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Introduction: There is overwhelming evidence that focal lesions cause structural, 
metabolic, functional, and electrical disconnection of regions directly and 
indirectly connected with the site of injury. Unfortunately, methods to study 
disconnection (positron emission tomography, structural and functional magnetic 
resonance imaging, electroencephalography) have been applied primarily in 
isolation without capturing their interaction. Moreover, multi-modal imaging 
studies applied to focal lesions are rare.

Case report: We analyzed with a multi-modal approach the case of a patient 
presenting with borderline cognitive deficits across multiple domains and 
recurrent delirium. A post-surgical focal frontal lesion was evident based on the 
brain anatomical MRI. However, we were able to acquire also simultaneous MRI 
(structural and functional) and [18F]FDG using a hybrid PET/MRI scan along with 
EEG recordings. Despite the focality of the primary anatomical lesion, structural 
disconnection in the white matter bundles extended far beyond the lesion and 
showed a topographical match with the cortical glucose hypometabolism seen 
both locally and remotely, in posterior cortices. Similarly, a right frontal delta 
activity near/at the region of structural damage was associated with alterations 
of distant occipital alpha power. Moreover, functional MRI revealed even more 
widespread local and distant synchronization, involving also regions not affected 
by the structural/metabolic/electrical impairment.

Conclusion: Overall, this exemplary multi-modal case study illustrates how a focal 
brain lesion causes a multiplicity of disconnection and functional impairments 
that extend beyond the borders of the anatomical irrecoverable damage. These 
effects were relevant to explain patient’s behavior and may be potential targets of 
neuro-modulation strategies.
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1. Introduction

There is overwhelming evidence that local structural damage 
induces structural and functional disconnection effects remotely from 
the site of injury (1–4) hence directly supporting Von Monakow’s 
concept of diaschisis (5, 6).

The discovery of remote physiological alterations and their 
behavioral effects has been documented in neuroscience research over 
the last 40 years using several methods (7) that are available in the 
clinical setting. Among these, measures of glucose metabolism with 
positron emission tomography (PET) (8, 9); alterations of local 
activity and inter-regional correlation among brain regions or 
networks through resting-state fMRI (rs-fMRI) (2, 4, 10–12); 
structural disconnection (SDC) with diffusion imaging or structural 
connectome atlas (13–15); and finally, electrophysiological alterations 
with electroencephalography (EEG) (16–18). However, most 
investigations have been conducted using these methods in isolation 
or partial combination (19–21), with the result that a clear 
understanding of how different signals relate to each other is missing 
(22, 23).

An understanding of the relationship among multiple type of 
disconnection has wide relevance in clinical neuroscience (24–30).

Moreover, a detailed investigation at the level of single 
subjects represents an opportunity to improve our knowledge of 
structure–function relationships and an opportunity to 
differentiate between the irreversible anatomical damage and 
network-related functional impairment.

Relevantly, the latter may benefit of neuro-modulatory strategies 
in patients with focal lesions (31).

We report here a patient with a post-surgical focal lesion of the 
right medial frontal lobe and fornix after craniopharyngioma 
excision whose disconnection was studied with multiple brain 
imaging methodologies. His cognitive profile showed borderline 
performance across multiple cognitive domains. In addition, the 
patient presented recurrent delirium with VHs with worsening 
cognitive performance.

We acquired simultaneous structural and functional MRI and 
[18F]FDG metabolic information using a hybrid PET/MRI scan along 
with multiple neuropsychological evaluations (NPEs) and EEGs 
(obtained both in and out of the delirium episodes). This allowed us 
to document local and remote disconnection and metabolic effects as 
well as the dynamic of electrophysiological abnormalities that 
explained patient’s behavior.

2. Materials and methods

2.1. Case description

The patient, a 52-year-old man, underwent brain surgery via 
craniotomy for craniopharyngioma a year and a half before the study. 
Brain MRI after surgery showed post-surgical damage in the right 
frontal lobe (Supplementary Figure S1). Hormonal replacement 
therapy was started due to post-surgical hypopituitarism. At home, the 
family, and the patient himself noted problems with episodic memory. 
Nine months after surgery he underwent an EEG recording (EEG1). 
One year and a half after surgery he was admitted due to his first 
episode of delirium with visual hallucinations.

The patient presented with psychomotor slowing, drowsiness, 
spatiotemporal disorientation and the development of a psychotic 
state with agitation and disorganized thoughts. Two EEGs, a 
structural MRI and a NPE were performed during delirium, 
respectively at 3 (EEG2) and 12 (EEG3), 9, and 11 days after 
admission. There was bilateral slowing on the EEG during 
delirium (Supplementary Figure S2).

A systemic infection with a raise in serum inflammatory 
indices was detected. Cerebral spinal fluid was negative for 
infections and neuro-degenerative markers. He  recovered from 
delirium after 15 days from admission, after treatment with a cycle 
of antibiotics and antipsychotics (risperidone). He was discharged 
after 28 days. At day 20 of admission, when delirium symptoms 
were resolved, he  underwent an integrated [18F]FDG PET/MRI 
scan and, 4 days and 1 month later, repeated NPEs. A total of 
14 months after the first episode, another frank episode of delirium 
occurred with disorientation, agitation and disorganized thoughts, 
and the patient underwent another EEG (EEG4) the day after 
symptoms’ acme (day 7 of admission). This second episode of 
delirium lasted for 8 days and resolved after treatment 
with haloperidol.

2.2. Neuropsychological assessment

Neuropsychological evaluations were obtained during 
delirium, out of delirium on day 24 after admission and at 1 
month after discharge at his baseline. Patient performed a 
multiple domain battery consisting of memory, attention, 
executive functions, language, and visuo-spatial sections 
(Supplementary Table S1; Supplementary Figure S3).

2.3. Pet/MRI data details

A simultaneous hybrid [18F]FDG PET/MRI scan was acquired on 
a Siemens Biograph mMR (Siemens Healthcare, Erlangen, Germany) 
equipped with a PET compatible 16-channels head–neck coil.

The MR imaging protocol included: (a) a T1-weighted image (TR/
TE 2400/3.2 ms, voxel 1x1x1mm3), (b) a T2-weighted image (TR/TE 
3200/536 ms, voxel 1 mm × 1 mm × 1 mm), (c) a T2-weighted Fluid 
Attenuated Inversion Recovery (FLAIR, TR/TE 5000/395 ms, voxel 
1 mm × 1 mm × 1 mm), and (d) 10 min of eyes-open resting state 
fMRI (rs-fMRI: TR/TE 1100/30 ms, voxel 3 mm × 3 mm × 3 mm, 
40 slices).

PET imaging started 45 min after the [18F]FDG intravenous bolus 
injection and lasted 20 min. The PET static image (voxel size 
2.8×2.8×2.0 mm3) was reconstructed off-line by means of the Siemens 
e7-tool software according to (31).

Two different datasets were used as healthy control groups. For 
the rs-fMRI data, we  used 308 subjects (125 females; mean age 
36.96 ± 18.40 years) of the publicly available MPI-Leipzig Mind-Brain–
Body (LEMON) dataset (32, 33).

For the PET data set, the healthy control group (henceforth PET 
HC dataset) consisted of 26 subjects (16 females, age range 
40–78 years) from a previous study by Aiello and colleagues (34). PET 
measurements started 30 min post injection and acquired for 15 min 
with reconstruction voxel size of 1.12 × 1.12 × 2.03 mm.
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2.4. MRI data: Methods and analyses

The patient’s lesion was manually segmented on structural MRI 
scan (T1-weighted, considering also FLAIR and T2-weighted 
sequences) using the itk-SNAP software.1

The lesion mask was non-linearly mapped into the MNI152 
standard space and the SDC map was calculated with BCB toolkit 
(14) using the default set of healthy controls. We identified the 
most affected white matter (WM) tracts by computing the 
percentage overlap between the SDC map and each anatomical 
tract provided by the toolbox (a full list of tracts is reported in 
the Supplementary Table S2) and normalizing for the volume of 
the tract. A tract with a volume involvement of more than 10% 
was considered to be severely impaired.

Functional scans underwent a state-of-the-art preprocessing as in 
(35). In addition, a high pass filtering (cutoff frequency 0.008 Hz) and 
an independent component analysis (ICA)-based denoising (36) were 
performed to remove further sources of noise.

The functional data were used to extract three main measures: 1) 
the spatial pattern and strength of the main resting state networks 
(RSNs); 2) their inter-network connectivity; and 3) the local 
activity synchronization.

To address the first two, we  followed the same procedure as in 
Silvestri et  al. (37). Overall, 45 independent components (IC) were 
identified as representative of intrinsic connectivity networks (or RSNs) 
and grouped into 10 different networks: visual (VIS), sensorimotor 
(SMN), auditory (AUD), cingulo-opercular (CON), dorsal-attention 
(DAN), frontoparietal (FPN), default mode (DMN), cognitive control 
(CCN), frontal (FRN) and language (LANG) network. Components 
were estimated at the single subject level through the group guided ICA 
(38). Then, modification of RSNs spatial pattern and strength were 
quantified using the cosine similarity (CSM) between patient’s and 
group’s independent component maps. Statistically significant alterations 
were assessed comparing the patient’s CSM value with the empirical 
statistical distribution of the CSM obtained in the control dataset within 
a permutation test framework (50,000 permutations, threshold of-2 
standard deviations from the HC average CSM, significance level 0.05).

In both the patient and each HC subject, the inter-network 
connectivity was quantified computing the Person’s correlation between 
each pair of independent components (RSN) time courses. For 
statistical purposes, the correlation values were z-Fisher transformed. 
As for intrinsic connectivity: significantly hyper-or hypo-connected 
couple of RSNs were detected by comparing the strength of each inter-
network connection with the empirical statistical distribution of this 
connection in the control group (50,000 permutations, threshold of ±2 
standard deviations from the HC average, significance level 0.05).

Finally, we  computed the regional homogeneity (ReHo) of the 
resting state functional signal, a measure of local activity synchronization, 
as introduced in (39). The ReHo measures were computed in regions of 
interest (ROI) of the Hammersmith anatomical atlas (40) averaging 
voxel-wise ReHo values within each region. With a permutation test 
framework, hyper-or hypo-integrated ROIs were detected as regions 
with ReHo values outside of the normal range of average ReHo ±2 
standard deviations (50,000 permutations, significance level 0.05).

1 http://www.itksnap.org/

2.5. Pet data: Quantification and statistical 
analysis

Since the patient and control PET data were acquired using the 
same scanner but with slightly different protocols, we designed an 
analysis strategy less sensitive to acquisition protocols. The [18F]FDG 
standard uptake value ratio (SUVR) was computed on both dataset 
using the pons [as defined in the Hammersmith atlas (40)] as 
reference region. Next, regional changes of brain metabolism were 
estimated at the ROI-wise level though the metabolic laterality index 
(LI). As for ReHo, ROIs were defined according to the Hammersmith 
atlas for the gray matter. The SUVR values at the voxel level were 
averaged within each ROI (i), and a LI was computed as the difference 
between each left hemisphere ROI and its homologous regions in the 
right hemisphere normalized by the sum of the SUVR of the 
two regions:
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Hence, since the lesion was in the right hemisphere, a positive LI 
indicates a relative hypometabolism in the damaged (right) 
hemisphere, as compared to the undamaged (left) hemisphere. 
Regions with significant hypo/hyper metabolism were identified by 
comparing each patient’s ROI LI with an empirical distribution of the 
same ROI LI in the PET HC dataset. Using a permutation test 
framework (50,000 permutations, threshold of ±2 standard deviations 
from the PET HC average, significance level 0.05).

2.6. Electroencephalography data: Detailed 
description and analyses

EEG were recorded using 21 electrodes placed according to the 
standard 10–20 international system.

All the sessions consisted of about 20 min of resting state activity 
during which the patient was asked to rest and keep his eyes closed. 
Raw EEG data underwent the following pre-processing in EEGLAB 
toolbox (41): high-pass filtering with a cut-off frequency of 0.5 Hz; 
low-pass filtering with a cut-off frequency of 45 Hz; re-referencing 
using the average signal as reference (42); ICA computation (43).

In addition, a visual inspection was carried out to mark and delete 
additional bad temporal epochs (44). The rest of the analysis was then 
carried out on post-processed clean data.

We ran a power spectral density analysis in four consecutive 
frequency bands: delta (1÷4 Hz), theta (4÷8 Hz), alpha (8÷13 Hz), and 
beta (13÷20 Hz) (45).

3. Results

3.1. Neuropsychology

At his baseline, the patient was oriented to space/person, and 
partially to time. The NPE highlighted borderline performance in 
multiple cognitive domains including memory, executive, and visuo-
spatial functions (Supplementary Figure S3).
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During delirium he showed severe attentive, executive, memory, 
and visuo-spatial deficits (Supplementary Figure S3), and 
visual hallucinations.

At day 25 post-admission he underwent a multi-domain NPE 
that showed a substantial return to baseline condition 
(Supplementary Table S1). A total of 14 months later, he suffered 
a second episode of delirium. At that time no neuropsychology 
was obtained.

3.2. Lesion, structural disconnection, and 
hypometabolism

The structural lesion was limited to anterior mesial region located 
along a track between the right posterior dorsolateral part of the 
superior frontal gyrus (SFG) and the hypothalamus, passing through 
the anterior cingulate, the anterior portion of the corpus callosum 
(CC), and the fornix (Figure 1A).

This lesion was associated with widespread WM tract 
disconnection in both anterior and posterior regions of the brain. The 
disconnection was predominant in the ipsilesional hemisphere with a 
partial contralateral extension due to the involvement of the CC, 
fornix and anterior commissure (Figure 1A). Among the significantly 
disconnected tracts there were FST (fronto-striatal tract), ATP 
(anterior thalamic projection), OR (optic radiation), FAT (fronto-
aslant tract), SFG (see Supplementary Table S2 for all significantly 
disconnected tracts).

Overall, the lesioned hemisphere showed a relative 
hypometabolism (Supplementary Figure S4) as compared to the 
contralateral. The regions with a statistically significant relative 
hypometabolism were adjacent to the lesion like the SFG or along 
the medial wall like the posterior cingulate cortex (PCC). 

Homolateral subcortical regions like thalamus, putamen, and 
caudate were also affected. Finally, remote regions in the occipital 
cortex (lingual gyrus and cuneus) were hypometabolic (Figure 1B). 
When we  examined the pattern of SDC vis-à-vis the map of 
significantly hypometabolic regions, we found a good topographic 
match between the WM disconnections and the relative reduced 
metabolism of the cortical and subcortical areas linked by the 
impaired bundles (Figure 1B). This match was even more evident 
when looking at unthresholded maps of structural disconnection 
(Supplementary Figure S5). Of note, regions that were bilaterally 
disconnected, as medial prefrontal cortices (mPFC), showed on the 
[18F]FDG PET SUVR map an hypometabolism not captured by the 
LI (Figure 1B; Supplementary Figure S6).

3.3. Alterations of functional connectivity 
and local synchronization

Figure 2 (top) shows representative altered components for the 
most five affected RSNs (VIS, DMN, DAN, FPN and CCN; 
Supplementary Figures S7, S8 shows all altered components).

We also analyzed the FC within-between components divided 
by RSN. Figure 2 (bottom) shows the FC matrix of the group of 
healthy controls vs. that of the patient, and the statistically 
significant altered connections based on a permutation test. The 
VIS network was the most affected in terms of number of altered 
connections (n = 13), even though visual regions were farther away 
from the primary lesion. Within DAN, FPN, CCN, FRN alterations 
also occurred. The VIS network lost connectivity with many 
non-sensory networks as DAN, DMN, CON, CCN and FPN. Links 
between DMN and DAN and DMN and FPN were additionally 
impaired. Of relevance, the altered connections also involved 

A B

FIGURE 1

Anatomical lesion, structural disconnection map and metabolic asymmetry. (A) Anatomical lesion and associated structural disconnection map. T1-
weighted structural MRI scan showing the anatomical lesion (red) in the midline frontal structures and the associated structural disconnection (blue) 
extending posteriorly and contralaterally (FST, fronto-striatal tract; ATP, anterior thalamic projection; OR, optic radiation; FAT, fronto-aslant tract; SFG, 
superior frontal gyrus; CC, corpus callosum). (B) Structural disconnection and metabolic asymmetry. T1-weighted structural MRI scan showing the 
structural disconnection (blue, threshold 20%) and regions with significative metabolic asymmetry (>2SD; green; SFG, medial orbital gyrus (MOG), 
caudate, putamen, thalamus (T), posterior cingulate cortex (PCC), cuneus, lingual gyrus).
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networks that were not affected in their spatial extent 
(Supplementary Table S3). When we compared the spatial maps of 
SDC, glucose metabolism and voxels showing altered FC, FC 
alterations showed a pattern more widespread than alterations of 
SDC or metabolism (Supplementary Figure S9).

The final analysis concerned the level of local activity 
synchronization (ReHo). In details, the following ROIs showed a 
decreased ReHo: SFG (bilateral), middle frontal gyrus (bilateral), 
precentral gyrus (bilateral), posterior temporal lobe (right), lateral 
part of anterior temporal lobe and middle and inferior temporal gyrus 
(left), inferior-lateral remainder of parietal lobe (left), superior parietal 
gyrus (bilateral), lateral reminder of occipital lobe (bilateral), fusiform 
gyrus (right), cuneus (bilateral).

Figure  3 shows a voxel wise overlap map comparing ReHo 
abnormalities with relative hypometabolism and SDC. Note that the 
cortical regions showing both metabolic asymmetry (i.e., a LI 
different from normality) and decreased ReHo are relatively few and 
mainly near the lesion in prefrontal cortices. The regions showing a 
decrease of local synchronization are widespread and bilateral, and 
match those showing abnormal FC (compare Figure  3 with 
Supplementary Figure S9).

3.4. Global and local 
electroencephalography abnormalities

Baseline EEG showed a lower alpha peak frequency (APF) 
value (7.2632 Hz) compared to the standard reference (8–13 Hz) 
with a slight left–right alpha asymmetry in occipital regions 
(left>right). Delta activity was present on right frontal regions. A 
predominance of beta power over the right frontal regions was 
also observed. This pattern is consistent with the right frontal 
lesion causing increase delta/beta power in the right hemisphere, 
and a relative loss of alpha power in the right occipital lobe, with 
an overall lower APF.

During the episodes of delirium (EEG2-4), at the global level, 
there was a general slowing of the background activity with an 
increase in delta activity and a reduction in the value and power of the 
alpha peak (Figure 4).

At the spatial level, the delta activity increased in power over 
right frontal region and extended contralaterally and posteriorly 
to centra-parietal regions. Furthermore, in correspondence of the 
posterior regions, there was an increase in theta and a reduction 
in alpha activity. Alpha activity showed a left>right asymmetry 

A

B

C

D

E

F

A B C

FIGURE 2

Resting state networks functional connectivity analysis. Top: Spatial pattern of representative altered resting state networks. VIS (A,B), DMN (C,D), DAN 
(E), and FPN (F). In each panel resting state network spatial pattern is reported for the group of healthy subjects and for the patient, respectively in the 
upper and lower part of the panel. Bottom: Functional connectivity between resting state networks. Average across the healthy group is shown in 
panel A, patient’s connectivity in panel B, and patient’s altered connections in panel C.
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that was more evident during delirium with also a slight 
posterior-to-anterior shift in EEG3-4 (left>right).

4. Discussion

In the present case study, we  had the unique opportunity to 
integrate different types of disconnections emerged from different 
techniques that were performed on the same patient presenting with 
a post-surgical frontal lesion.

This integrated picture, derived via the adoption of a multi-modal 
analysis, explained patient’s behavior.

For instance, patient’s visuo-spatial impairment and constructional 
apraxia (46, 47) were not directly explained based on the focal lesion, 
while the multi-modal analysis revealed SDC/FDC and metabolic 
disconnection of occipital-parietal regions and the VIS/DAN 
alterations that well matched with these deficits (Figures 1–3).

Executive and memory impairment can be linked to lesion of SFG 
and fornix, though, the multi-modal approach captured a more 
widespread dysfunction of prefrontal-temporo-parietal (FPN/DAN) 
and meso-limbic structures (DMN) (48–50).

Indeed, even though the degree of the neuropsychological 
impairment appeared rather modest vis-à-vis the widespread 
functional alteration, the multi-modal approach revealed a fragile 
structure/functional scaffold (involving distributed networks) 
that was more subjected to transitory pathological modulation, 

as evident in the EEGs during delirium, with a spreading of delta 
activity associated with worsening in cognitive performance 
(Figure 4).

Therefore, this case study highlights the complexity and the 
clinical relevance of diaschisis in focal lesions at single-subject level.

Focal lesions produce remote physiological effects that are 
related to the disconnection of incoming/outgoing/passing WM 
fibers to/from the lesion. This SDC, in turn, causes remote 
metabolic and functional effects that have been documented 
using different techniques (PET, fMRI) (4). The mapping between 
anatomical disconnection, metabolic/functional disconnection, 
and dynamic changes of synchronization/activity remains to-date 
largely unknown due to the dearth of multimodal studies that 
have addressed these issues using multiple imaging modalities on 
the same subject (51).

Here we  had the chance to study concurrently anatomical-
metabolic-functional organization along with EEG measures in a 
patient with a frontal lesion. There were three main findings detected 
in the multi-modal mapping.

A first notable result was the presence of a widespread intra-
hemispheric and inter-hemispheric SDC. The SDC involved tracts 
near the structural lesion, but it also extended to commissural fibers, 
long-range association pathways and cortico-subcortical pathways.

Secondly, this disconnection nicely matched the spatial pattern of 
glucose hypometabolism measured through the LI or qualitatively 
observed on the [18F]FDG SUVR map (e.g., bilateral mPFC).

FIGURE 3

Overlap maps of decreased ReHo, [18F]FDG SUVR altered laterality index (LI) and disconnection map. Patient’s regions with decreased ReHo are shown 
in red, SUVR altered LI in light green. The overlap between decreased ReHo and SUVR altered LI is depicted in orange and corresponds to right medial 
prefrontal and right medial occipital cortices. The structural disconnection map is shown in blue (MOG, medial orbital gyrus; C, cuneus; SFG, superior 
frontal gyrus).
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This SDC-[18F]FDG PET result supports the hypothesis that 
metabolic changes reflect diaschisis (52) (e.g., neural 
disconnection due to reduction of direct connections/synaptic 
inputs). In contrast, alterations of local (ReHo) and remote 
synchronization (RSN independent components and FC within/
between networks) were more widespread involving multiple 
networks. Hence different mechanisms may underly the broader 
FC-fMRI and ReHo dysfunction, such as the propagation of the 
effect through BOLD oscillations or through large-scale networks 
dynamics (53, 54).

Thirdly, the baseline EEG was abnormal both anteriorly near the 
lesion (delta activity) as well as posteriorly in the occipital lobe and 
was then subjected to similar changes (e.g., spreading of delta activity) 

during the episodes of delirium, likely reflecting the dynamic effects 
of delirium on a baseline altered structural-functional scaffold 
(29, 30).

5. Conclusion

This case study illustrates the presence and the complexity of 
remote effects induced by a brain lesion. An integrated multi-modal 
approach can capture multiple disconnection patterns induced by a 
focal lesion. These are relevant to explain patient’s behavior and to 
develop novel biomarkers of individualized treatment targeting 
networks’ dysfunction.

A B

C

FIGURE 4

EEG 1–4 power spectra analysis. (A) Electrodes’ location on the scalp. (B) Power spectral density for each of the four EEG records. (C) Topoplots for 
each frequency band (delta, theta, alpha and beta) in EEG 1–4. EEG1 is out of delirium while EEG 2–4 are during delirium.
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