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Vulnerable carotid atherosclerotic plaque (CAP) significantly contributes to
ischemic stroke. Neovascularization within plaques is an emerging biomarker
linked to plaque vulnerability that can be detected using contrast-enhanced
ultrasound (CEUS). Computed tomography angiography (CTA) is a common
method used in clinical cerebrovascular assessments that can be employed to
evaluate the vulnerability of CAPs. Radiomics is a technique that automatically
extracts radiomic features from images. This study aimed to identify radiomic
features associated with the neovascularization of CAP and construct a prediction
model for CAP vulnerability based on radiomic features. CTA data and clinical data
of patients with CAPs who underwent CTA and CEUS between January 2018 and
December 2021 in Beijing Hospital were retrospectively collected. The data were
divided into a training cohort and a testing cohort using a 7:3 split. According to the
examination of CEUS, CAPs were dichotomized into vulnerable and stable groups.
3D Slicer software was used to delineate the region of interest in CTA images,
and the Pyradiomics package was used to extract radiomic features in Python.
Machine learning algorithms containing logistic regression (LR), support vector
machine (SVM), random forest (RF), light gradient boosting machine (LGBM),
adaptive boosting (AdaBoost), extreme gradient boosting (XGBoost), and multi-
layer perception (MLP) were used to construct the models. The confusion matrix,
receiver operating characteristic (ROC) curve, accuracy, precision, recall, and f-1
score were used to evaluate the performance of the models. A total of 74 patients
with 110 CAPs were included. In all, 1,316 radiomic features were extracted, and 10
radiomic features were selected for machine-learning model construction. After
evaluating several models on the testing cohorts, it was discovered that model_RF
outperformed the others, achieving an AUC value of 0.93 (95% Cl: 0.88-0.99).
The accuracy, precision, recall, and f-1 score of model_RF in the testing cohort
were 0.85, 0.87, 0.85, and 0.85, respectively. Radiomic features associated with the
neovascularization of CAP were obtained. Our study highlights the potential of
radiomics-based models for improving the accuracy and efficiency of diagnosing
vulnerable CAP. In particular, the model_RF, utilizing radiomic features extracted
from CTA, provides a noninvasive and efficient method for accurately predicting
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the vulnerability status of CAP. This model shows great potential for offering
clinical guidance for early detection and improving patient outcomes.
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Introduction

Ischemic stroke (IS) is associated with high morbidity and
mortality, resulting in a high socioeconomic burden (I, 2, 48).
Carotid atherosclerotic plaque (CAP) is closely related to the
occurrence of IS (3, 4). Vulnerable plaques are prone to rupture
and hemorrhage under the action of various hemodynamics,
leading to the occurrence of clinical symptoms, which is
an important mechanism leading to IS (5, 6). Therefore,
it is of great clinical importance to apply assessment and
early clinical intervention to prevent cerebrovascular events in
patients with vulnerable plaques. Pathological studies suggest that
neovascularization is directly related to plaque vulnerability (7),
which is also consistent with the findings from clinical studies
(8,9).

Neovascularization could promote plaque inflammatory
response and accelerate foam cell aggregation (10, 11), producing a
larger lipid necrotic core and increased fibrinolysis, thus resulting
in a thinner fibrous cap and aggravating plaque vulnerability.
Neovascularization in plaques is considered an emerging
biomarker related to plaque vulnerability (12, 13). Contrast-
enhanced ultrasound (CEUS) could detect neovascularization
in CAPs and assess the vulnerability of CAPs (14). The
status of plaque enhancement in carotid atherosclerosis
under CEUS was associated with the vulnerability of CAPs
(15, 16).

Computed tomography angiography (CTA) is a widely used
clinical cerebrovascular examination (17). CTA has a high
resolution, and the morphology of the lumen and plaque can
be accurately judged. Both pathological and clinical studies
suggest that plaque morphology may reflect plaque vulnerability
(18-20). Therefore, it could be speculated that the lumen or
plaque morphology reflected by CTA is highly correlated with
plaque vulnerability.

However, the relationship between existing morphological
features obtained by CTA and the vulnerability status of CAPs
was not intuitive; therefore, more efforts are needed to get more
intuitive and meaningful morphological features.

“Artificial intelligence (AI) technology” is an emerging
technical science to simulate and expand human intelligence
(21, 22). As a part of Al, machine learning (ML) has been
widely used in many medical fields, especially for disease
prediction and diagnosis (23-25). Moreover, radiomics is a medical
imaging field involving the extraction and analysis of quantitative
features from medical images. Compared with traditional imaging
phenotypic features, more objective and quantitative imaging
features that are difficult to identify with the naked eye could
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be obtained using radiomics techniques (26-28). The model
established by radiomic features with ML algorithms showed
great predictive performance (29, 30). Owing to the low cost of
clinical application, it could easily provide individual diagnosis
and treatment services. However, few ML diagnostic models for
predicting plaque vulnerability based on radiomic features of CTA
have been reported. This study aimed to identify the radiomic
features associated with the neovascularization of CAP and to
construct a prediction model based on CTA radiomic features,
which may guide the detection of vulnerable carotid plaque and
treatment decisions.

Materials and methods

Study population

The included patients were treated for atherosclerosis stenosis
of the carotid artery at Beijing Hospital from January 2018 to
December 2021. The inclusion criteria for this study were (1)
adult patients over 18 years old, (2) a diagnosis of CAP on
CTA and CEUS, and (3) relevant CTA and CEUS examinations
that were performed simultaneously, not exceeding 3 weeks. The
exclusion criteria included (1) cases without available clinical
records and (2) CTA images of poor quality that could not extract
radiomic features.

Clinical and imaging data

Clinical and CTA data were collected retrospectively. The
clinical information included the patient’s sex, age, smoking history,
alcohol history, and history of hypertension and diabetes mellitus.
Plaques were divided into two groups based on the status of plaque
enhancement in CEUS as follows: the vulnerable and stable plaque
groups. The contrast agent development of plaque was utilized as
an indicator to evaluate angiogenesis, and a plaque was considered
stable if no contrast agent development was observed, indicating
the absence of new blood vessels.

Conversely, a vulnerable plaque was identified if a single or
simultaneous development of contrast agent was observed at the
bottom, top, and shoulder of the plaque, indicating the presence of
new blood vessels. Carotid CTA scans were performed with a 320 x
0.5-mm detector row CT scanner (AquilionONE, Canon Medical
Systems). Scanning parameters were as follows: 80 kV, 100 mAs, a
cover range of 16 cm, reconstruction with adaptive iterative dose
reduction, and a layer thickness of 0.5 mm.
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Image segmentation and feature extraction

3D Slicer software was used to delineate ROI on the obtained
CTA images. In the image segmentation process, the threshold
segmentation method was used to delineate the area with a fixed
threshold range, and then, the selected area was adjusted manually.
The included segment was the carotid artery corresponding to the
CAP. Two general radiologists with 5 and 7 years of experience
in head CTA independently completed the work using 3Dslicer
4.10.1. The segmentation was performed using 3D segmentation,
and a strictly consistent criterion was followed to modify the
segmentation and avoid calcification. The Pyradiomics package in
Python software was used to perform radiomic feature extraction,
and from all features, three types of features were mainly extracted:
(1) first-order features, mainly included features such as energy,
entropy, kurtosis, and skewness; (2) shape features, which mainly
included features such as volume, surface, sphericity, compactness,
diameter, and flatness; (3) texture features, usually based on
different matrices to extract texture features, such as Gray Level
Co-occurrence Matrix (GLCM) features, Gray Level Size Zone
Matrix (GLSZM) features, Gray Level Run Length Matrix (GLRLM)
features, Neighboring Gray Tone Difference Matrix (NGTDM)
features, and Gray Level Dependence Matrix (GLDM) features.
Shape features were extracted from the original image, while
first-order features and texture features were extracted from both
the original image and the original image transformed by filters,
including Laplacian of Gaussian (LoG), wavelet decompositions
with all possible combinations of high-(H) or low-(L) pass filters in
each of the three dimensions (HHH, HHL, HLH, LHH, LLL, LLH,
LHL, HLL), and exponential and gradient filters.

Radiomic feature selection

The intraclass correlation coefficient (ICC) was calculated on
a subset of 50 images to evaluate the consistency and reliability
of the radiomic features obtained from the segmented images,
and features with an ICC of >0.9 were selected for further study.
The independent samples ¢-test was used to identify significantly
different variables between the vulnerable and stable plaque groups.
Features with a P < 0.05 were considered statistically significant.
Radiomic features that met the requirements for being different
between groups were considered. The basic radiomic features of
vulnerable plaques were identified as the most highly expressed
radiomic features in the vulnerable plaque group. Furthermore, the
radiomic features of group differences were selected for subsequent
model construction.

Predictive model construction and
evaluation

Machine learning algorithms were used for model building,
which included logistic regression (LR), the support vector machine
(SVM), the random forest (RF), the light gradient boosting machine
(LGBM), adaptive boosting (AdaBoost), extreme gradient boosting
(XGBoost), and multi-layer perception (MLP) based on the ML
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frameworks Scikit-learn (31) and XGBoost in Python (32). The
data were divided into training and testing cohorts at a ratio of
7:3. A prediction model was constructed based on the radiomic
features related to CAP vulnerability. Model fitting was performed
with the training cohort data to construct a plaque vulnerability
prediction model. Each of the seven models was constructed using
training cohort data. Confusion matrices were constructed for the
training and testing cohorts of each model. The corresponding
receiver operating characteristic (ROC) curve was generated, and
the predictive performance of the models was evaluated by the
area under the curve (AUC). The t-distribution method was used
to calculate the 95% confidence interval (CI) of the AUC value.
The accuracy, precision, recall, and f-1 score evaluation metrics
were calculated to evaluate the model’s effectiveness. In addition, a
predictive model based on the RF algorithm was built using clinical
information from the patients included in the study. The model
with the best performance was selected for the plaque vulnerability
prediction model. The technical roadmap is shown in Figure 1.

Statistical analysis

Statistical analyses were performed using R software. The ROC
curves were generated to assess the performance of the radiomics
model in the training and testing cohorts. The accuracy, precision,
recall, and f-1 score were used to measure the comprehensive level
of the model. The significance level was set at a p-value of = 0.05
for the basic statistical analyses.

Results

Clinical features

A total of 74 patients (mean age, 66.9 £ 8.82 years; 85.1%
men) with 110 CAPs were included. A flowchart was drawn to
describe the patient inclusion process (Figure2). The baseline
characteristics of the patients are shown in Table 1. Out of a total
of 74 patients, 30 were identified during routine physical check-
ups, while the remaining 44 were detected during post-stroke
examinations. Patients with stroke accounted for 59.5% of the
total number of patients. Among the stroke patients, a total of 64
plaques were discovered, out of which 40 were linked to ipsilateral
strokes. Additionally, the median value for enrolled patients with
carotid artery stenosis was 64%. After being identified through
CEUS examination, it was found that there were 50 stable plaques
and 60 vulnerable plaques among a total of 110 plaques in the
examined area.

Selected stable features

In total, 1,316 radiomic features were extracted, which
included 252 first-order features, 14 shape features, and 1,050
texture features. Texture features consisted of 336 GLCM features,
224 GLSZM features, 224 GLRLM features, 70 NGTDM features,
and 196 GLDM features. After performing ICC testing, a total
of 990 radiomic features that met the required conditions
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FIGURE 1

The technical roadmap of the research. The study consisted of four stages: population inclusion and data collection, radiomic features extraction
and selection, predictive model construction, and predictive model evaluation.
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underwent CTA
(n=3017)

screen of Non CEUS exam
CEUS results (n=2789)
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screen of medical Multiple scans (n=50)
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candidates(n=74)

review of CTA
image
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FIGURE 2
The flowchart of the patient inclusion process. A total of 74 patients with 110 CAPs were included after analyzing patient imaging data and medical
records according to the inclusion and exclusion criteria. CAP, carotid atherosclerotic plaque.

were selected for further analysis (Supplementary Figure S1).  The selected features included “square_glszm_ZoneEntropy,

Subsequently, 10 radiomic features were identified as significantly ~ square_glszm_SizeZoneNonUniformityNormalized, wavelet-
different between the vulnerable and stable plaque groups using  LLL_glem_MaximumProbability, wavelet-LLL_glcm_Joint
the t-test. These features were chosen for further model-  Energy, original glem_JointEnergy, wavelet- HHL_glszm_Low

building processes based on their potential to effectively  GrayLevelZoneEmphasis, = wavelet-HHH_glszm_GrayLevelNon

differentiate between the various types of plaques being studied. = UniformityNormalized, —wavelet- LLL_firstorder_Uniformity,
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TABLE 1 Study population characteristics.

Characteristics Patients (N = 74)

Age, mean =+ SD, yr 66.9 1 8.82

Men, n (%) 63(85.1%)
Smoking history, n (%) 41(55.4%)
Alcohol history, 7 (%) 28(37.8%)
Hypertension, n (%) 52(70.3%)
Diabetes mellitus, 7 (%) 29(39.2%)

TABLE 2 AUC of ML models.

Model AUC (95%Cl)

Model LR 0.731 (0.651-0.811)
Model_SVM 0.717 (0.713-0.721)
Model_RF 0.933 (0.880-0.985)
Model_LGBM 0.635 (0.581-0.688)

Model_AdaBoost 0.644 (0.471-0.817)

Model_XGBoost 0.727 (0.604-0.849)

Model_MLP 0.729 (0.637-0.820)

95% CIs of AUC value of model LR, model_SVM, model RF model LGBM,
model_AdaBoost, model_XGBoost and model MLP in the testing cohort. AUC, area
under the curve; CI, confidence interval; LR, logistic regression; SVM, support vector
machine; RE, random forest; LGBM, light gradient boosting machine; AdaBoost, adaptive
boosting; XGBoost, extreme gradient boosting; MLP, multi-layer perception.

wavelet-LLH_glszm_LargeAreaHighGrayLevelEmphasis, and
wavelet- LLH_firstorder_Kurtosis.” Based on these differences,
high-expressing radiomic features in vulnerable plaques were
selected as the basic radiomic features of vulnerable plaques,
including  “square_glszm_SizeZoneNonUniformityNormalized,
wavelet-LLL_glem_MaximumProbability, wavelet-
LLL_glem_JointEnergy, original_glem_JointEnergy,
wavelet-HHL_glszm_LowGrayLevelZoneEmphasis, wavelet-
HHH_glszm_GrayLevelNonUniformityNormalized,

and wavelet-LLL_firstorder_Uniformity.”

Predictive model construction and
evaluation

A total of seven ML algorithms were applied to the
dataset, resulting in the construction of seven ML models.
These models were named as follows: model LR, model SVM,
model RE model LGBM, model_AdaBoost, model XGBoost, and
model MLP. The AUC values of the models are shown in
Table 2. The confusion matrices of the training and testing cohorts
were constructed. The AUC values of model LR, model SVM,
model RE model LGBM, model_AdaBoost, model XGBoost, and
model MLP in training cohorts were 0.74, 0.74, 1.00, 0.88,
1.00, 1.00, and 0.79, respectively. Moreover, the AUC values
of the testing cohorts were 0.73, 0.72, 0.93, 0.63, 0.64, 0.73,
and 0.73. The ROC curves of all models in the testing cohorts
are shown in Figure 3. The accuracy, precision, recall, and
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f-1 score of models are shown in Table 3. After evaluating
various combinations of hyperparameters, it was observed that
model_RF with n_estimators=35 and max_depth=20 as their main
parameters exhibited the most superior performance compared to
other configurations. In addition, a model named model_clinical
was built using clinical information based on the RF algorithm.
The AUC values for the training and testing cohorts were recorded
as 0.90 and 0.61, respectively, and the model’s accuracy, precision,
recall, and f-1 score were measured as 0.55, 0.54, 0.55, and 0.54,
respectively. Model_RF outperformed model_clinical significantly,
indicating that it is more effective and efficient in accomplishing the
task (Supplementary Figure S2).

Discussion

Carotid atherosclerosis is a common mechanism of IS (33,
34). The vulnerability of CAP is closely related to the occurrence
of stroke (35, 36). The rupture of vulnerable CAPs causes
thromboembolism, which could lead to IS. Therefore, early
identification of vulnerable CAPs is of great significance for
improving the prognosis of patients.

CTA has been widely used in the assessment of CAPs based on
its non-invasiveness and wide availability of accurate information.
Previous studies have shown that the shape of CAPs is closely
related to plaque vulnerability. The carotid artery lumen could
be detected through CTA examination, and then, the shape
characteristics of the plaque in the lumen could be obtained to
predict the vulnerability of the plaque. While previous studies
mostly focused on traditional plaque features, such as plaque
volume, neovascularization, and inflammatory features, which
have been extensively identified as biomarkers of carotid plaque
vulnerability (12, 37), existing morphological features are not
accurate enough. Moreover, radiomics, capable of high-throughput
extraction of radiomic features, holds great potential for medical
imaging to provide more information for clinical decision-making
in a non-invasive manner. Currently, studies have demonstrated
promising results in predicting the clinical symptoms of carotid
artery atherosclerosis patients by utilizing radiomic features and
machine-learning algorithms that are based on patient images.
As noted in previous studies, the imaging modalities used for
diagnosis primarily consist of magnetic resonance imaging (MRI),
ultrasound, and computed tomography angiography (CTA) (38-
41). Moreover, recent research has indicated that CT texture
analysis (CTTA) may play an important role in identifying
vulnerable plaques in patients with carotid artery atherosclerosis.
The study indicates that CTTA has the potential to become a novel
risk stratification tool for carotid artery atherosclerosis patients,
helping to identify patients with a higher risk of stroke and TIA
(42). However, the aforementioned studies were mainly grouped
based on the symptoms of patients, and there were still few
radiomics models to predict the vulnerability of CAPs. In this study,
the radiomics approach was used to extract radiomic features from
conventional CTA images, and related machine-learning models
were constructed to predict the vulnerability of CAPs. Just as
mentioned, the morphology of CAPs might reflect vulnerability.
Therefore, the blood vessels where the CAPs are located were
selected as the ROI to predict the vulnerability of CAPs.
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FIGURE 3
The ROC curves of seven ML models in the training and testing cohorts. (A) ROC curves of model_LR, model_SVM, model_RF, model_LGBM,
model_AdaBoost, model_ XGBoost and model_MLP in the training cohort. (B) ROC curves of model_LR model_ SVM, model_RF, model_LGBM,
model_AdaBoost, model_ XGBoost, and model_ MLP in the testing cohort. ROC, receiver operating characteristic; ML, machine learning; LR, logistic
regression; SVM, support vector machine; RF, random forest; LGBM, light gradient boosting machine; AdaBoost, adaptive boosting; XGBoost,
extreme gradient boosting; MLP, multi-layer perception.

TABLE 3 Performance of ML models.

Model Accuracy Precision  Recall F1-
score
Model_LR 0.61 0.61 0.61 0.61
Model_SVM 0.64 0.64 0.64 0.64
Model_RF 0.85 0.87 0.85 0.85
Model_LGBM 0.64 0.66 0.64 0.64
Model_AdaBoost 0.67 0.66 0.67 0.66
Model_XGBoost 0.70 0.70 0.70 0.70
Model_MLP 0.58 0.58 0.58 0.58

The accuracy, precision, recall, and fl-score of model LR, model_SVM, model RF,
model_LGBM, model_AdaBoost, model_XGBoost and model_MLP in the testing cohort.

In this retrospective study, various features
were  extracted using PyRadiomics. The top three
radiomic features were square_glszm_ZoneEntropy,

square_glszm_SizeZoneNonUniformityNormalized, and wavelet-
LLL_glem_MaximumProbability. =~ Square_glszm_ZoneEntropy
refers to the ZoneEntropy of glszm obtained by applying
filter. A of this may

indicate the formation of new blood vessels within the

the square lower value feature
plaque, which could suggest increased plaque vulnerability.
Square_glszm_SizeZoneNonUniformityNormalized refers to the
SizeZoneNonUniformityNormalized (SZNN) of glszm obtained
by applying the square filter.

A higher value of this feature indicates greater homogeneity
among zone size volumes in the image, which suggests plaque
vulnerability. ~Wavelet-LLL_glecm_MaximumProbability — refers
to the maximum probability of glem obtained by applying
the wavelet-LLL filter. An

increase in this feature’s value
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indicates the presence of neovascularization within the plaque,
which is another indicator of plaque vulnerability. Moreover,
wavelet-LLL_glem_MaximumProbability has been reported to
distinguish sinonasal primary lymphomas from squamous cell
carcinomas (43).

ML has made great progress in disease prediction with the
improvement of computing power and the update of algorithms
(44-46). Various machine learning models, such as LR, RE, SVM,
LGBM, Adaboost, XGBoost, and MLP, have been applied in
different scenarios, each with its own strengths. For instance,
LR, RE, Adaboost, XGBoost, and MLP are capable of performing
classification tasks, while LGBM and SVM can be utilized for
regression tasks. Additionally, large-scale datasets benefit from the
faster training speed and higher accuracy of LGBM, while XGBoost
exhibits better overall performance. However, RF, Adaboost, and
XGBoost are ensemble learning methods that leverage multiple
decision trees to obtain better results, while SVM, LGBM, and MLP
are single models.

Therefore, choosing the appropriate machine learning model
for specific data and tasks is crucial. These common models
offer a diverse range of choices that can cater to various fields.
In summary, these ML models have differences in application
scenarios, performance, and efficiency, requiring decisions based
on specific problems and data characteristics. The current study
constructed seven predictive models to identify the vulnerability
of CAP. Among these models, model_RF demonstrated superior
performance. Model RF had better AUC, accuracy, precision,
recall, and f-1 scores than the other models. In both the
training and testing cohorts, model _RF effectively predicted
the vulnerability of CAPs by predicting vulnerable and stable
plaques. Model RF outperformed traditional model LR in the
testing cohort because the emerging ML algorithm has the
advantage of processing massive data and many parameters
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for configuration optimization, making it more flexible than
traditional model LR.

Furthermore, the performance of model_RF was superior to
that of model_clinical, which relied solely on clinical features.
This indicates that the radiomics-based ML model outperforms
traditional clinical features in assessing the stability of CAPs.
Furthermore, radiomic feature calculation is a fast and automatic
process once the ROI has been delineated; therefore, the selected
radiomic signature can be integrated with the automatic 3D carotid
segmentation system (47) for a comprehensive CAP detection
and vulnerability prediction, which could contribute to clinical
decision-making in CAPs.

The study has some limitations. First, the retrospective
enrollment utilized in the study was determined by our
clinicians, which may introduce some selection bias and limit the
generalizability of the findings. Second, this study selected the
luminal area where the CAP is located as the ROI because CAP
morphology has an excellent predictive value for CAP vulnerability.
However, if the characteristics of the CAPs themselves could
be combined, it might further improve the prediction ability,
which is also our follow-up research direction. Additionally, the
sample size in this study was relatively small, which may limit
the generalizability of our findings. Although we have attempted
to mitigate this limitation by carefully selecting our cohort and
applying rigorous statistical methods, future studies with larger and
more diverse cohorts will be needed to validate and extend our
results. This study obtained radiomic features associated with the
neovascularization of CAP. Model_RF with CTA radiomics was
constructed to predict the vulnerability status of CAP. The current
study serves as an important initial step toward developing more
accurate and efficient diagnostic tools for diagnosing and treating
CAP. Although our model_RF with CTA radiomics showed high
accuracy in predicting the vulnerability status of CAP, further
validation in larger cohorts is necessary to confirm its clinical
utility. Therefore, prospective studies are needed to further validate
its classification ability and assess its potential clinical impact. In
general, our study emphasizes the potential of radiomics-based
models to enhance the accuracy and efficiency of diagnosing
vulnerable CAP. Specifically, the model_RF offers a non-invasive
and efficient approach to predicting the vulnerability status of
CAP by utilizing radiomic features extracted from CTA. The
model may enable earlier detection of vulnerable CAPs, improving
patient outcomes.
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SUPPLEMENTARY FIGURE S1

ICC test results. Features with an ICC value >0.9 were considered highly
consistent and reliable and were thus selected for further research. These
features were deemed to have minimal variability across imaging modalities
and were considered to provide a stable representation of the underlying
biological characteristics of the analyzed lesions. ICC Intraclass Correlation
Coefficient.
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SUPPLEMENTARY FIGURE S2
Comparison of Model Performance through the AUC Value. The ROC
curves of model_RF and model_clinical on a testing cohort are presented
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