cells play a key role in MOGAD pathogenesis. First, MOG
abs are IgG1 phenotype, so follicular T helper cells are essential
for MOG-specific B cell class switching (96). Second, MOG abs are
not pathogenic alone unless they are coupled with MOG-specific
or encephalitogenic T cells (102). CD4+ T cells are the dominant
inflammatory cell type in the lesions and have an essential role
in disrupting BBB and creating a proinflammatory environment
(50, 116).

MOG-specific T cells are first activated peripherally (90).
Due to inadequate tolerance toward MOG, MOG-specific T cells
could be present in the blood. Infections, molecular mimicry,
and MOG peptide presentation could facilitate the activation
of self-reactive T cells. Then, peripherally activated CD4+ T
cells cross BBB and are reactivated by the MOG-laden APCs in
the perivascular or subarachnoid spaces (56). This reactivation
is followed by endothelial and microglial activation, allowing
more T cells and autoantibodies to enter the perivascular
space (90, 116).

The strength of T cell reactivation and chemokines in the
CNS can facilitate parenchymal infiltration of the CD4+ T cells
(90, 117, 118). Anti-MOG abs help APCs (such as macrophages)
to present native MOG protein to T effector cells and enhance the
reactivation of effector T cells in the CNS (84, 119). T cells could be
reactive to different epitopes of MOG protein. Most immunogenic
MOG epitopes were previously determined in EAE models and
tested MS patients (120, 121). These include p35–55, p119–130,
p181–195, and p186–200. The following study tested nine different
MOG peptides (p1–20, p35–55, p64–80, p81–96, p99–107, p119–
130, p181–195, p186–200, and p205–214) in MOGAD, AQP4+
NMO, MS, and HC, but didn’t find a difference of MOG-specific
T cells between any groups based on CFSE assay (122). This
could be explained by the lack of central tolerance and, therefore,
the presence of MOG reactive T cells even in HC. Another
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possibility is that native full MOG protein is required for an optimal
T-cell response.

Th17 responses are higher in MOGAD patients. Our lab
used different MOG peptides for in vitro stimulation and showed
MOGAD patients had more IL17+ and IL17+IFNγ+ (double
positive) central memory cells than healthy controls (123). When
relapse and remission MOGAD samples were compared, there
was an increased proportion of IL17+, IFNγ+, and IL17+IFNγ+

CMCs after stimulation with several individual MOG peptides in
MOGAD patients at the time of relapse (123). Later, Horellou
et al. stimulated PBMCs with recombinant full-length MOG
protein (rhMOG) and observed increased IL17+ CD4T cells
in non-relapsing (monophasic) MOGAD patients upon rhMOG
stimulation, but not in relapsing MOGAD or MS (124).

Tregs play an important role in peripheral immune tolerance.
Horellou et al. reported an increased CD4+ Foxp3+ Treg
population in the non-relapsing MOGAD group and decreased
CD45RA-Foxp3+ Treg population in MOGAD relapsing group
upon rhMOG stimulation (124). They hypothesized that this
opposite response to MOG stimulation could contribute to
the relapse mechanism. Besides, we don’t know if Tregs are
functional in MOGAD; however, inflammatory milieu (high IL6
and TNF) in MOGAD could render Tregs ineffective with
suppressing (72, 113, 125).

Innate immune cells

Macrophage (CD68+) and granulocyte (hematoxylin-eosin)
infiltration is reported in MOGAD lesions, especially in the
perivascular demyelinating areas (50, 56). The presence of
phagocytic macrophages indicates active demyelination, and
MOG-laden macrophages could further activate T cells in the
perivascular spaces (56).

IL-1β and IL-12p70, monocyte or dendritic cell-related
cytokines, are increased in the serum of MOGAD patients (126).
IL-1β levels were highest in the acute stage and lower in the chronic
phase, indicating monocyte/macrophages play a role in the acute
demyelinating stage (126). IL-1β also affects the permeability of
endothelial cells in vitro human BBB model (127).

In a recent study of three patients (1 MOGAD, 1 RRMS, and 1
Healthy control), single-cell RNA sequencing of PBMCs revealed
changes in monocyte signature in MOGAD compared to RRMS
or HC, however, a larger, age and sex-matched cohort is needed to
confirm these findings (112).

The increased neutrophil-to-lymphocyte ratio (NLR) in serum
is also reported in MOGAD, with relapse samples having
higher NLR values than the remission sample (128). This
biomarker requires caution as many confounding factors, such as
hospitalization and steroid treatment, could affect NLR.

Coexisting antibodies

Epitope spreading is not established in MOGAD, however,
coexisting antibodies have been investigated. Kunchok et al. tested
17 neuronal IgGs in the CSF and serum of pediatric and adult

MOGAD patients and found NMDA-R-IgG is the most frequent
coexisting autoantibody (4% in children and 7% in adults) (129).
On the other hand, anti-Aqp4 IgG and anti-MOG IgG rarely coexist
(0.06%) (130).

Serum-IgG from demyelinating animal models or patients
could also affect BBB permeability by affecting pericyte function
and lymphocyte adhesion molecule (LAM) expression on
endothelial cells (131, 132). Interestingly, anti-GRP78 antibodies
were reported to be commonly present in acute MOGAD patients
(10/15, 67%) and caused BBB dysfunction through increased LAM
expression in endothelial cells and NF-κB activation (133).

In summary (Figure 2), MOGAD pathophysiology is driven
by acute attacks during which T cells and MOG antibodies cross
BBB. Initial activation of T cells in the periphery is followed by
reactivation in the subarachnoid/perivascular spaces by MOG-
laden APCs and inflammatory CSF milieu, which enables T cells
to infiltrate CNS parenchyma. CD4T cells, unlike CD8 in MS, are
the dominant T cell type found in lesion histology. Granulocytes,
macrophages/microglia, and activated complement are also found
in the lesions, which could contribute to demyelination during
acute relapses. MOG antibodies potentially contribute to pathology
by opsonizing MOG, complement activation, and antibody-
dependent cellular cytotoxicity. Stimulation of peripheral MOG-
specific B cells through TLR stimulation or T follicular helper
cells might help B cells differentiate into MOG antibody-producing
plasma cells in the peripheral blood.

Lesion topography in MOGAD

Different clinical presentations and lesion distribution seen
in MOGAD is an intriguing topic. What is the difference
between MOG-IgG-related optic neuritis, transverse myelitis, and
tumefactive lesions in ADEM?

Higher antibody levels in serum can favor spinal cord
involvement against the optic nerve. Jarius et al. reported that
MOG antibody titers are higher during relapses compared to
remission, and relapses involving myelitis have higher titers of
MOG antibodies compared to isolated optic neuritis (48).

Expression levels of MOG protein across different parts of
the CNS could contribute to differential lesion involvement. For
example, Bettelli et al. reported that 2D2 TCR transgenic mice,
which have MOG-specific T cell receptors, developed spontaneous
autoimmune optic neuritis but not spinal cord lesions, which
they associated with higher MOG expression in the optic nerve
compared to the spinal cord (134). Comparative expression of
human MOG protein in optic nerve and CNS has not been
reported, althoughMOG expression in different parts of the human
brain and spinal cord has been variably reported in the human
protein atlas (80, 135). Consequently, we do not know if the most
common lesion location (optic nerve in adults, brain in children)
relates to MOG expression level in those tissues.

The Th17:Th1 ratio could affect lesion topography. PBMCs
fromMS patients were stimulated withMOG orMBP proteins, and
higher Th17:Th1 upon MOG (recombinant human) stimulation
was associated with spinal cord involvement (136). Interestingly,
epitope-specific T cell functional avidity help determine Th17:Th1
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ratio in MOG peptide-induced EAE model (C3HeB/Fej mice, p35–
55, p79–90, p97–114 MOG peptides) (137). So, maybe also in
MOGAD, different epitope/TCR reactivity in T helper cells brings
differential Th17:Th1 balance, affecting the lesion topography.

The quantitative relationship between inflammatory T cells
and autoimmune antibodies could explain the size and structure
difference of lesions in MOGAD (50, 138). Lassmann et al. tested
this hypothesis with encephalitogenic T cells (MBP-specific) and
MOG antibodies in an EAE model. Higher numbers of T cells in
the presence of MOG abs induced an ADEM-like phenotype with
ubiquitous perivenous demyelination all over the brain stem and
spinal cord and partly in the brain. In contrast, low T cell and high
MOG ab titer induced focal demyelinating plaques like in MS.

Biomarkers and therapeutic
mechanisms

Potential biomarkers investigated with MOGAD are listed
below (Table 2). First, MOG-IgG is both a diagnostical and
prognosis biomarker. High titers are needed for MOGAD
diagnosis, and seronegative conversion is associated with decreased
relapse risk (9). Furthermore, relapsing MOGAD patients have
higher MOG-IgG titer at remission compared to monophasic
MOGAD (139). Treatments such as IVIG, Plasmapheresis, or
FcRn blockers target pathogenic antibodies in the blood, including
MOG-IgG. IVIG has been used commonly for maintenance
treatment in MOGAD, and potential therapeutic mechanisms
include increasing clearance of pathogenic antibodies by saturating
neonatal FcR (FcRN) and blockade of activating FcγRs (144).
Similarly, anti-FcRn antibodies also increase the pathogenic

ab clearance, and currently, rozanolixizumab, an anti-FcRn
agent, is in phase 3 clinical trial for relapse prevention in
MOGAD (NCT05063162).

Serum NfL (sNfL) level is a biomarker for axonal damage and
correlates with relapse activity in MS. A recent study evaluated
longitudinal sNfL values from 18 MOGAD patients and found
that median sNfL levels at the onset are higher compared to age-
matched HC (140). Most follow-up sNfL values stayed stable or
decreased over time, including relapse serum samples of 6 patients.
In the following study, sNFL levels were not different between
relapse and remission MOGAD samples (141). This observation
supports that significant axonal damage happens in the first clinical
attack (30, 140).

Increased MBP (CSF) and Tau levels (serum) in MOGAD
suggest that there is myelin and oligodendrocyte damage (60, 141).
Increased Tau levels in the relapse, but not sNFL, may support that
the source of Tau could be damaged oligodendrocyte processes, not
axons (141).

SerumGFAP levels are stable during relapses inMOGAD (141).
This finding is compatible with the spared astrocytes seen in the
biopsy. In NMOSD, astrocyte damage is pronounced and serum
GFAP levels are increased during relapses (141). In MS, increased
GFAP is seen with progressive disease (145).

IL6 and TNFα levels are increased during relapses in the
CSF of MOGAD patients (43, 44). Recently, increased serum
IL6 levels are also reported in MOGAD (113). Increased IL6 is
associated with Th17 differentiation through IL6-STAT3 pathway
and impaired BBB (142). Recently, a multinational study showed
that IL6 receptor blockade with tocilizumab is therapeutically
effective and safe in MOGAD and NMOSD (146). Increased TNFα,
on the other hand, could also affect BBB permeability through

TABLE 2 Biomarkers investigated with MOGAD.

Potential
biomarkers

MOGAD disease activity Significance/implications Therapeutic mechanism

MOG-IgG titer
(9, 98, 139)

Serum High titers required for diagnosis Seronegative conversion indicates
decreased relapse risk

FcRn blockers, IVIG, Plasmapheresis

NfL (140, 141) Serum Increased mostly in the first attack, then
stay stable throughout the course

Significant axonal damage happens
mostly in the first attack

MBP (60) CSF Increased Marker of demyelination

GFAP (60, 141) Serum Stay stable during relapses Spared astrocytes

Tau (141) Serum Increased during relapses Synthesized in axons and
oligodendrocytes

IL6 (72, 73, 113, 142) CSF, serum Increased in the CSF during relapses Increased STAT3 activation could
cause increased Th17

IL6 receptor blockers

Impair BBB

TNFα (42, 43, 143) CSF Increased in the CSF during relapses May affect BBB through increased
cell adhesion molecule expression
(such as ICAM-1 and VCAM-1)

A20/TNFAIP3 (123) Serum Decreased in the serum during relapses
(individual level)

Increased NFKB activation Steroids (increase)

Intracellular Steroid increase A20 expression in T
cells

N/L ratio blood (128) Blood Increased ratio during relapses Could help differentiating relapse
from pseudo-relapse
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leukocyte adhesion molecule expression such as ICAM-1 and
VCAM-1 (143). Although, steroids may decrease TNFα synthesis,
we do not have information about targeted therapies such as TNF
receptor blocking, while few cases in the literature are diagnosed
with MOGAD while on anti-TNF treatment due to preexisting
other autoimmune diseases (147, 148).

We recently reported that A20, a negative regulator of the
NF-κB pathway, is decreased in the serum during relapses on
an individual level (123). Interestingly, steroids increase A20
expression in CD4T cells. As well known, MOGAD patients
are quite steroid-responsive, and it is difficult to taper steroids
following relapses (149). In addition to inhibiting the NF-
κB pathway through A20, steroids improve BBB and decrease
activation of T cells, thereby minimizing the migration of
lymphocytes into the brain (150–152).

NLR is increased in MOGAD patients during relapse,
supporting high inflammatory activity in the periphery (128).
However, this biomarker should be utilized carefully as factors such
as hospitalization and steroid treatment affect NLR.

Micro RNAs (miRNAs) have not been fully explored in
MOGAD. Only, a study measured miR-17, miR-18a, miR-20a, and
miR-92a-1 in PBMCs (12 MOGAD, 12 HC) via qPCR and found
them increased in MOGAD (153). In the EAE model, miRNA-17
increased Th17 andmiRNA-20a decreased Treg fraction (153, 154).
Further miRNA screening studies (serum or PBMCs) are needed to
confirm these miRNAs and identify other miRNAs.

Developing a peripheral immune tolerance against MOG is a
promising therapeutic method. For example, intradermal MOG
vaccination increased MOG-specific Tregs and improved clinical
outcomes in the macaque EAE model (rhMOG induced) (155).
More recently, Ugur Sahin et al. used an mRNA vaccine to
induce tolerance in a mouse EAE model (C57BL/6 mice, MOG
p35-55 induced) (156). This mRNA vaccine provided a self-
antigen presentation in a non-inflammatory context, expanded
MOG-specific Tregs, and increased expression of inhibitory
molecules such as PD-1 and CTLA4. Furthermore, when the
mRNA vaccine was administered on days 7 and 10 after
immunization with MOG p35–55, the development of EAE was
prevented, and administration after the EAE onset alleviated
the symptoms.

Discussion

Frequent infectious prodrome and high IL6/IL17 associated
cytokine-chemokine signature are important components of
MOGAD (113). Within this inflammatory milieu in the peripheral
blood, MOG-specific T cells, especially CD4+, are activated
through bystander activation, molecular mimicry, or maybe MOG
peptide presentation in CNS-draining lymph nodes. Peripherally
activated T cells further open blood-brain barrier through
reactivation in the perivascular spaces, allowing autoantibodies,
complement, and more immune cells to enter to perivascular
spaces and CNS (90, 116). In addition to CD4+ T cells,
granulocytes, macrophages/microglia, and activated complement
are also found in the lesions contributing to demyelination (50,
56).

In addition to being diagnostical and prognostic biomarker,
MOG antibodies potentially contribute to pathology by opsonizing
MOG, complement activation, and antibody-dependent
cellular cytotoxicity. MOG antibodies enhance T cell-mediated
inflammation in the CNS, however, MOG antibodies alone are
not pathogenic (102). MOG-IgG is detected in the CSF of more
than half of the MOGAD patients and associated with worse
outcomes compared to CSF negative MOGAD patients (99). Since
MOG antibodies require BBB dysfunction to enter CNS, a trigger
involving T cell activation and BBB dysfunction is important for
the onset.

BBB and blood-CSF barrier dysfunction in MOGAD is
evidenced by contrast enhancing lesions and increased albumin
quotient (32%) (10, 46). Increased pro-inflammatory cytokines
(such as IL6, TNFα, IL-1β, MCP-1) could also contribute to
BBB dysfunction (72, 73, 113). Available treatments such as
plasmapheresis, IVIG (or FcRn blockers), steroids, and IL6
receptor blockers may affect BBB directly or indirectly through
decreasing inflammatory cytokines and coexisting autoantibodies
in the plasma.

Neuroinflammatory biomarkers (such as MBP, sNFL, GFAP,
Tau) in MOGAD support that most axonal damage happens
in the initial attack, as evidenced by increased sNFL (140,
141). Demyelination associated with myelin and oligodendrocyte
damage is evidenced by increased MBP (CSF) and Tau levels
(serum, during relapse) [51, 135].

Understanding the autoimmune etiology of MOGAD will help
us to identify biomarkers, predict prognosis, and find targeted
therapies. For example, therapeutic mechanisms targeting IL6,
MOG-IgG (FcRn blocking or IVIG), or improving peripheral
tolerance (Treg-inducing MOG-vaccine) are new avenues that will
benefit our patients.
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