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Background and aims: Secondary embolization (SE) during mechanical

thrombectomy (MT) for cerebral large vessel occlusion (LVO) could reduce

the anterior blood flow and worsen clinical outcomes. The current SE prediction

tools have limited accuracy. In this study, we aimed to develop a nomogram

to predict SE following MT for LVO based on clinical features and radiomics

extracted from computed tomography (CT) images.

Materials and methods: A total of 61 patients with LVO stroke treated by MT at

Beijing Hospital were included in this retrospective study, of whom 27 developed

SE during theMT procedure. The patients were randomly divided (7:3) into training

(n = 42) and testing (n = 19) cohorts. The thrombus radiomics features were

extracted from the pre-interventional thin-slice CT images, and the conventional

clinical and radiological indicators associated with SE were recorded. A support

vector machine (SVM) learning model with 5-fold cross-verification was used

to obtain the radiomics and clinical signatures. For both signatures, a prediction

nomogram for SE was constructed. The signatures were then combined using the

logistic regression analysis to construct a combined clinical radiomics nomogram.

Results: In the training cohort, the area under the receiver operating characteristic

curve (AUC) of the nomograms was 0.963 for the combined model, 0.911 for

the radiomics, and 0.891 for the clinical model. Following validation, the AUCs

were 0.762 for the combined model, 0.714 for the radiomics model, and 0.637 for

the clinical model. The combined clinical and radiomics nomogram had the best

prediction accuracy in both the training and test cohort.

Conclusion: This nomogramcould be used to optimize the surgical MT procedure

for LVO based on the risk of developing SE.
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stroke, mechanical thrombectomy, thrombus, secondary embolization, radiomics,
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Introduction

Mechanical thrombectomy (MT) has become a standard

treatment for large vessel occlusion (LVO) stroke (1), with

a successful recanalization rate ranging from 58.7% to 88%

(2, 3). Complete recanalization still cannot be obtained in a

small proportion of patients due to the formation of thrombus

fragmentation and secondary embolization (SE) during the

procedure. Thrombus fragmentation and SE can reduce the

anterior blood flow and often require more complex surgical

maneuvers to relieve the obstruction, increasing the risk of

hemorrhagic transformation (4).

Generally, the stent retriever and contact aspiration remain

the first-line thrombectomy strategies in clinical practice (5).

However, both techniques can cause thrombus fragmentation

(6, 7). These fragments must be curtailed to reduce the risk of

emboli and micro-emboli obstructing the downstream cerebral

vessels. Several new surgical devices and procedures, such as

the balloon guide catheter (8), EmboTrap device (9), Lazarus

funnel (10), stent retriever assisted vacuum-locked extraction

(SAVE) (11), continuous aspiration before intracranial vascular

embolectomy (CAPTIVE) (12), and balloon guide with large-

bore distal access catheter with dual aspiration with the stent

retriever (BADDASS) (13), can reduce the risk of developing

SE and improve the complete recanalization. Nevertheless, their

routine use has not been proven to be always necessary or cost-

effective. Therefore, there is a need to identify patients at risk

of developing SE to optimize the surgical approach for LVO

stroke patients.

Clinical and radiological features, such as the use of

anticoagulant therapy (14), pre-interventional systemic

thrombolysis, and internal carotid artery (ICA) occlusion

(15), may play an important role in the development of SE.

Furthermore, previous studies have also identified various

thrombus features, such as thrombus density and thrombus

length, that might be related to the development of SE (16–18).

However, these studies did not quantitatively analyze the wide

range of features of the whole thrombus that can increase the risk

of developing SE.

Radiomics can extract additional features from medical images

(19–21) and is increasingly being used to improve the diagnosis

and treatment of LVO (22–24). Previous studies used clot-

based radiomics features to predict the optimal thrombectomy

strategy for successful recanalization (25, 26) and the histological

composition of the clot (27). However, to the best of our knowledge,

no studies have been conducted investigating the use of CT-based

radiomics to predict the risk of SE before MT for patients with LVO

stroke. Therefore, in this study, we aimed to develop a prediction

nomogram for SE following MT for LVO stroke patients based on

clinical and CT-based radiomics features.

Materials and methods

Data acquisition

The patients with LVO stroke treated by MT at a Beijing

Hospital between July 2017 and August 2022 were included

in this retrospective study. The patients were included in the

study if they had an extracranial or intracranial LVO involving

either the anterior or posterior circulation; they underwent a

one-stop CT examination that contains computed tomography

angiogram (CTA) and computed tomography perfusion (CTP)

on admission using the same scanner; they were treated with

a thrombectomy strategy involving a stent retriever, contract

aspiration, or both (Solumbra); they were with good preservation

of the retrieved thrombi. Patients with incomplete CT or poor-

quality images that could not be segmented, immeasurable

thrombus location, and obvious vascular calcifications were

excluded (Figure 1). Subsequently, the patients were randomly

divided into training and testing cohorts, in a proportion of

7:3, and the overall distribution of the patient was maintained

consistent (the proportion of SE and without SE is the same).

The baseline characteristics of the patients, including age,

gender, history of stroke, hypertension, hyperlipidemia, diabetes

mellitus, atrial fibrillation, current use of anticoagulants, and

smoking history; stroke subtype of Trial of Org 10172 in acute

stroke treatment (28); conventional thrombus imaging markers,

such as thrombus density and the vessel occlusion site, were

extracted from the patient’s medical records. In addition, the

pre-interventional parameters, such as the administration of

intravenous thrombolysis therapy, and interventional parameters,

including the use of aspiration, stent retriever, Solumbra, and

measurements, were also extracted. Figure 2 shows the detailed

process of model building.

Identification of SE

The images of the multiphase CTA acquired on admission

and the digital cerebral angiography acquired during MT were

reviewed. SE was identified according to the criteria published in

our previous report (29). According to these criteria, patients are

diagnosed with SE if they have a patent intracranial artery on

the admission CTA, or pre-interventional angiography occluded

during or after the MT procedure with visible embolisms in either

the distal part of the primary occluded vessel or in a completely

new location.

CT data acquisition

Whole brain dynamic volume CTA and CTP were obtained

from the Aquilion ONE, Canon Medical Systems CT scanner with

320 × 0.5mm detector rows and 160mm coverage. Iopamidol

(370 mg/ml iodine, Bracco, Italy) or iopromide (370 mg/ml iodine,

Bayer, Germany) were injected using a high-pressure syringe via

the elbow veins with a dose of 0.6 ml/kg, followed by a 30-ml

bolus injection of saline. The CTP parameters were 80 kV, 100mA,

and 0.5-mm thickness reconstructed slices. The images were

reconstructed using a hybrid-iterative reconstruction algorithm

and 19 volume data packets, resulting in a total of 6,080 images for

each patient.
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FIGURE 1

Flow chart for patient enrolment.

FIGURE 2

Overall workflow of this study.

Thrombus density measurements

The thrombus density was measured by positioning a region

of interest (ROI) at ∼2mm behind the occlusion site, covering

approximately half to two-thirds of the vascular area, and another

ROI along with its corresponding position of the contralateral

artery as explained in our previously reported method (30).

The mean Hounsfield Unit (HU) value was recorded on the

reconstructed NCCT images for the thrombus and contralateral

artery. The relative HU (rHU) (thrombus density/contralateral
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artery density) and 1HU (thrombus density-contralateral artery

density) were calculated.

ROI segmentation

All NCCT and CTA images of 0.5mm thickness were loaded

into the 3D slicer software version 4.13.0 (https://www.slicer.org/;

3D Slicer image computing platform | 3D Slicer) and registered

with ELASTIX [https://elastix.lumc.nl/; elastix (lumc.nl)]. Using

the CTA images for guidance, two neuroradiologists (YL and

JC) manually segmented the thrombus on each NCCT image

(Figure 3). Intra-observer and inter-observer variability on the

segmentation of ROI are presented as intra- and inter-class

correlation coefficients (ICCs). The detailed process is as follows.

In total, 30 cases were randomly selected, then YL and JC

independently segmented ROIs during the same period to assess

inter-observer agreement. After 1 month, YL repeated manually

segmented ROIs again based on the randomly selected 30 cases to

assess intra-observer agreement.

Radiomics features extraction

Radiomics features were automatically extracted from the

segmented thrombus using Python’s Pyradiomics package (31)

(https://pypi.org/project/pyradiomics/). From the NCCT images,

107 radiomics features were extracted. The extracted features

were classified into first-order statistics, shape-based, gray-level co-

occurrence matrix (GLCM), gray-level size zone matrix (GLSZM),

gray-level run length matrix (GLRLM), neighboring gray tone

difference matrix (NGTDM), and gray-level dependence matrix

(GLDM). These radiomics features are described in detail on the

PyRadiomics documentation site (http://pyradiomics.readthedocs.

io). All of the above-mentioned features were standardized using

the z-score.

Development of the radiomics signature

The feature dimensions were reduced to minimize radiomics

bias, and the course of dimensionality was as follows. The

features with a good inter- and intraobserver agreement defined as

having an ICC above 0.75 were selected. The Pearson correlation

coefficient was then calculated to identify the redundant features.

Features with the largest mean absolute correlation or features that

had a correlation coefficient of 0.9 or greater were removed. Finally,

the least absolute shrinkage and selection operator (LASSO)

regression model was used to identify the most useful features

based on the training set. Depending on the regulation weight

λ, LASSO shrinks all regression coefficients toward zero and sets

the coefficients of many irrelevant features exactly to zero. The

optimal λ was determined by calculating the minimum cross-

validation error following a 10-fold cross-validation. An analysis

of retained features with non-zero coefficients was performed to

fit the regression models and construct the radiomics signatures.

The radiomics score (Rad-score) was then calculated for each

patient via a linear combination of the selected features weighted

by their respective LASSO coefficients. For selecting the optimal

radiomics model, different radiomics models were developed and

tested, respectively, to predict the risk of SE based on the following

eight machine learning classification algorithms: logistic regression

(LR), support vector machine (SVM), K nearest neighbor (KNN),

random forest (RF), extremely randomized trees (Extra-Trees),

eXtreme Gradient Boosting (XGBoost), light gradient boosting

machine (LightGBM), and multilayer perceptron (MLP). Then,

the SVM machine learning model was identified which has the

highest average area under the receiver operating characteristic

(ROC) curve (AUC) on the testing set (Supplementary Figure 1).

Therefore, the final selected features were inputted into the

SVM machine learning models to construct the risk model.

A 5-fold cross-verification was performed to obtain the final

radiomics signature.

Development of the clinical signature

The process used to develop the radiomics signature was

applied to the development of the clinical signature. The collected

clinical features were included in a LASSO regression model to

select the most valuable features in the training set, and the features

with non-zero coefficients were retained. Then, the selected clinical

features were inputted into the same SVMmachine learning model

to construct the risk model. The final clinical signatures were

obtained by 5-fold cross-verification.

Development of the clinical radiomics
nomogram

Logistic regression analysis was used to develop the clinical

radiomics nomogram. The diagnostic accuracy of the clinical

model, the radiomics model, and the clinical radiomics nomogram

was assessed by calculating the AUC in both the training and

testing cohorts. A decision curve analysis (DCA) was conducted

to evaluate the clinical effectiveness of the clinical radiomics

nomogram. The DCA involves calculating the net benefit of a

threshold probability range across the training and testing cohorts.

Statistics analysis

Statistical analysis was performed using the IBM statistical

package for social sciences software (SPSS) version 26.0. The

Kolmogorov–Smirnov and Shapiro–Wilk tests were used to assess

the normality of the evaluated variables. The continuous variables

were reported as means ± standard deviations, and the categorical

variables were reported as frequency counts and percentages.

The chi-square or Fisher’s exact tests were used to compare

the categorical variables, while the Mann–Whitney U-tests or

independent t-tests were used for the continuous variables. The

Python 3.11.1 software (https://www.python.org) was used for

feature extraction and screening and to build the models. The

package “regression modeling strategies (rms [R])” was used
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FIGURE 3

Delineation of the thrombus using the 3D-slicer software. The thrombus on the non-contrast computed tomography (A) was manually segmented

using the computed tomography angiography image (B) as guidance. The red arrow indicates the location of the thrombus ROI.

to develop the nomogram. The metrics used to evaluate the

performance of the three nomograms were AUC and 95%

confidence interval (95%CI), accuracy, sensitivity, and specificity.

The Delong test was used to estimate the differences in the AUC

values between the three nomograms. For all statistical tests, a

p-value below 0.05 was considered to be statistically significant.

Results

Patient characteristics

A total of 61 patients were eligible for the study. The training

cohort consisted of 42 patients, and the testing cohorts consisted

of 19 patients. The clinical and radiological features of all patients

included in the study are summarized in Table 1. SE occurred

in 27 of the 61 patients. Only large-artery atherosclerosis (p =

0.029) and stroke of other determined etiology (p= 0.045) differed

significantly between the training and testing cohorts.

Screening and construction of the clinical
signatures

After applying the LASSO feature screening, seven clinical

features were selected, including smoking history, intravenous

thrombolysis, internal carotid artery (ICA) occlusion, stent

retriever, Solumbra, rHU, and cardioembolism. These features were

used to establish the clinical signature.

Extraction, selection, and construction of
the radiomics signatures

In total, 107 radiomics features were extracted from the

reconstructed NCCT images, of which 64 features (ICC >0.75)

were found to have satisfactory intra-observer and inter-observer

reproducibility. Feature pairs with high correlations were omitted,

leaving 27 features per patient for further selection. Finally, four

relevant features were identified by LASSO analysis and used

to construct the radiomics signature. The best regularization

parameter was 0.059636 (Figures 4A, B). Figure 4C shows the

selected features and weights. Based on these features, the Rad-

score was calculated as follows:

Rad-score = 0.3736422217481793 + 0.038825

× original_glcm_InverseVariance +0.085880 ×

original_glrlm_LongRunHighGrayLevelEmphasis + 0.046497

× original_glrlm_ShortRunHighGrayLevelEmphasis – 0.143520

× original_shape_Maximum2DDiameterSlice.

Establishment of the clinical radiomics
nomogram

The combined clinical radiomics nomogram used to calculate

the SE risk is illustrated in Figure 5. The risk of developing SE was

calculated as follows. A score is first assigned to each influencing

factor. Subsequently, all scores are summed up to calculate the total

value. A line is then drawn from the total score to the risk axis to

calculate the total SE risk. A higher total score is associated with

greater SE risk.

Performance of the clinical, radiomics, and
combined nomograms

A summary of the diagnostic performance of the clinical,

radiomics, and combined nomograms is provided in Table 2.

In the training cohort, the AUCs of the nomograms were

0.963 for the combined model, 0.911 for the radiomics,

and 0.891 for the clinical model (Figure 6A). Following

validation, the AUCs were 0.762 for the combined model,

0.637 for the clinical model, and 0.714 for the radiomics model

(Figure 6B).

The Delong test results of the training set showed

that no significant difference was noted between the AUC

values of the nomogram and the clinical model (p-value
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TABLE 1 Summary of the patients’ characteristics in the training and test cohorts.

Variable Training cohort (n = 42) Testing cohort (n = 19) p-value

Gender, n (%) 0.539

Male 23 (54.8) 12 (63.2)

Female 19 (45.2) 7 (36.8)

Age, y (mean) 74.52± 11.351 71.47± 14.946 0.435

Stroke history, n (%) 9 (21.4) 6 (31.3) 0.595

Hypertension, n (%) 27 (64.3) 10(52.6) 0.388

Hyperlipemia, n (%) 9 (21.4) 4 (21.1) 1

Diabetes mellitus, n (%) 18 (42.9) 6 (31.6) 0.404

Atrial fibrillation, n (%) 19 (45.2) 7 (36.8) 0.539

Anticoagulation, n (%) 7 (16.7) 5 (26.3) 0.596

Smoking history, n (%) 15 (35.7) 6 (31.6) 0.753

Intravenous thrombolysis, n (%) 13 (31.0) 3 (15.8) 0.351

Large-artery atherosclerosis, n (%) 28 (66.7) 7 (36.8) 0.029

Cardioembolism, n (%) 11 (26.2) 7 (36.8) 0.398

Stroke of other determined etiology, n (%) 0 (0) 3 (15.8) 0.045

Stroke of undetermined etiology, n (%) 3 (7.1) 2 (10.5) 1

Internal carotid artery occlusion, n (%) 18 (42.9) 8 (42.1) 0.956

Middle cerebral artery occlusion, n (%) 17 (40.5) 8 (42.1) 0.905

Anterior cerebral artery occlusion, n (%) 2 (4.8) 2 (10.5) 0.777

Basilar artery occlusion, n (%) 5 (11.9) 1 (5.3) 0.732

Aspiration, n (%) 20 (47.6) 13 (68.4) 0.131

Stent Retriever, n (%) 12 (28.6) 2 (10.5) 0.221

Solumbra, n (%) 10 (23.8) 4 (21.1) 1

rHU (mean) 1.08± 1.45 1.17± 0.43 0.789

1HU (mean) 6.67± 26.34 5.97± 18.73 0.918

FIGURE 4

Selection of features based on the least absolute shrinkage and selection operator (LASSO) regression model. (A) shows a representative LASSO

coe�cient distribution map. The vertical dashed line indicates the value chosen after 10 rounds of cross-validation following the coe�cient

distribution map produced by the λ sequence. (B) LASSO model with the adjusted λ parameter following 10 rounds of cross-validation performed to

pass the minimum standard. The optimal λ value was 0.059636 and is indicated by the vertical dashed line. (C) The selected radiomics features and

their corresponding coe�cients.
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FIGURE 5

Clinical radiomics nomogram. The radiomics (Rad-signature) and clinical signatures values can be converted into quantitative values according to

the corresponding points indicated on the axis. The total risk value was calculated by summing up the individual points. The final sum shown on the

total points axis is then used to calculate the overall SE risk.

TABLE 2 Performance of the clinical model, radiomics model, and clinical radiomics model in the training and testing cohorts.

Di�erent models Training cohort (n = 42) Testing cohort (n = 19)

AUC (95%CI) SEN SPE ACC AUC (95%CI) SEN SPE ACC

Clinical model 0.891(0.779–1.000) 0.800 0.926 0.833 0.637(0.339–0.935) 0.667 0.714 0.421

Radiomics model 0.911(0.792–1.000) 0.933 0.852 0.857 0.714(0.461–0.967) 0.833 0.571 0.579

Clinical radiomics nomogram 0.963(0.905–1.000) 0.933 0.926 0.810 0.762(0.507–1.000) 1.000 0.571 0.632

AUC, the area under the curve; SEN, sensitivity; SPE, specificity; ACC, accuracy; 95% CI, 95% confidence interval.

FIGURE 6

Receiver operating characteristic curves of the radiomics model, clinical model, and the clinical radiomics nomogram for predicting the SE risk for

the training (A) and test (B) cohorts.

= 0.191), the nomogram, and the radiomics model (p-

value = 0.132). In the testing set, there were either no

significant difference was noted between the AUC values

of the nomogram and the clinical model (p-value =

0.266) or the nomogram and the radiomics model (p-value

= 0.422).
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FIGURE 7

Decision curve analysis for the three models for the training (A) and test cohorts (B). The y-axis represents the net benefit, and the x-axis represents

the threshold probability.

The DCA for the three models for the training and testing

cohorts are illustrated in Figures 7A, B. Compared with the clinical

and radiomics nomograms, the DCA revealed that the combined

nomogram added a net clinical prediction benefit for most of the

threshold probabilities.

Discussion

Secondary embolization is a common complication of MT.

Therefore, there is a need to identify patients at risk of developing

SE to optimize the surgical procedure for stroke patients. Previous

studies (14, 29) have attempted to develop risk prediction models

based on clinical and thrombus features. However, the accuracy of

these prediction models varied. To the best of our knowledge, this

is the first study using both clinical variables and pre-interventional

CT radiomics to identify patients at risk of developing SE.

Studies have shown that the risk of SE is affected by both clinical

and thrombus features (32). The clinical information provides

important information about the common risk factors, such as

the thrombus location and surgical procedure for developing SE.

Various studies also evaluated the impact of specific thrombus

features on developing SE. In the study of Gengfan et al. (30),

thrombus density was identified as an independent predictor of

SE. However, this feature does not reflect the full heterogeneities

of the different thrombi. The advantage of radiomics is that it can

capture a wide range of thrombus features, thus better reflecting

the heterogeneity of the thrombus than the conventional thrombus

density feature. As a result, under the same SVMmachine-learning

model, our radiomics model achieved a better performance than

the clinical model in both training and testing cohorts. However,

the best performance was achieved by the combined clinical

radiomics nomogram. The net clinical prediction benefit of the

combined nomogram was further confirmed by DCA.

Apart from clinical and thrombus features, other studies used

histological thrombus analysis to assess the risk of developing

SE. Sporn et al. (18) found that SE occurred more frequently in

thrombi with a small fraction of red blood cells. However, the

results of the histopathology analysis can only be obtained after

the MT procedure; therefore, this data cannot be used to optimize

the surgical procedure. Radiomics analysis has the advantage of

providing a fast, non-invasive method for neuro-interventional

surgeons to objectively evaluate the risk of developing SE (33)

before the surgical procedure rather than solely relying on their

clinical judgment. The high-risk patients could then have their

surgical technique optimized, which may eventually reduce the

incidence of SE.

We acknowledge that our study has several limitations. The

incidence of SE in our study was 43.3% higher than the 35.2% of

patients reported by Gengfan et al. (29), possibly as a result of the

selection bias introduced during the retrospective data collection

process. The sample was small, and all the data were obtained

from one institute. Therefore, a larger multicenter study is required

to validate the prediction ability of the nomogram. The manual

segmentation of the thrombus is prone to inter-observer and intra-

observer variation due to which it can be easily affected by the

reader’s experience. Automatic or semiautomatic methods could

improve the accuracy of the thrombus delineation. Moreover, our

model was based on standard radiomics features. A deep learning

approach could improve the model’s prediction ability. Finally, the

underlying biologic meaning of the radiomics features is difficult to

interpret. Further studies are required to investigate the correlation

between the thrombus histological and radiomics features.

Conclusion

This study proposed a new clinical radiomics model to

predict the risk of SE. The radiomics model showed higher
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accuracy than the clinical model, and the clinical radiomics

nomogram outperformed both the radiomics and clinical models.

Our proposed clinical radiomics model could be used by neuro-

interventional surgeons to predict the risk of SE, thus allowing

them to optimize the surgical procedure according to the

patient’s needs.
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