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A new biomarker combining 
multimodal MRI radiomics and 
clinical indicators for 
differentiating inverted papilloma 
from nasal polyp invaded the 
olfactory nerve possibly
Lianze Du , Qinghai Yuan *† and Qinghe Han *†

Radiology Department, The Second Hospital of Jilin University, Changchun, China

Background and purpose: Inverted papilloma (IP) and nasal polyp (NP), as two 
benign lesions, are difficult to distinguish on MRI imaging and clinically, especially 
in predicting whether the olfactory nerve is damaged, which is an important 
aspect of treatment and prognosis. We  plan to establish a new biomarker to 
distinguish IP and NP that may invade the olfactory nerve, and to analyze its 
diagnostic efficacy.

Materials and methods: A total of 74 cases of IP and 55 cases of NP were collected. 
A total of 80% of 129 patients were used as the training set (59 IP and 44 NP); the 
remaining were used as the testing set. As a multimodal study (two MRI sequences 
and clinical indicators), preoperative MR images including T2-weighted magnetic 
resonance imaging (T2-WI) and contrast-enhanced T1-weighted magnetic 
resonance imaging (CE-T1WI) were collected. Radiomic features were extracted 
from MR images. Then, the least absolute shrinkage and selection operator 
(LASSO) regression method was used to decrease the high degree of redundancy 
and irrelevance. Subsequently, the radiomics model is constructed by the rad 
scoring formula. The area under the curve (AUC), accuracy, sensitivity, specificity, 
positive predictive value (PPV), and negative predictive value (NPV) of the model 
have been calculated. Finally, the decision curve analysis (DCA) is used to evaluate 
the clinical practicability of the model.

Results: There were significant differences in age, nasal bleeding, and hyposmia 
between the two lesions (p < 0.05). In total, 1,906 radiomic features were extracted 
from T2-WI and CE-T1WI images. After feature selection, using 12 key features 
to bulid model. AUC, sensitivity, specificity, and accuracy on the testing cohort 
of the optimal model were, respectively, 0.9121, 0.828, 0.9091, and 0.899. AUC 
on the testing cohort of the optimal model was 0.9121; in addition, sensitivity, 
specificity, and accuracy were, respectively, 0.828, 0.9091, and 0.899.

Conclusion: A new biomarker combining multimodal MRI radiomics and clinical 
indicators can effectively distinguish between IP and NP that may invade the 
olfactory nerve, which can provide a valuable decision basis for individualized 
treatment.
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1. Introduction

Inverted papilloma (IP) is a common benign epithelial-derived 
tumor of the nasal cavity and sinuses, accounting for approximately 
0.5–4.0% of nasal tumors (1); a complete surgical excision is crucial 
for their efficacy and prognosis (2). Nasal polyp (NP), also known as 
polypoid degeneration, has a high clinical incidence and can be treated 
by nasal irrigation or nasal endoscopic surgery combined with 
glucocorticoid medication (3). Some studies have reported that 
approximately 60% of patients require multiple intraoperative biopsies 
before an accurate pathological diagnosis can be made (4). Accurate 
preoperative diagnosis is critical for patients’ treatment. Symptoms of 
both lesions can manifest as persistent nasal congestion, runny nose, 
nasal bleeding, facial pain, and hyposmia, making them clinically 
difficult to distinguish (5). Olfactory hyposmia is often overlooked in 
the clinical treatment of IP and NP. IP is characterized by local 
aggressiveness, high recurrence rate, and malignant transformation, 
and it easily invades the olfactory nerve through the skull base (2), and 
NP is often accompanied by chronic rhinosinusitis, histological 
changes of the mucous membrane secondary to the inflammatory 
process may reduce the olfactory neurons (6). Once surgically 
removed, patients’ olfaction is not restored, which can seriously affect 
their quality of life, so it is beneficial to improve the patient’s prognosis 
if we  intervene in advance for IP and NP that may invade the 
olfactory nerve.

In recent years, the organic integration of artificial intelligence 
(AI), computer technology, and medical imaging in the context of big 
data has led to the rapid development of imaging omics. Radiomics 
(7) refers to obtaining abundant advanced quantitative imaging 
features from images, extracting feature data to extend conventional 
images, and applying suitable machine learning algorithms to 
construct predictive models by implementing tumor segmentation 
and feature extraction, and these quantitative features are different 
from the visual images we perceive, aiding physicians in making rapid 
diagnoses by providing potential value. In this field, machine learning 
(ML) algorithms are used to select the best features and develop and 
improve models, which have the potential to improve predictive 
power (8). In the last 2 years, studies regarding artificial intelligence in 
IP have gradually become a hot topic (9–13). In one study, Li et al. (14) 
designed a deep learning framework through convolutional neural 
networks to automatically identify IP and NP with high AUC values 
of 0.95. In another study, Ren et al. (15) used a deep convolutional 
neural network (CNN) which combines a densely connected 
convolutional network (DenseNet) and squeeze-and-excitation 
network (SENet) to classify IP and NP in CT and achieved a relatively 
high diagnostic value. Although these two study models gain excellent 
results but did not analyze IP and NP from a clinical perspective. MRI, 
as one of the common examination methods for sinus tumors, has the 
advantages of no radiation, high soft tissue resolution, and multiplanar 
imaging compared with CT, and clearly shows the signal changes of 
the internal structure of the tumor. IP and NP frequently show a 
lobulated shape with hyperintensity on T2-WI and isointensity to 
hypointensity on T1-WI (16). The convoluted cerebriform pattern 
(CCP) is a reliable MRI feature of IP on CE-T1-WI (17), but not all 
IPs have such characteristics (18). There are no relevant studies 
discussing the construction of machine learning models based on 
multi-parameter MRI to distinguish between the two lesions.

In this study, we aimed to use multimodal MRI sequences of the 
nasal cavity (T2WI, CE-T1WI) to construct radiomics models 
combined with clinical indicators, to effectively and highly accurately 
identify IP and NP that may invade the olfactory nerve, and this 
helps to provide more comprehensive information for their 
treatment plans.

2. Materials and methods

2.1. Patients

This retrospective study included two groups of patients who 
underwent an MRI examination in the Second Hospital of Jilin 
University from March 2014 to May 2020 and were confirmed as NP 
or IP by pathological diagnosis. Ethical approval was obtained, and the 
informed consent requirement was waived by our institutional 
reviewing board. Inclusion criteria were as follows: (1) patients who 
underwent MRI examination and had definite pathological diagnosis 
result; (2) no history of the nasal cavity or sinus surgery, trauma, or 
other local treatment; (3) no recurrence or malignant transformation; 
and (4) complete and clear MRI image. Exclusion criteria were as 
follows: (1) no pathological diagnosis result; (2) no complete clinical 
information; and (3) unqualified image: defective, unclear, and 
abnormal posture.

As shown in Figure 1, a total of 170 patients’ data were collected 
from the hospital database, and a total of 129 patients were included 
in the study. Clinical indicators include persistent nasal congestion, 
runny nose, nasal bleeding, facial pain, and hyposmia. In addition, 
individual cases were found to have decreased sense of hearing and 
tinnitus, considered to be  the cause of an oversized involuted 
papilloma compressing the eustachian tube or inflammatory 
infiltration, so they are also included. Based on the inclusion criteria, 
a total of 129 patients, including 74 patients with NP (47 men and 27 
women: 43.55 ± 16.81 years; range, 14–85 years) and 55 patients (36 
men and 19 women: 52.72 ± 10.44 years; range, 12–82 years) with IP, 
were randomly assigned to a training or testing cohort to explore and 
validate the diagnostic performance of the model between NP and IP.

2.2. Image acquisition

The equipment for image acquisition was a 3 T MRI system 
(DiscoveryMR750; GE Healthcare, Waukesha, WI). Axial T2WI (TR/
TE 3000–3,500/120-130 ms, NEX 1) images were obtained by 
conventional plain scan examination. Then, patients were given an 
injection of 0.1 mmol/kg of contrast-enhancing agent (gadopentetate 
glucosamine), and axial CE-T1WI images were obtained with an 
adjusted layer thickness of 4–5 mm, a layer spacing of 0.5 mm, a 
matrix of 320 × 256, and field of view (FOV) of 20 cm × 20 cm.

2.3. Image preprocessing

The flowchart of image processing, feature extraction, feature 
selection, and model construction is given in Figure 2A. In this study, 
open-source medical image processing software (3D Slicer, version 
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4.11.0)1 is used as the analysis platform. First, DICOM data of qualified 
axial T2-WI and CE-T1WI original scanning images were imported 
into 3Dslicer software, then the region of interest (ROI) for each slice 
was drawn, followed by determining the tumor contour on the 
CE-T1WI image, and finally, the CE-T1WI image was referred when 
sketching the T2-WI image.

Radiologists with 8 and 20 years of experience, respectively, will 
work together to assess image quality and confirm the location of the 
primary tumor. If there is a disagreement, the two radiologists will 
discuss it and make a decision. The ICC of the radiomic features 
assessed by different radiologists was calculated. Features with an ICC 
greater than 0.80 were considered to be  in good agreement and 
reserved for further analysis (19). These two radiologists were blinded 

1  http://www.slicer.org

to the information about each lesion. Figure 2B shows an example of 
the manual split process.

2.4. Features extraction

3D Slicer software automatically generates a 3D volume area of 
interest and saves it in nii or nii.gz format. The features were then 
extracted using a radiomics module (Pyradiomics) based on Python 
(version 3.7.10) software. Based on the MRI images, we carried out 
the pre-processing and image transformation. Many image 
preprocessing methods were used, including Wavelet, LOG, and 
Square, and the best parameters are adjusted. After image processing, 
we obtained a total of 1,906 features from each ROI, as shown in 
Figure 3, including the three categories as follows: first-order features, 
shape features, and texture features (20). First-order features (396 
features) use basic first-order statistics such as mean, variance, 

FIGURE 1

Filter flowchart. Through the inclusion and exclusion criteria of each step, a total of 129 patients were enrolled in the study and randomly assigned to 
training or testing sets.
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entropy, and standard deviation to describe the pixel intensity and 
distribution within the ROI. Shape features (14 features) describe the 
shape and size information of ROI in 2D or 3D, such as volume, 
diameter, and roundness. Texture features mainly include gray level 
emphasis, gray level nonuniformity, gray level nonuniformity 
normalized, gray level variance, and gray level run emphasis, which 
describe the gray-level relationship between a pixel and 
surrounding pixels.

2.5. Feature selection

A total of 80% of datasets were randomly used as the training set, 
the remaining were used as the testing set. Before feature selection, all 

radiomics features were standardized by removing the mean and 
dividing by its standard deviation with the StandardScaler function. 
Each set of feature values was converted to a mean of 0 with a variance 
of 1. The Pearson correlation coefficient (PCC) method is used to 
reduce the dimensionality of the features and exclude those with a 
correlation coefficient threshold higher than 0.9. Then, the least 
absolute shrinkage and selection operator (LASSO) regression method 
was used to compress the regression coefficients of redundant 
prediction variables. The best λ, the coefficient of regularization used 
for the LASSO method, was selected using inner 5-fold cross-
validation in the training set via minimum average mean square error 
(MSE). Subsequently, the radiomics parameters with non-zero 
coefficients in the LASSO model were combined into the 
rad-score formula.

A

B

FIGURE 2

(A) Flowchart of the study. An overview of the study workflow including image preprocessing, feature extraction, feature selection, and model 
construction. (B) Some cases of lesions drawn by radiologists. The tumor contour on the CE-T1WI image was determined, and the CE-T1WI image was 
referred to when sketching the T2-WI image.
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2.6. Model construction

Our study explored and verified 11 Ml models, namely, logistic 
regression (LR), support vector machine (SVM), random forest (RF), 
AdaBoost, Gradient Boosting (GB), Gaussian Naive Bayesian (NB), 
K-nearest neighbors (KNN), and ExtraTrees. All data are randomly 
divided into training and test cohort at a ratio of 8:2. Diagnostic 
performances of different imaging models were evaluated using the 
receiver operating characteristic curve. AUC, accuracy, sensitivity, 
specificity, positive predictive value (PPV), and negative predictive 
value (NPV) of the model were calculated. The confusion matrix for 
the test set was constructed based on the predicted values. Finally, 
decision curve analysis (DCA) is used to evaluate the clinical 
practicability usefulness of the model.

2.7. Statistical analysis

Statistical analyses in this study were conducted in the SPSS 
software package (version 25.0; IBM, Armonk, NY). Clinical 
characteristics of all numeric data are statistically described using 
mean, standard deviation, frequency, and percentage. Two 
independent sample t-tests were used for continuous variables 
conforming to a normal distribution, the Mann–Whitney U-test was 
used for skewed distribution, and the ROC analysis was used to 

evaluate the diagnostic performances of ML classifiers and visual 
assessment [95% confidence intervals (CIs), specificity, and 
sensitivity were also calculated]. A p  < 0.05 was considered 
statistically significant.

3. Results

3.1. Clinical characteristics

Patients with NP were significantly younger than those with IP 
(p < 0.05), and patients with IP were more prone to runny nose and 
hyposmia than those with NP (p < 0.05), but there were no significant 
differences in gender, persistent nasal congestion, runny nose, facial 
pain, and decreased sense of hearing between the two lesions 
(P > 0.05) (Table 1).

3.2. Reproducibility and feature selection

The ICCs calculated for agreement of features extracted by the two 
radiologists ranged from 0.865 to 0.968 for T2-WI and from 0.934 to 
0.991 for CE-T1W, reflecting good agreement.

After feature selection with the LASSO method, the radiomic 
signature label rad-score constructed when the minimum coefficient 

FIGURE 3

Classification of 1906 features, including first order, glcm, gldm, glrlm, glszm, and shape.
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A B

C

FIGURE 4

LASSO model dimensionality reduction visualization process. (A) Feature dimensionality reduction using LASSO, the horizontal coordinate indicates the 
value of the penalty coefficient, and the vertical coordinate indicates the change of the binomial deviation size as the value of the coefficient changes. 
(B) Feature dimensionality reduction using LASSO, the lower horizontal coordinate indicates the log(λ) value, the upper horizontal coordinate indicates 
the number of features corresponding to log(λ), and the vertical coordinate indicates the number of each feature’s weight coefficient. (C) Coefficient 
values of different radiomic signature parameters when constructing rad-score after feature dimensionality reduction using LASSO.

is taken has the smallest binomial deviation (Figure  4A), when 
log(λ) = 0.068 (Figure  4B), and the weighting coefficients for 

constructing the rad-score radiomic features are shown in 
Figure 4C. The rad-score formula is as follows:

label = 0.5868593143167473 + 0.003605 * 
exponential_glcm_MaximumProbability_T1C. +0.032099 * 
original_glcm_ClusterShade_T1C. +0.034859 * 
squareroot_firstorder_Skewness_T1C. +0.001365 * 
�gradient_gldm_LargeDependenceLowGrayLevelEmphasis_T2. 
−0.005804 * 
lbp_3D_k_firstorder_10Percentile_T2. +0.000674 * 
�lbp_3D_k_gldm_SmallDependenceHighGrayLevelEmphasis_T2. 
−0.041404 * 
�lbp_3D_m2_glszm_LowGrayLevelZoneEmphasis_T2. 
−0.017859 * 
lbp_3D_m2_glszm_SmallAreaEmphasis_T2. −0.010033 * 
logarithm_glszm_HighGrayLevelZoneEmphasis_T2. −0.072139 * 
original_shape_Maximum2DDiameterColumn_T2. −0.074584 * 
original_shape_Maximum3DDiameter_T2. −0.015069 * 
squareroot_glcm_Idn_T2.

TABLE 1  Characteristics of the patients in all numeric data.

Patient 
characteristics

NP 
(n = 74)

IP (n = 55) P

Age (mean ± SD) 43.55 ± 16.81 52.72 ± 10.44 0.002

Gender 0.820

Male 47 36

Female 27 19

Persistent nasal Congestion 67 50 0.943

Runny nose 66 44 0.145

Nasal bleeding 28 31 0.037

Facial pain 31 30 0.155

hyposmia 26 29 0.046

Decreased sense of hearing 8 6 0.986
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3.3. Diagnostic performance of various 
classifier models

The diagnostic performance and cutoff values of various classifier 
models in discriminating IP from NP in the training and testing sets are 
summarized in Table 2. As shown in Table 2, the highest AUC (0.9121), 
accuracy (0.8461), sensitivity (0.8000), and specificity (0.9091) are shown 
in the ExtraTrees model on the test cohort. The LR, NB, SVM, KNN, RF, 
XGB, LightGBM, GB, AB, and MLP models also showed excellent AUC 
performance at 0.8182, 0.7515, 0.8060, 0.8394, 0.7455, 0.7758, 0.7879, 
0.7636, 0.8364, and 0.8121, respectively. The performance of the other 
models in the test cohort was general. AUC and other values were not as 
good as those of the above seven models. Therefore, in this study, the 
performance ability of the model was in the following order: 
ExtraTrees > KNN > AB > LR > MLP > SVM > LightGBM > others. Finally, 
we summarized the ROC of the 11 types of machine learning models 
with higher AUC and confusion matrix for the ExtraTrees model in the 
test set, as shown in Figure 5, as a visual situation analysis table, the 
confusion matrix indicated that the classification model has a high 
accuracy rate. As shown in Figure 6, DCA showed that the predictive 
model curves were significantly farther away from the two extreme lines, 
indicating a good overall net benefit in the population.

4. Discussion

Inverted papilloma (IP) and NP have a high probability of 
recurrence, therefore, efficacious preoperative assessment of these 

lesions is crucial for symptomatic treatment and to reduce the 
recurrence rate (16). Pathological biopsy is the gold standard, but it is 
an invasive and limited examination. MRI has a very high soft tissue 
resolution and can clearly distinguish between the tumor itself and the 
surrounding environment, which can compensate for the limitations 
of tissue biopsy (21). Even though traditional radiology diagnostic 
methods are convenient and cost-effective in routine clinical practice 
(13), in a large number of cases, the clinical radiological characteristics 
alone are not enough to accurately distinguish IP and NP.

The analysis of clinical characteristics shows that IP is more 
common in the elderly and the incidence of nasal bleeding is greater 
than that of NP, which is consistent with the results of this study. 
Interestingly, hyposmia is statistically significant between the two, 
which has not been mentioned in previous studies. Both IP and NP 
can occur due to conductive olfactory disturbance caused by nasal 
tract obstruction, which is manifested by a decrease in olfactory 
hormone molecules reaching the olfactory nerve epithelium, while IP 
can also occur due to the neurological olfactory disturbance caused 
by damage to the olfactory nerve or olfactory center, which is 
manifested by an oversized tumor squeezing the olfactory bundle or 
the mucosal receptors at the top of the nasal cavity, the upper nasal 
septum, and the medial aspect of the superior turbinate innervated by 
the olfactory nerve (22).

Although olfaction in humans is less appreciated than other 
senses, it affects our lives all the time (23). Because the olfactory nerve 
is the cranial nerve exposed to the external environment, it is 
vulnerable to tumor compression and inflammatory stimulation, 
resulting in reduced olfactory function (24). Olfactory nerve injury 

TABLE 2  Average performance of different machine learning models on train cohort (even rows) and test cohort (odd rows).

model_name Accuracy AUC 95% CI Sensitivity Specificity PPV NPV

0 LR 0.766990 0.873652 0.8071–0.9403 0.898305 0.704545 0.786885 0.738095

1 LR 0.615385 0.818182 0.6498–0.9865 0.933333 0.636364 0.727273 0.533333

2 NaiveBayes 0.747573 0.842450 0.7690–0.9159 0.813559 0.727273 0.836735 0.666667

3 NaiveBayes 0.576923 0.751515 0.5350–0.9681 1.000000 0.545455 0.700000 0.500000

4 SVM 0.825243 0.920647 0.8650–0.9763 0.779661 0.977273 0.805970 0.861111

5 SVM 0.730769 0.806061 0.6277–0.9845 0.800000 0.727273 0.833333 0.642857

6 KNN 0.786408 0.880200 0.8191–0.9413 0.610169 0.954545 0.803279 0.761905

7 KNN 0.730769 0.839394 0.6927–0.9861 0.666667 0.818182 0.833333 0.642857

8 RandomForest 0.980583 1.000000 nan - nan 1.000000 1.000000 0.967213 1.000000

9 RandomForest 0.653846 0.745455 0.5466–0.9443 0.666667 0.818182 0.714286 0.583333

10 ExtraTrees 1.000000 1.000000 nan - nan 1.000000 1.000000 1.000000 1.000000

11 ExtraTrees 0.846154 0.912121 0.7992–1.0000 0.800000 0.909091 0.823529 0.888889

12 XGBoost 0.990291 1.000000 nan - nan 1.000000 1.000000 0.983333 1.000000

13 XGBoost 0.615385 0.775758 0.5927–0.9588 1.000000 0.454545 0.692308 0.538461

14 LightGBM 0.864078 0.919106 0.8655–0.9727 0.932203 0.795455 0.846154 0.894737

15 LightGBM 0.730769 0.787879 0.5961–0.9797 0.800000 0.818182 0.750000 0.700000

16 GradientBoosting 0.980583 0.993066 0.9792–1.0000 1.000000 0.977273 0.983051 0.977273

17 GradientBoosting 0.730769 0.763636 0.5757–0.9516 0.533333 1.000000 0.833333 0.642857

18 AdaBoost 0.883495 0.966294 0.9370–0.9956 0.881356 0.977273 0.873016 0.900000

19 AdaBoost 0.730769 0.836364 0.6802–0.9925 0.866667 0.727273 0.785714 0.666667

20 MLP 0.834951 0.896379 0.8368–0.9560 0.813559 0.840909 0.838710 0.829268

21 MLP 0.730769 0.812121 0.6438–0.9804 0.800000 0.727273 0.785714 0.666667
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B

FIGURE 5

(A) ROC curve of 11 models in the test set. Each color represents a 
model. (B) Confusion matrix for ExtraTrees model in the test set.

cannot be recovered if there is a prolonged attack of the lesion and the 
degree of damage is relatively severe (25). Most nasal cavity or sinus 
tumors may damage the olfactory nerve, and in case of olfactory 
disturbance, timely treatment is required. Our study also aims to 
highlight the necessity of predicting olfactory nerve invasion in 
clinical practice.

Radiomics is automated and objective, and thus does not rely 
on human-derived measurements of image features (26). In our 
study, the best 12 radiomic features that could distinguish IP from 
NP included eight texture features, two shape features, and two 
first-order features. Among them, the texture features, which 
reflect gray-level nonuniformity account for a large proportion, 
may be explained by a higher heterogeneity of the images (27). This 
may be due to differences in tissue composition. In the case of IP, 
tumors derived from the Schneiderian membrane grow and replace 
areas of the mucous, serous glands, and ducts (28), whereas, in the 
case of nasal polyps, it contains mainly fibrin and water (29). A 
small number of shape features is related to an irregular 
multinodular mass observed under the endoscopy (30). 
Radiological features provide more systematic, comprehensive, and 
quantitative information on tumor heterogeneity than traditional 
morphological features, which can help explain the potential 
relationship between pathophysiological and radiology imaging 
phenotypes (31).

We build a radiomics model based on preoperative multimodality 
MRI imaging parameters to construct radiomic signature labels 
through feature downscaling and multiple model optimization. 
Among all models, ExtraTrees got the most satisfactory result of 
0.9121  in AUC. In Li’s research, by using a neural network and 
analyzing its ability to discriminate the differences, the diagnosis 
between IP and NP reached a sensitivity of 90.60%, a specificity of 
86.40%, and an AUC of 0.884, which are similar to our diagnostic 
efficacy. In another study of automatic identification of IP and NP by 

FIGURE 6

DCA for ExtraTrees model in the test set. The predictive model curves are significantly farther away from the two extreme lines, indicating a good 
overall net benefit in the population.
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convolutional neural networks, the result reached an accuracy of 
89.30%, a sensitivity of 89.01%, a specificity of 89.70%, and an AUC 
of 0.95. Numerically, the results were slightly higher than the 
diagnostic performance of our study. It may be due to differences in 
radiomics models or algorithms, but it basically reaches the diagnostic 
performance of diagnostic radiologists. We  combined clinical 
indicators through a multimodal study, making the data more 
comprehensive, providing more useful information for the clinic, 
controlling for bias due to missing clinical information, and more 
convincing. Compliance with the principle of early diagnosis and early 
treatment can clarify the disease as early as possible and achieve an 
improved prognosis.

This study also has some limitations. On the one hand, it is a 
retrospective study in a single-center, small data set, and a more 
rigorous study using multicenter and large-scale data sets is needed to 
avoid overfitting. On the other hand, we only analyzed the radiomics 
of T2WI and CE-TIWI sequences, and in future, we will integrate 
clinical data and radiomic features of other MRI sequences, such as 
TIWI and diffusion-weighted imaging (DWI), to further improve the 
diagnostic accuracy of the model.

5. Conclusion

In summary, a new biomarker combining multimodal MRI 
radiomics and clinical indicators can effectively distinguish between 
IP and NP that may invade the olfactory nerve and can be a valuable 
addition to routine clinical practice, thus providing a more accurate 
and objective basis for individualized treatment decisions, showing 
the potential application value and prospects of radiomic models in 
nasal cavity diseases.
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