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Idiopathic inflammatorymyopathies (IIMs) are a group of acquiredmuscle diseases

with muscle inflammation, weakness, and other extra-muscular manifestations.

IIMs can significantly impact the quality of life, and management of IIMs often

requires a multi-disciplinary approach. Imaging biomarkers have become an

integral part of the management of IIMs. Magnetic resonance imaging (MRI),

muscle ultrasound, electrical impedance myography (EIM), and positron emission

tomography (PET) are the most widely used imaging technologies in IIMs. They

can help make the diagnosis and assess the burden of muscle damage and

treatment response. MRI is the most widely used imaging biomarker of IIMs and

can assess a large volume of muscle tissue but is limited by availability and cost.

Muscle ultrasound and EIM are easy to administer and can even be performed

in the clinical setting, but they need further validation. These technologies may

complement muscle strength testing and laboratory studies and provide an

objective assessment of muscle health in IIMs. Furthermore, this is a rapidly

progressing field, and new advances are going to equip care providers with a

better objective assessment of IIMS and eventually improve patient management.

This review discusses the current state and future direction of imaging biomarkers

in IIMs.
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Introduction

Idiopathic inflammatory myopathies (IIMs) are a heterogeneous group of acquired

muscle diseases characterized by muscle inflammation, weakness, and other extra-muscular

manifestations (1–4). Classically, the IIMs were sub-grouped into dermatomyositis (DM),

polymyositis (PM), and inclusion body myositis (IBM) (5). Increasing evidence suggesting

that myositis-specific antibodies (MSA) can help define subgroups of patients with different

phenotypes, prognosis, and response to treatment has favored the development of a

new classification system that groups IIMs into DM, IBM, immune-mediated necrotizing

myopathy (IMNM), and antisynthetase syndrome (ASS) (6). All IIMs, except for most IBM

cases, usually present with acute or subacute symmetric proximal weakness. IBM typically

presents with insidious onset asymmetric quadriceps muscle weakness with frequent long

finger flexors involvement; patients often develop dysphagia (7, 8). Patients with DM have

characteristic skin changes such as periorbital edema and erythema (heliotrope rash), and

Gottron papules on the dorsum of hands and fingers. The later rash overlaps can also be

seen in the ASS.
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Disease severity of IIMs can vary, and patient quality of life

can be significantly impaired (1, 2). The management of IIMs

is challenging and requires a multi-disciplinary team including

rheumatologists, neuromuscular specialists, dermatologists,

physical, occupational, and speech therapists, pulmonologists, and

cardiologists. The role of imaging technologies in the diagnosis,

assessing disease activity and treatment response, and monitoring

disease progression of the IIMs is increasingly being recognized.

The objective nature of these technologies can complement the

available outcome measures and will facilitate future clinical

trials. In this study, we review the application of imaging

technologies as an objective biomarker of IIMs, their limitations,

and future directions.

Methods

A PubMed search was done for the terms “myositis and

biomarkers,” “MRI andmyositis,” “electrical impedancemyography

and myositis,” and “ultrasound and myositis” for all English

language literature until 14 February 2023. Overall, this resulted

in a total of 2,672 results which were then screened by AZ for

applicability to this topic. This resulted in 199 publications that

were reviewed for this study (Supplementary Figure 1).

Magnetic resonance imaging

Magnetic resonance imaging (MRI) has been used to assess

muscle involvement in myositis for over three decades (Figure 1),

and it is the imaging modality of choice for the evaluation

and follow-up of muscle changes in myositis patients. MRI can

distinguish between active muscle inflammation vs. chronic muscle

damage and is a tool to optimize sample selection for muscle

biopsies (Figure 2) (9, 10). Additionally, MRI patterns of muscle

involvement can help distinguish between IIMs such as DM/PM

and IBM.

MRI characteristics of normal muscles

Normal, healthy muscle generates an intermediate signal

intensity, slightly higher than water and much lower than fat

using T1 weighted image sequences. On the contrary, T2-

weighted sequences generate a much lower signal for healthy

muscle in comparison to fat and water (11, 12). With short-

tau inversion recovery sequences (STIR) or fat-suppressed T2-

weighted sequences, normal muscle signal intensity is lower than

the signal intensity of pure/free water molecules but higher than

pure/free fat molecules (12–15). Usually, fat replacement is better

captured by T1-weighted images, while muscle edema is better

detected with STIR or fat-suppressed T2 images.

MRI captures a wide area of muscle and provides more

detailed information than computed tomography and muscle

ultrasound. Moreover, it can identify changes in the deep muscles

which can be particularly challenging with muscle ultrasound

and electromyography. Thus, MRI is particularly helpful for the

identification of muscle involvement patterns that can be used to

distinguish between IIMs and myopathies in general.

MRI changes in IIMs

In myositis, there is muscle edema in the early stage of active

muscle disease and muscle atrophy and fatty replacement in the

later stages of muscle damage which alters the normal MRI signal

of muscles. However, in some cases, both can co-exist (16, 17).

The initial study by Kaufman et al. (18) showed higher T1 signal

intensity, atrophy, and fat replacement in active DM and PM.

Edema is noted in the early stage of myositis even in the absence

of clinical weakness and with normal creatine kinase (CK) (18, 19).

MRI is ∼80%−90% sensitive in showing muscle edema in active

myositis (13, 20). Studies from juvenile DM showed that 76%−97%

of patients will havemuscle edema onMRI (21, 22). A study showed

that 56% of patients with active DM, and 15% of patients with

PM can have muscle edema on MRI even without any elevation

of CK level. The pattern of muscle edema in DM and PM can vary;

edema is usually diffuse in PM and patchy and ill-defined in DM.

Moreover, edema can spread to subcutaneous tissue and fascia in

DM (19, 23).

The pattern of muscle involvement can be helpful to distinguish

between IIMs (24–27). In PM, inflammatory changes, reflected

as edema, are symmetric and affect proximal upper and lower

extremity muscles. Usually, the adductor group of muscles is more

involved in PM, whereas DM frequently involves the quadriceps

(9, 28, 29). On the contrary, MRI findings in sporadic IBM

patients are more extensive in the lower extremities and are usually

asymmetric; however, inflammatory changes are seen in all affected

muscles and prevalent at all stages of the disease (16, 28, 30–

32). Typically, findings are more severe in distal muscles, and fat

infiltration is a frequent pathologic finding in patients with IBM

(31). The anterior compartment of thigh muscles is usually more

affected, but the rectus femoris is relatively spared (16, 31). Relative

sparing of pelvic muscles can be seen. Among the distal muscles,

the medial gastrocnemius is usually the most affected (16, 31).

The fat infiltration in the individual muscles of these patients is

heterogeneous in terms of the proximal-to-distal gradient, and the

severity of fat infiltration correlated with worse clinical scores (32).

Edema and atrophy have been reported to be present together in

both PM and IBM (28). Undulating fascia sign is the presence

of wavy fascia between the severe atrophic and fat-infiltrated

vastus muscles commonly seen in IBM. Undulating fascia sign is

associated with more severe disease and poor clinical outcomes.

However, this sign is not specific to IBM and can be seen in

conditions with severe atrophy and fat infiltration of quadriceps

including advanced PM (28, 31).

Patients with IMNM often have severe lower limb muscle

edema with fatty replacement and atrophy, and pelvic muscles and

adductors are usually more affected than patients with DM (33).

Patients with ASS often have significant subcutaneous tissue edema

and relative sparing of adductor muscle, which is similar to DM but

distinct from IMNM (24). Despite some similar findings with DM,

patients with ASS may have less symmetric involvement and more

common myofascial edema of tensor fascial lata (24).
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FIGURE 1

Major developments regarding the application of magnetic resonance imaging in idiopathic inflammatory myopathies over the years.

FIGURE 2

Magnetic resonance imaging of muscle showing water vs. fat image and a fat fraction map. (A) Water image, (B) fat image, (C) fat fraction map, and

(D) fat fraction map with muscle region overlaid.

Apart from the standard T1 and T2 (or STIR), other MRI

sequences also can provide valuable information on muscle health

in myositis. Diffusion-weighted imaging (DWI) measures the

mobility of free water in the living tissue; areas of increased

free water content result in increased diffusivity, and apparent

diffusion coefficient (ADC), an index of diffusivity, is higher in

these regions and can identify muscle edema that is comparable to

STIR (34). Apparent diffusion coefficient (ADC) values in patients

with myositis increased in affected muscles compared to that of

normal muscles (35–38).

Muscle edema and fat deposition are not unique to IIM and can

be seen in denervation changes (including disorders of the motor

neurons), neoplasm, infection, and muscle injury (20, 39–44).

Differentiating neurogenic changes from IIMs can sometimes be

difficult. The overall pattern of muscle involvement and comparing

it to “classic” forms of IIMs can be helpful (42). Muscle MRI can

be useful as a clinical tool to identify a pattern (with a sensitivity

to detect selective patterns in the rigidity of the spine in relation

to the genetic diagnosis reported as 0.9) (45). Furthermore, the

identification of muscle “islands” or small areas of muscle tissue

with normal signal intensity surrounded by areas with intensity

similar to subcutaneous fat on imaging is usually associated with

neurogenic etiology (42, 46).

Other MRI sequences for evaluation of IIMs

Diffusion tensor imaging (DTI) evaluates the anisotropic

diffusion of water molecules which can help characterize

physiological and microstructural properties of skeletal muscles

and architectural organization (47–49). DM patients have lower

pseudo-diffusion and volume in quadriceps muscles. Moreover,

static dynamic diffusion imaging metrics correlated with T1/T2

scores (50). However, in another study, the mean apparent

diffusion coefficient was higher in patients with DM, but no

significant difference in fractional anisotrophy was noted between

edematous and normal muscles. Traditional DTI has limitations

including a reduced signal-to-noise ratio (SNR) on DTI images

and prolonged study time (47–49). Discrepancies in DTI measures

can be due to many issues, potentially including unsatisfactory

fat suppression. Simultaneous multi-slice (SMS) accelerated echo

planar imaging (EPI) DTI which combines simultaneous excitation
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of multiple slices during acquisition and spatially encodes their

signals in a simultaneous manner can capture fast images and

shows lower fractional anisotrophy (47, 51).

The problem of long scanning times is not limited to DTI

imaging but also applies to traditional MRI T2 sequences which can

take up to 30min per thigh (52, 53). A new technique based on a

multi-echo spin-echo sequence including a reconstruction method

that combines model-based accelerated relaxometry by iterative

non-linear inversion (MARTINI) with generalized auto-calibrating

partial parallel acquisition (GRAPPA) can acquire much faster

images (54–56). GRAPPATINI utilizes the characteristics of the

two methods and can significantly shorten the acquisition time of

T2 mapping (52, 57). However, elevated GRAPPATINI-generated

T2 values were seen in some non-edematous muscles which were

normal in conventional MRI DM patients (52).

Quantitative MRI

Qualitative assessment of muscles can identify a specific pattern

and can help in diagnosis but is subjected to individual biases and

may not accurately represent disease progression and treatment

response. There has been an unmet need for a more objective

measure of muscle damage in IIMs (58, 59).

Semi-quantitative methods use visual assessment by an

evaluator who assigns a numerical grade on an ordinal scale.

The Mercuri scale, a commonly used semi-quantitative grading

score scale, grades muscle images between 0 and 4 (0 being

normalmuscle and four representing end-stagemuscles with severe

damage) and was created to mitigate this problem to some extent

(60–62). This scale helped in standardizing muscle imaging and is

relatively easy to administer, but it is essentially an ordinal scale.

Ordinal scales may lack sensitivity and can have subjective bias. A

study by Kubinova et al. reported a large variability among different

scoring approaches for muscle MRI (12, 63).

Quantitative MRI has the potential to be a useful biomarker

in clinical practice and in the context of clinical trials (58). They

always use continuous scales to measure muscle changes more

precisely. Fat fraction analysis, transverse relaxation time (T2), and

magnetization transfer ratio are the commonly used quantitative

muscle MRI techniques which is expected to be more accurate than

the commonly used manual ordinal grading system (59).

Computer-based analysis of pixel intensity values is a

commonly employed quantitative muscle MRI technique (59).

Quantitative MRI techniques can determine the functioning

muscle area or remaining muscle area (RMA) (16). RMA can be

estimated by using the cross-sectional area. A decrease in RMA has

been shown to be associated with reduced knee extension strength

on myometry in IBM (16).

A 3-Point-Dixon MRI fat-water imaging quantifies tissue fat

content on a 0%−100% fat-fraction (FF) scale and has been

previously used in neuromuscular diseases (Figure 3) (64–67). In

Duchenne muscular dystrophy, Dixon MRI has been shown to be

more precise and reliable than visual radiological methods (68).

If optimally performed, the magnetization transfer ratio (MTR)

excludes lipid contribution, and it is similar to water T2 relaxation

time; in that, it also is sensitive to changes in the water distribution

(69). In IBM, T2 and MTR showed early changes in muscles before

significant intramuscular fat accumulation, providing potential

measures of early disease before irreversible changes occurred (70–

72). Furthermore, the whole muscle fat fraction increased at the

calf level and thigh level in patients with IBM over 1 year, and the

changes in fat fraction were more consistent compared to changes

in longitudinal T2 and MTR changes (16). In particular, increased

lower limb FF was shown to have a negative association with the

Medical Research Council Sum score, lower limb components of

IBM Functional rating scale (IBM-FRS) score, Rankin score, and

36-Item Short Form Health Survey questionnaire in IBM patients

(16, 31, 32).

T2 relaxation time has been referenced as a more objective

marker to assess muscle disease. T2 relaxation is sensitive to

changes in water distribution and lipid content, and it is an

objective marker of muscle health. However, fat replacement in

advanced IIM can confound the interpretation of muscle T2

values and published T2 values for fat vary significantly (73–

76). Combination of MRI estimation of fat fraction with a bi-

exponential T2 modeling procedure can result in fat-corrected

T2 (fc-T2) maps. Yao et al. published a study showing that

application of fc-T2, fat fraction (FF), and muscle T2 to MRI

evaluation of IIM disease activity can improve study precision

and is amenable to automation (73). In children with JDM,

invasive procedures like EMG andmuscle biopsy are less frequently

used. T2 relaxation times in JDM patients can quantify areas

of inflammation and correlate with other measures of disease

activity (77–79).

MRI assessing muscle metabolism

Quantification of muscle metabolism by measuring pH and

high-energy phosphate metabolites [phosphocreatine, inorganic

phosphate, and adenosine triphosphate (ATP)] by phosphorus-31

magnetic resonance spectroscopy (P-MRS) can identify metabolic

abnormalities in DM, juvenile dermatomyositis (JDM), and also

treatment response (9, 80, 81). Mean ATP and phosphocreatine

values are much lower in the thigh muscles of patients

with JDM (81). Post-exercise P-MRS indices are impaired in

DM with prolonged post-exercise recovery likely related to

impaired perfusion (80). In DM, JDM, and PM, these metabolic

abnormalities improve with corticosteroid therapy (81–83). On the

contrary, patients with IBM have abnormal resting metabolites

but normal post-exercise recovery parameters (84). While MRS

can be a useful modality that can differentiate between subtypes

of IIMs and assess treatment response, it is limited by cost and

availability, and still mostly used for research purposes (9, 20,

39).

Magnetic resonance elastography

Magnetic resonance elastography (MRE) can provide an

assessment of muscle stiffness based on the propagation of shear

waves (85, 86). In a limited sample of patients with PM, DM, and
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FIGURE 3

MRI appearances of thigh muscles in a patient with inclusion body myositis. Axial T1-weighted images of the thigh at the baseline and 3 years later

(A1, A2), and axial STIR respectively (B1, B2). This figure illustrates progressive intramuscular fat accumulation with initial sparing of the rectus femoris

as hyperintensities on T1-weighted sequence and acute muscle inflammation is evident as hyperintensity on STIR images (P, posterior; R, right).

JDM, a statistically significant reduction inMRE imagery was noted

when compared to healthy controls in a relaxed state (87).

Whole-body MRI

Whole-body MRI is useful to capture distal and patchy

disease activity that was not appreciated clinically and would

have been missed by dedicated regional imaging (88). It is

becoming particularly popular in pediatric populations with the

advent of increasingly efficient MRI scanners (19, 89). Whole-

body MRI can also play an important role by potentially

detecting occult malignancy in DM and determining if there

is a paraneoplastic etiology (9, 90–93). This can be valuable as

older DM patients with dysphagia, anti-TIF1γ and anti-NXP2

seropositivity, and cutaneous ulceration have a higher risk of

developing cancer (93).

Use of MR imaging in clinical practice

Only limited classification criteria have incorporated MRI as a

variable in the classification of IIM (9). Addition of muscle MRI

and myositis-specific antibodies have been shown to improve the

diagnostic accuracy of the Bohan and Peter criteria as part of the

updated Targoff classification (94). Notably, the Targoff criteria

from 1997 allowed the incorporation of abnormal MRI in the

context of normal CK (9, 95). Muscle MRI is however not part

of the current European League Against Rheumatism/American

College of Rheumatology (EULAR/ACR) 2017 classification

criteria for myositis (4). These are the currently widely accepted

myositis classification criteria. An Australian-validated study of

the EULAR/ACR 2017 myositis classification criteria showed that

adding MRI as a covariate would improve the probability of

IIM diagnosis and should be considered as part of a future

revision of these criteria (96). However, MRI has also been

used to target the best muscle sample for biopsy and to help

avoid missing pathological support for the diagnosis (97, 98).

In patients with IMNM muscle, MRI is a sensitive biomarker

for monitoring disease activity and therapy response. Patients

with higher STIR changes at the baseline were more prone to

fatty replacement (99). In addition to its use as a guidance

tool, some have suggested that imaging should be considered as

an alternative to muscle biopsy. This is not a widely accepted

approach due to the lack of specificity of signal changes as indicated

earlier. In a study comparing muscle biopsy findings with MRI

images, it was shown that there was a statistically significant

association between the inflammatory infiltrate and both muscle

and fascial edema, suggesting that key MRI findings correlate

with the main features of DM muscle biopsy making them a

potential surrogate marker of disease activity (100). While not as

specific for IIM as a muscle biopsy, MRI does have a positive

predictive value equivalent to that of biopsy (97 vs. 100%) and

a better negative predictive value (64 vs. 38%) (13). As MRI has

been shown to be able to assess treatment response, it is intuitive

that MRI may guide therapeutic decisions and can be used to
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determine refractory diseases. However, such a role of MRI is

yet to be established and will require a comparison with the

commonly employed traditional tools of disease severity scale and

clinical assessments.

Limitations of MRI

While MRI is a very useful imaging biomarker of IIM, it

has some limitations (Table 1). First, prolonged supine positioning

holding a steady position without any extremity movement can

be difficult for some patients. Some muscles may be difficult to

be quantitively imaged such as the deep finger flexors. Similarly,

patients with claustrophobia findMRI unpleasant and often require

pre-medication to endure the procedure. Some patients may have

implanted devices that are not compatible withMRI. MRI is usually

available in the developed countries, but availability can be limited

in many parts of the world and the cost of MRI can be significant.

Furthermore, we must consider the cumulative cost of serial MRIs

to assess disease progression or treatment response in IIMs. Apart

from the logistic considerations, one major limitation of MRI is

the lack of a widely validated objective scale to assess the extent

of muscle disease. Quantification of muscle disease by MRI is

challenging due to the variable intensity of characteristic muscle

signal changes. Currently, no universally accepted scoring systems

for the evaluation of muscle MRI findings exist (59, 63). Newer

technologies, such as the three point-Dixon method to quantify fat

deposition in muscle is valuable, but such technologies are still used

only for research purposes and not widely available for clinicians.

Furthermore, these methods depend on specific software-based

analysis, and their reproducibility from different scanners is yet

to be established. There have been limited attempts of using

computer analysis of MRI image pixel values to quantify the

degree of disease; however, it was shown that neither the computer

algorithm nor visual analysis method was able to separate moderate

disease from severe disease. A standardized, validated method for

quantifying MRI findings in IIM may help with efficient diagnosis,

accurate interpretation of research data, and valid comparisons

across studies (17, 63). Machine learning, particularly the use of

artificial intelligence with deep learning technology, has shown

promising results in IIMs and other muscle disorders and has

the potential to address some of the limitations of MRI (101–

103).

Ultrasound

Ultrasound imaging of the muscle tissue is becoming an

important tool in neuromuscular medicine given its non-invasive

nature, ease of use, and improved resolution for soft tissue

structures (104–107). Ultrasound was the first imaging technique

available for the evaluation of muscle disease. Normal muscle

fascicles appear hypoechoic and are separated by echogenic fibro-

adipose or perimysial connective tissue. Connective tissue and fat

replacement inmuscles is seen as increased echogenicity (108–111).

Quantitative muscle ultrasound by assessing the gray-scale level

(GSL) and quantified back-scatter analysis (QBA) has been found

to correlate with functional status and worsening disease (112, 113).

TABLE 1 Advantages and disadvantages of di�erent imaging

technologies.

Advantages Disadvantages

Magnetic resonance

imaging

1. High resolution

images

2. Objective measures;

not dependent on

operator

3. Captures wide area of

muscle

4. Has been widely used

in IIM

1. May not be widely

available

2. Expensive

3. Takes a relatively longer

time to complete than

other modalities

4. Lack of standardized

protocol for muscle

imaging

5. Lack of widely accepted

and easily

available quantification

Ultrasound 1. Easily accessible

2. Can be performed at

bedside/clinic setting

3. Rapid screening

1. Limited by the skill of

the operator

2. Quality of the image can

be limited by anatomy

and muscle depth

3. Muscle edema may

result in too small a

change in echogenicity

Electrical impedance

myography

1. Less resource

intensive

2. Minimal

post-processing

required

3. Rapid screening

4. Can be performed at

bedside/clinic setting

1. Still a research tool and

not widely available

2. Only provides

quantified values,

but no images

3. The interpretation of

numerical parameters is

not well-established in

the clinical setting

Muscle ultrasound is about 80% sensitive in diagnosing IIMs with

a positive predictive value of 95% (114, 115).

Different IIMs have typical but non-specific ultrasound

features (116, 117). In DM/PM muscle, inflammation and edema

indicating disease activity are not well-discriminated by a simple

assessment of muscle echo intensity. Muscle edema can lead

to low echogenicity, but the change is too small to make a

definite diagnosis of edema (118). In general, acute myositis

accompanies normal or slightly swollen muscle size with relatively

low intensity. However, in juvenile DM, muscle echo intensity has

been surprisingly reported to first increase and then normalize

in 6/7 successfully treated cases, but the seventh case had

echogenicity persistently increased suggesting early fibrosis (119).

In chronic stages of myositis where there is fat replacement and

fibrosis, higher echo-intensities and decreased muscle thickness

are apparent.

IBM has been studied with quantitative muscle ultrasound.

Affected muscles show an increased echogenicity on the

ultrasound image which indicates the replacement of muscle

with fat and fibrosis (120–123). IBM has a specific pattern

of muscle involvement that can be used to help distinguish

it from other diseases. Increased echogenicity within flexor

digitorum profundus (FDP) and medial gastrocnemius is

highly supportive of IBM (121, 124). The FDP to flexor carpi

ulnaris (FCU) echogenicity contrast, a pattern of higher

echo intensity in the FDP than in the FCU, can help in

discriminating IBM from DM and amyotrophic lateral sclerosis.

Similarly, gastrocnemius echo intensity is significantly different
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from soleus echo intensity in IBM when compared to DM

(121, 125).

Ultrasound has also been used to assess diaphragm thickness

in myositis and allows for the assessment of anatomy and

function (126). Respiratory muscle involvement is reported in

IIMs (127); in IBM, data are limited about prevalence and

impact on functional capacity partly due to limited methods

of assessing diaphragmatic involvement (128). Ultrasound has

been shown to be effective in screening patients with IBM

and has shown that diaphragm involvement in IBM is related

to disease duration and has detrimental effects on exercise

capacity and lung function (128). More recently, studies have

also shown utility in the use of ultrasound to assess diaphragm

involvement in patients with immune checkpoint inhibitor-related

myositis (129).

Musculoskeletal power Doppler ultrasonography (PDUS) has

been used to diagnose and measure vascularity in inflammatory

disorders. PDUS allows simultaneous assessment of disease activity

at more sites than contrast-enhanced MRI (130). A PDUS study in

patients with DM and PM showed that increased blood flow was

associated with angiogenesis that accompanied fasciitis in patients

with DM but not PM, possibly permitting earlier diagnosis of

patients with DM (130).

Shear wave elastography (SWE) is an ultrasound-based

technique that has been studied in tendinopathy, muscle spasticity,

and Duchenne muscular dystrophy (131–135). SWE provides a

quantitative measure of tissue stiffness by taking advantage of

differences in the relative hardness of soft tissues when an external

force is applied to a tissue boundary. Thigh muscle stiffness as

measured by SWEwas shown in one study to be lower in active IIM

patients as compared to healthy controls, and the reduced muscle

stiffness was likely associated with muscle weakness and MRI signs

of edema and atrophy (136). Recent studies have shown evidence

that SWE can have utility as an imaging biomarker that can lend

support to IIM diagnosis (137, 138).

Machine learning has been studied on ultrasound in patients

with myositis; one study showed that the deep learning approach

performed better than conventional machine learning and required

no user intervention (118). Newer models are being tested which

show promise in the utilization of advanced machine learning

processes to help accurately make diagnoses (139).

One additional utility is the use of ultrasound to conduct

guided biopsies. Ultrasound can provide images in real time as

well as identify abnormal muscle morphology, making it well-

suited to target muscle biopsies with improved tissue diagnostic

yield. A disadvantage of using ultrasound-guided needle muscle

biopsy can be under-sampling when compared to an open

biopsy resulting in an inadequate amount of specimens or non-

diagnostic tissues.

The are several advantages to muscle ultrasound. It can be

performed quickly at the patient bedside and does not require

prolonged maintenance of a posture. It is less expensive than

muscle MRI. However, despite its convenience and portability, it

cannot replace MRI in assessing disease activity in the IIMs at the

present state. Part of the issue with ultrasound is that it is limited

in its ability to identify edema in comparison to other modalities

(26, 140, 141) (Table 1).

Electrical impedance myography

Electrical impedance myography (EIM) is a non-invasive

technique that uses subthreshold electrical current to measure

the obstruction to current flow (142). It involves the application

of a high frequency, low-intensity alternating electrical current

via two surface electrodes attached to the skin, and the resultant

voltage is measured using a second set of electrodes (143), and

usually reactance, resistance, and the phase angle are the measured

parameters (142, 144). Changes in the underlying structure and

composition of themuscle caused by the progressive disease change

alters these parameters (145, 146). Resistance is the measure of

the difficulty of passing an electrical current through a tissue

and provides a measure of water content. Fat replacement results

in higher values. Reactance measures the capacitive nature of

myofibers and is diminished with worsening disease severity.

Finally, the phase angle (arctan of reactance/resistance) decreases

with worsening disease conditions. EIM is less resource intensive

than clinical testing modalities; in that, it requires minimal time

and training of staff as well as no volitional effort of the patient,

and there is little postprocessing required (147).

An animal study of intra-muscular EIM to assess muscle

inflammation showed that changes in low-frequency EIM

parameters are sensitive to the presence of inflammatory infiltrates

and have the potential to serve as a simple means of quantifying

the presence and extent of inflammation without the need for

biopsy (147). In facioscapulohumeral muscular dystrophy (FSHD),

EIM was compared with MRI Dixon and was noted to have a

strong correlation with structural MRI features lending to EIM

being a potentially useful biomarker in FSHD trials (142). Other

human studies in an array of disease states including Duchenne

muscular dystrophy, amyotrophic lateral sclerosis (ALS), and

spinal muscular atrophy (SMA) have shown that localized

impedance measurements over specific muscles can result in

clinically valuable data (148–150). Additionally, incorporating

measurements of muscle anisotropy, another EIM parameter,

can improve the reproducibility of the EIM technique as well as

help distinguish myopathic and neurogenic diseases (151, 152).

Technological improvements have also assisted in advancing EIM

including the creation of a portable system for the assessment of

neuromuscular diseases. Studies have indicated that the system

was able to obtain measurements of the complex impedance of the

muscle tissue rapidly and accurately (143). EIM has been shown

to capture muscle inflammation in patients with inflammatory

myopathy. EIM phase values from thigh muscles of affected

individuals were lower and correlated with muscle strength (153).

EIM has also been recently studied in IBM and was shown to

detect changes in the muscle health of patients and to correlate

with standard functional outcome scales. To complement this

cross-sectional study, longitudinal studies are needed to validate

EIM as a potential biomarker of IBM.

EIM provides information on muscle health but does

not provide information on patient’s function and statistical

significance does not always clearly translate to clinical significance.

EIM has not been used as the sole primary outcome measure in

clinical trials but has been used as an exploratory outcome measure

in a natural history study of SMA (154, 155). EIM has some

Frontiers inNeurology 07 frontiersin.org

https://doi.org/10.3389/fneur.2023.1146015
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org


Zubair et al. 10.3389/fneur.2023.1146015

advantages over MRI including rapid acquisition and the ability to

complete in an outpatient setting. Additionally, it is less expensive

than MRI and can be adapted to any muscle allowing for a tailored

assessment of disease progression and medication response.

Positron emission tomography

Fluorine-18 (18F)-labeled fluorodeoxyglucose positron

emission tomography (FDG PET) is generally used for detecting

malignancies; however, FDG also accumulates in inflammatory

lesions where glucose-consuming inflammatory cells infiltrate.

There have been a few studies looking into the utility of FDG

PET in myositis (156). A study of 24 patients with PM/DM

demonstrated increased FDG uptake in proximal muscles as

compared to controls (33 vs. 2%) (157). Another study looked

at the maximum standardized uptake value (SUVmax) in the

proximal muscles of all four limbs in patients with PM/DM

and showed that the proximal muscle SUV ratio was higher in

patients with PM/DM than controls (158). A follow-up study of 33

patients with PM/DM compared with 22 patients with ALS showed

that visually-identified FDG (vFDG)-positive regions correlated

strongly with mean SUVmax and that when compared to patients

with ALS, the mean SUVmax was significantly higher in patients

with PM/DM (159).

Amyloid positron emission tomography (amyloid-PET) has

been investigated as a diagnostic tool for IBM and differentiates it

from other IIMs such as PM (160–162). These studies have used

a relatively small number of patients so far. Different amyloid

tracers have been employed in these studies; Pittsburgh Compound

B ([11C]PIB) and [18F] florbetapir. Lilleker et al. (160) performed

the largest PET study to date (10 IBM patients and six PM patients)

with [18F] florbetapir tracer. SUV ratios were significantly higher

in all regions assessed in IBM patients compared to PM. Amyloid

PET tracer uptake has not been shown to be associated with clinical

severity in these studies (160, 162).

In patients with DM, FDG PET is also used to screen for

malignancy (163). Thus, it can be used to monitor the disease

activity while searching for any underlying malignancy. Notably,

the role of PET scans in diagnosing and measuring disease activity

in patients with interstitial lung disease has yet to be assessed (164).

Discussion

Over the course of the last few years, there have been significant

imaging advances which have allowed improved diagnosis as well

as better monitoring of treatment response in IIMs. These imaging

techniques complement currently available outcome measures and

may play a critically important role in future clinical trials.

MRI is the most studied imaging technology in IIMs. It may

be used to support a clinically suspected diagnosis when other

standard measures are not helpful. Once validated, it can possibly

be used longitudinally to assess disease activity and muscle damage

more rigorously. While initially only the T1 and T2 weighted

sequences were used for assessment, more recent advances have

allowed for the development of newer sequences that provide

additional information, and there is potential to capture the early

stages of myositis prior to the development of lab abnormalities.

MRI is sensitive in showing muscle edema and active myositis (16,

17, 28). Quantitative techniques, such as Dixon fat-water imaging

(quantifies tissue fat on a scale of 0%−100%) can be more precise

and reliable than traditional visual radiographic methods.

Arguments against the use of MR imaging include the

fact that it is expensive, may take a long time to complete,

and requires prolonged immobility in potentially uncomfortable

positions. Over the past few decades, the cost of obtaining MR

imaging has decreased significantly, and the availability of MR is

more widespread. Additionally, new techniques are offering faster

imaging while preserving quality. However, at the present state,

MRI may not be sufficient enough to make a diagnosis of IIM.

While MRI captures muscle pathology, particularly muscle edema

and fat infiltration, as mentioned earlier, none of these changes

are specific for muscle inflammation, and similar findings can also

be seen in some muscular dystrophies and hereditary myopathies

such as Pompe disease (165–167). Today, the most common uses

of MR imaging are to help target biopsy sites and to possibly aid in

diagnosis in difficult cases. MR imaging has the potential to enable

clinicians and researchers to better track disease management

and progression. However, the required frequency of MRI images

to adequately capture disease progression or the time interval

necessary to satisfactorily determine the impact of an intervention

remains undetermined. Similarly, whole-body MRI is becoming

popular, particularly in the pediatric age group, but whether whole-

body MRI has a diagnostic or prognostic advantage over standard

MRIs of specific muscles (for example, commonly employed thigh

muscles) is yet to be answered. Furthermore, standardization of

methods for research use remains a major challenge.

Another tool that is becoming an important part of the myositis

specialist arsenal is muscle ultrasound (115). Neuromuscular

ultrasound is non-invasive, easy to use, and rapid. It is roughly 80%

sensitive in confirming muscle involvement and supporting the

clinical diagnosis of an IIM. Neuromuscular ultrasound allows for

rapid screening of a good number of muscles in suspected IIM cases

in addition to needle electromyography during clinic visits though

comparative studies are not available. Additionally, ultrasound can

identify abnormal muscle morphologymaking it well-suited for use

in targeting muscle biopsy and possibly enhancing its diagnostic

yield. It is also more cost-effective than MR imaging.

Many other technologies, including EIM and PET, have shown

promise in the imaging of muscle tissues, and studies are ongoing.

Eventually, some of these new technologies will be integrated into

the management and tracking of patients with IIMs after further

validation as disease biomarkers. We believe that these imaging

modalities may result in a paradigm shift in future in the diagnosis

and management of the IIMs. Optimized imaging technologies

may add another dimension to the tracking of treatment response

during the treatment of IIMs. The use of these new technologies

may lead to the design of more efficient screening clinical trials with

smaller sample sizes and shorter duration which will be invaluable

for the treatment of rare diseases like the IIMs.

MRI is the most widely studied imaging technology in IIM,

and despite its limitation, it has major advantages over US or EIM

(Table 1). Only limited studies have examined the use of US or EIM
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in myositis, and more data are warranted to define their role in the

management of myositis. Both US and EIM are easy to use and

cost-effective. They can be regularly employed in the office setting

to track disease progression and may also provide complementary

information to MRI findings. However, none of them are self-

sufficient biomarkers of IIM. A head-to-head comparison study

between the imaging technologies is lacking is much warranted.

Conclusion

There have been significant advances in imaging technologies

in the past two decades that have impacted the clinical practice and

management of patients with IIMs. These evolving technologies

have the potential to provide an objective assessment of muscle

health once their utility is confirmed in large-scale prospective

studies. Eventually, we anticipate that these technologies will be

incorporated into a validated paraclinical assessment system that

allows for more sensitive tracking of disease activity and treatment

response to therapeutic interventions both in the clinic and in the

context of therapeutic clinical studies.
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