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Background: The retrograde endocannabinoid (eCB) pathway is closely associated 
with the etiology of major depressive disorder (MDD) at both pathophysiological 
and genetic levels. This study aimed to investigate the potential role of genetic 
mutations in the eCB pathway and underlying mechanisms in Han Chinese 
patients with MDD.

Methods: A total of 96 drug-naïve patients with first-episode MDD and 62 healthy 
controls (HCs) were recruited. Whole-exome sequencing was performed to 
identify the gene mutation profiles in patients with MDD. Results were filtered 
to focus on low-frequency variants and rare mutations (minor allele frequencies 
<0.05) related to depressive phenotypes. Enrichment analyses were performed 
for 146 selected genes to examine the pathways in which the most significant 
enrichment occurred. A protein–protein interaction (PPI) network analysis was 
performed to explore the biological functions of the eCB pathway. Finally, based 
on current literature, a preliminary analysis was conducted to explore the effect 
of genetic mutations on the function of this pathway.

Results: Our analysis identified 146 (15.02%) depression-related genetic mutations 
in patients with MDD when compared with HCs, and 37 of the mutations were 
enriched in the retrograde eCB signaling pathway. Seven hub genes in the eCB 
pathway were closely related to mitochondrial function, including Complex 
I genes (NDUFS4, NDUFV2, NDUFA2, NDUFA12, NDUFB11) and genes associated 
with protein (PARK7) and enzyme (DLD) function in the regulation of mitochondrial 
oxidative stress.

Conclusion: These results indicate that genetic mutations in the retrograde eCB 
pathway represent potential etiological factors associated with the pathogenesis 
of MDD.
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1. Introduction

Major depressive disorder (MDD) is a prevalent mental disorder that 
manifests as a wide spectrum of heterogeneous symptoms. As of 2019, 
MDD ranked 2nd among the top 25 leading causes of years lived with 
disability (YLDs) (1). However, the etiology and pathogenesis of MDD 
remain unclear. Therefore, understanding of the pathological mechanisms 
underlying MDD is necessary to promote effective treatment.

MDD is a complex disorder influenced by multiple genetic factors. 
The estimated heritability of MDD ranged from 30 to 50% (2). 
Although several primary genetic studies have focused on candidate 
genes that have been associated with MDD—including SLC6A4, 
BDNF, COMT, HTR2A, TPH1 and TPH2—their results have provided 
little insight into the impact of these candidate genes on MDD (3). 
Several previous genome-wide association studies (GWAS) have 
identified common variations related to MDD. However, the estimated 
heritability of these common genetic mutations ranges from only 9 to 
10% (4). Thus, researchers have shifted their attention to other 
undiscovered heritability, such as rare gene variations (MAF < 0.5%) 
and copy number variations (CNVs). Using whole-exome sequencing 
(WES), several studies have explored the contributions of rare or 
low-frequency variants to the genetic basis of MDD. One low-coverage 
whole-genome sequencing study identified the SIRT1 and LEPP genes 
as risk loci in a sample of 5,303 Han Chinese women with recurrent 
MDD (5). The authors identified 1,985 variations in 479 MDD-related 
genes using different approaches and databases, reporting 14 gene 
mutations that differed between patients with MDD and the general 
South Asian population (6). A recent study that utilized 16,702 
samples from the UK Biobank also highlighted the FOXH1 gene and 
sphingolipid metabolism pathways as the most significant pathogenic 
genes for MDD (4). Despite several advances in understanding the 
genetic mutations underlying MDD, studies are still scarce and have 
limitations such as small sample sizes and large numbers of Europeans. 
Significant differences may exist across ethnicities due to the different 
allele frequencies. Therefore, it is necessary to study the genetic 
variation of Asians to expand the genetic research.

In the current study, we  firstly explored the genetic variation 
profile of drug-naïve patients with MDD about whole-exome 
sequencing from China. Meanwhile, we  conducted a genetic 
interaction analysis to infer functional variations via gene enrichment 
analysis rather than focusing on single-gene mutations. Preliminary 
explanation of how these genetic mutations affect physiological 
function were demonstrated through literature review.

2. Materials and methods

2.1. Participants and statistical analyses

A total of 96 first-episode drug-naïve patients with MDD and 62 
healthy control (HC) participants were recruited for this study. All 
patients were recruited from the West China Hospital and had been 
diagnosed using the Structured Clinical Interview for DSM-IV Disorders 
(SCID). The inclusion criteria in this study were age of 18–60 years, 
presence of depressive symptoms for >2 weeks, and no previous exposure 
to antidepressant treatment. Exclusion criteria were as follows: history of 
psychosis, significant neurological or medical illness, current 
electroconvulsive therapy, and any history of alcohol or substance abuse 

or dependence. All HC participants, who were matched with the MDD 
group according to age and sex, were recruited from the local community 
through advertisements. Inclusion criteria for the HC group were as 
follows: no history of neuropsychiatric illness or brain injury, no family 
history of any serious mental illness in first-degree relatives.

Age was compared between the groups using nonparametric tests. 
Sex was compared using the chi-square test. The results are expressed 
as means ± SEM values and were analyzed by SPSS 26.0 (IBM, 
Chicago, IL, United  States). The value of p < 0.05 is considered to 
be statistically significant.

2.2. Whole-genome sequencing and 
enrichment analyses

DNA samples were extracted and subjected to exome sequencing, 
including DNA quantification, library construction, exome 
sequencing, annotation and filtration. Detailed methods and data 
analysis are described in the Supplementary material.

To better predict the harmfulness of variation, we first utilized the 
classification system of the American College of Medical Genetics and 
Genomics (ACMG), which classifies variations as pathogenic, likely 
pathogenic, of uncertain significance, likely benign, or benign (7). 
Variations were then screened according to their scores using the SIFT 
(8), Polyphen (9), MutationTaster (10), and CADD (11) software 
programs. Potentially deleterious variations were retained if the scores 
from more than half of the four software programs supported their 
potential harmfulness (12).

Python scripts were used to extract SNVs and genes associated 
with a depressive phenotype (HP:0000716). Screening for variants 
with depressive phenotypes in patients and healthy controls revealed 
146 variants that were specific to the patient group. We performed 
enrichment analyses on this set of 146 genes using clusterProfiler (13) 
and Metascape1 (14). Significant enrichment was defined as overlap of 
at least three genes, and the hypergeometric test was used to estimate 
the significance (p < 0.05). We also used Metascape to analyze the 
enrichment of mutated genes in the Kyoto Encyclopedia of Genes and 
Genomes (KEGG) pathway to further screen for these functions 
and interactions.

2.3. PPI network analysis

To identify the biological functions of the selected gene mutations 
in patients with MDD, 37 genes in the eCB pathway were mapped into 
the online search tool STRING database.2 A combined score of ≥0.4 
was considered significant. Cytoscape software (3version 3.9.1; 
Institute for Systems Biology, Seattle, WA, United States) was used to 
construct and visualize the eCB gene variation network. To identify 
hub genes in the pathway, genes associated with other genes were 
ranked based on eigenvector centrality (EC) (15) using the CytoNCA 
v2.1.6 plugin. A survey of the current literature revealed that the top 
seven genes were related to mitochondrial function.

1  https://metascape.org

2  https://string-db.org/

3  http://www.cytoscape.org/
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3. Results

3.1. Demographic and clinical 
characteristics

A total of 96 patients with MDD and 62 HCs were enrolled in this 
study. Age and sex did not significantly differ between the MDD and 
HC groups. The demographic and clinical information of the matched 
groups is presented in Table 1.

3.2. Characteristics of the genetic 
mutations and enrichment analysis

The 96 patients with MDD exhibited 15,637 SNPs of variant 
genes, 972 of which were related to the depressive phenotype. In the 
MDD group, we also extracted 3,353 SNVs involving 907 genes that 
were only related to depression phenotypes. Only a small number 
(146, 15.02%) of depression-associated gene mutations were 
observed among patients with MDD. The distributions of the 146 
genes among patients with MDD are shown in 
Supplementary material.

Subsequently, enrichment analyses were performed for a set of 
146 genes to investigate 17 pathways enriched in the KEGG pathway. 
Among these, the retrograde eCB signaling pathway was significantly 
associated with MDD (Gene count = 9, GeneRatio = 0.062, 
p = 0.000000238, -log10 (value of p) = 6.624). Additional details of 17 
pathways were presented in Figure 1 and Supplementary material.

3.3. Genetic mutations in the retrograde 
eCB signaling pathway

There were 37 gene mutations in the retrograde eCB signaling in 
55 patients with MDD (Figure 2). Among them, DDC and GLRB 
mutations were involved in the largest number of patients (five 
patients). Our PPI study demonstrated that seven hub genes were 
vitally related to mitochondria function, including Complex 
I (NDUFS4, NDUFV2, NDUFA2, NDUFA12, NDUFB11) and genes 
related to protein (PARK7) and enzyme (DLD) function in the eCB 
pathway, as shown in Figure 3. The details and frequency of the seven 
genes in the samples are presented in Table 2. In addition, CHCH10 
encodes a protein in the mitochondrial intermembrane that regulates 
mitochondrial function. Other gene variants included those related to 
synapse metabolism (STXBP1 and VAMP2); protein-regulated 
neurotransmitters (GNB3, GNAO1, STXBP1, SLC1A3, SLC16A2); and 

receptors associated with glutamic acid (GLRB), gamma-aminobutyric 
acid (GABRB2, GABRB3), and 5-hydroxytryptamine (HTR2A). The 
37 genes in the retrograde eCB signaling pathway were shown in 
Supplementary material.

4. Discussion

In the current study we  found that 146 depression-associated 
genes were enrich 17 KEGG pathways and the retrograde eCB 
signaling pathway was the most notable. The 7 hub genes in this 
pathway were associated with the mitochondrial function in PPI. Our 
findings support the relationship between the eCB system and 
mitochondria in MDD from a genetic and biological function 
perspective. Figure  4 shows the possible underlying mechanistic 
pathways of the mutant gene-encoded proteins in mitochondria and 
the eCB signaling.

4.1. The close relationship between eCB 
system and major depressive disorder

We found that the retrograde eCB signaling pathway was 
significantly correlated with patients with MDD. The retrograde eCB 
signaling pathway, a component of the endocannabinoid system 
(ECS), is a widespread neuromodulatory pathway related to a range 
of physiological and pathological conditions, including the stress 
response, emotion, cognition, and memory (16). Numerous genetic 
and metabolomic studies have verified that abnormalities in eCB 
signaling play an essential role in MDD pathogenesis, impacting 
neurotransmission as well as the neuroendocrine and neuroimmune 
systems (17). Analyses based on the Psychiatric Genetic Consortium 
and UK Biobank have identified 43 differentially expressed genes 
between MDD and smoking in several neurotransmitter pathways, 
including the retrograde eCB signaling pathway (18). The retrograde 
eCB signaling was down-regulated pathway in bipolar disorder type 
I compared with depressive disorder based on expressed genes (19) 
and in bipolar II disorder (20). Another study detected 38 
hippocampal metabolites related to retrograde eCB signaling in rats 
with prenatal stress that were associated with depression-like 
behaviors (21).

Furthermore, the polymorphisms of genes coding for the 
components of the ECS were related to MDD, such as cannabinoid 
receptors and the enzymes (22–25). Studies on enrichment analysis of 
genes involved in MDD also obtained that the neuroactive ligand 
receptor interaction (26), synaptic structure and neurotransmission 
(27), hypoxia, epithelial-mesenchymal transition, hedgehog signaling, 
and reactive oxygen species pathway (28) were achieved significance.

Our study complements the genetic mechanism of ECS in MDD 
as a biomarker and provides a theoretical basis for diagnosing and 
treating MDD. Activation of the ECS appears rapid-acting treatment 
for MDD (29). As conventional antidepressant drugs show delayed 
onset of therapeutic effects, novel treatments for MDD based on the 
ECS are developing rapidly. The endocannabinoid 
2-Arachidonoylglycerol (2-AG) (17), the CB1 and CB2 receptors (30), 
and the enzyme (31) all have antidepressant pharmacological 
modulation and are potential new therapeutic targets for the treatment 
of MDD. Meanwhile, endocannabinoid-related compounds are also 

TABLE 1  Demographic and clinical characteristics of patients with MDD 
and healthy controls.

MDD HC p value

Numbers 

(eCB/on-eCB)
96 (55/41) 62

Age 31.829 ± 10.380 34.274 ± 10.090 0.129

Gender, M(W) 32 (64) 24 (38) 0.490

HAMD score 25.329 ± 8.166

The value of p < 0.05 is considered to be statistically significant.
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in rapid development. N-palmitoylethanolamide (PEA) is an 
endocannabinoid-like modulator, demonstrating an antidepressant-
like effect (32). Cannabidiol, derived from phytocannabinoids, is a 
non-psychoactive substance that exerts antidepressant effects through 
multiple targets (33). ECS-based compounds are promising 
antidepressants in the future.

4.2. The biologically functional value of 
mitochondria in the eCB pathway

We identified 7 hub genes in the eCB signaling pathway, which 
were vitally related to mitochondria function. Among them, there are 
5 genes encoding the mitochondrial Complex I (NADH: ubiquinone 

FIGURE 1

Identified 17 KEGG pathways based on 146 gene mutations observed exclusively in Chinese patients with MDD. The y-axis represents the KEGG 
pathway term, while the x-axis shows the -log[10](p-value). Each dot on the plot represents the fold enrichment for each KEGG pathway. The size of 
each dot corresponds to the number of mutated genes related to the depression phenotype, and the color of each dot represents the proportion of 
enriched genes in that pathway relative to the total number of mutated genes. The darker color indicates a higher proportion of genes. The retrograde 
endocannabinoid signaling pathway exhibited the most significant enrichment among the 17 KEGG pathways. KEGG: Kyoto Encyclopedia of Genes 
and Genomes.

A B

FIGURE 2

Gene mutations in the retrograde eCB signaling pathway in patients with MDD. (A) The 37 gene mutations in the retrograde eCB signaling pathway 
observed in 55 patients with MDD. The x-axis shows the 37 gene mutations, with the concentration of blue indicating the number of patients with 
MDD who carry each mutation. The y-axis shows each patient with MDD. The color in each square reflects the number of genetic mutations. Light red 
indicates that the gene is a heterozygous mutation, and dark red indicates a homozygous mutation. (B) The biological functions of the genes in the 
eCB signaling pathway based on the protein–protein interaction network analysis. Each node represents the proteins encoded by the genes, the 
contents of which are the 3D structures of proteins. Edges represent protein–protein associations contributing to a shared function. Different 
classifications are indicated by different colors. Known interactions are shown in blue and rose-red, based on information from curated databases and 
experimental studies, respectively. Predicted interactions are shown in green, red, and deep purple to indicate gene neighborhood, fusions, and co-
occurrence, respectively. Yellow, black, and light purple represent interactions based on text mining, co-expression, and protein homology. eCB: 
endocannabinoid.
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oxidoreductase), which is the largest inner membrane protein of the 
respiratory electron chain. The gene mutations in 45 subunits of 
Complex I have been closely linked to a wide range of neuropsychiatric 
disorders. NDUFS4 (AQDQ protein) was identified as the most 
important site in the PPI of eCB in our cohort, as an accessory subunit 
associated with the assembly and/or stability of Complex I. The 
NDUFS4 gene regulates the balance between excitatory (glutamate) 
and inhibitory (γ-aminobutyric acid, GABA) neurotransmission (34). 
An abnormal balance of glutamate and GABA is also usually found in 
patients with MDD. NDUFV2 encodes a 24-kDa subunit of the 
NDUFV2 protein of Complex I. Initial studies have suggested a 
possible link between the mRNA level of NDUFV2 and the state of 
bipolar disorder (BD) (35, 36). In addition, a haplotype T-C consisting 
of NDUFV2 is most likely a protective factor for MDD in the Han 
Chinese population (37). NDUFA2 encodes a subunit of the 
hydrophobic protein fraction of Complex 1. The mRNA level of 
NDUFA2 was most significantly associated with schizophrenia (38) 
and the remission of psychiatric symptoms (39). NDUFB11 (ESSS 
protein), located in the short arm of the X-chromosome, is essential 
for the assembly and activity of Complex I. NDUFB11 may play a role 
in the mechanism underlying cognitive deficits in children and 
adolescents born preterm. Notably, cognitive impairment has been 
identified in more than half of patients with MDD (40). Although 
there have been no reports on NDUFB11 and MDD, cognitive 
impairment may be  a phenotype that this gene contributes to 
depressive disorder. NDUFA12 is a small hydrophobic accessory 
subunit of Complex I, identified as a novel binding partner of the 
serine/threonine p21-activated kinase that increases susceptibility to 
type 2 diabetes (41). It is well-known that patients with MDD and 
diabetes are shared genetic risks (42). The underlying relationship 

between NDUFA12 and MDD deserves to be explored. PARK7 (DJ-7 
protein) is a mitochondrial-associated protein, that exerts a wide 
range of effects on cellular functions including helping to prevent 
damage from reactive oxygen species (ROS), maintaining 
mitochondrial function, and participating in chaperone activity and 
carbohydrate metabolism (43). DJ-1 protein may act as an 
antioxidative defense mechanism to regulate mitochondrial 
dysfunction in the context of depressive disorders (44). DLD encodes 
a mitochondrial-associated enzyme called dihydrolipoamide 
dehydrogenase, which forms a subunit of several enzyme complexes, 
including pyruvate dehydrogenase (PDH) and α-ketoglutarate 
dehydrogenase (αKGDHc). Upregulation of DLD in the hippocampus 
was associated with anxiety-like behavior (45). The genes encoding 
mitochondria might affect depression-like behavior by regulating 
synaptic transmission, susceptibility, cognition and antioxidant.

The retrograde eCB signaling is involved in energy metabolism-
regulated mitochondrial function via cannabinoid receptor 1 (CB1). 
CB1 is expressed not only on the cell membrane but also on the 
mitochondrial membrane (mtCB1) (46). The activity of mtCB1 exerts 
a great impact on brain mitochondrial physiology-associated 
bioenergetics, ROS production, and neurotransmitter regulation (47). 
Studies have indicated that mtCB1 can inhibit soluble adenylate cyclase 
and protein kinase A (PKA) activity, resulting in reduced 
PKA-dependent phosphorylation of mitochondrial proteins (46). 
Further, mtCB1 has been associated with the regulation of synaptic 
transmission, including glutamate and GABA transmission, via its 
effects on adenosine triphosphate supply and Ca2+ homeostasis (47). In 
addition, brain mtCB1 is important for regulating glutamate 
transmission associated with memory performance. The hippocampus 
is a vital regulator of memory and learning and is linked to acute 
mitochondrial activity in the brain. Hippocampal mtCB1 receptors 
regulate intra-mitochondrial Gαi proteins, resulting in the inhibition of 
soluble adenylyl cyclase (sAC), leading to a reduction in cAMP levels as 
well as decreased phosphorylation of PKA and subunit NDUFS2 of 
Complex I. Eventually, this chain of activities regulates memory 
processes by decreasing the brain’s mitochondrial energy metabolism 
(48). Therefore, hippocampal mtCB1 is an important acute regulator of 
cognitive function. Astrocytes provide energy to the neurons in the 
brain by regulating cellular glucose metabolism. The activation of 
astroglial mtCB1 hampers glucose metabolism, reducing the generation 
of ROS and the phosphorylation of NDUFS4 to destabilize Complex I, 
eventually impairing neuronal activity and behavioral responses in mice 
(49). The activation of muscular mtCB1, implicated in the metabolism 
of the primary tricarboxylic acid (TCA) substrate pyruvate, also 
participates in the regulation of oxidative activity (50).

Simply, mitochondrial-related genes lead to mitochondrial 
dysfunction affecting energy metabolism, oxidative stress, 
neurotransmitter transmission and cognitive function, mediated by 
mtCB1. Mitochondria have salient biological location in the eCB pathway.

4.3. The close relationship between 
mitochondria and major depressive 
disorder

Mitochondria are key organelles for energy production, 
involved in mechanisms of MDD through neuroimmune and 
neuroinflammation. The mobilization of energy is very important 

FIGURE 3

The seven hub genes of the retrograde eCB signaling pathway in 
patients with MDD based on the PPI analysis. Each circle represents a 
gene variation, and the sizes and color densities of each circle reflect 
ranking based on eigenvector centrality (EC). Larger, darker circles 
indicate the genes that are more significantly enriched in this 
pathway. The top seven most important genes are in the inner circle, 
while the others are arranged in the outer circle. eCB: 
endocannabinoid; PPI: protein–protein interaction.
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TABLE 2  The seven hub genes mutated in eCB pathway in patients with MDD.

Gene MDD Chr Cytoband dbSNP Ref Alt Effect Clinvar 1KGP ExAC gnomAD HUABIAO 
project:

NDUFS4 C0011 5 5q11.2 rs1064793807 GTG CTC Nonframeshift 

block substitution

Likely benign NA NA. NA. NA

D0041 5 5q11.2 rs886060697 TTTG - splicing Conflicting 

interpretations of 

pathogenicity

0.00139776 0.0032 0.003 NA

NDUFV2 C0025 18 18p11.22 rs769920941 G C Splicing NA NA 0.00001653 0.00001219 NA

NDUFA2 D0030 5 5q31.3 rs79526416 T C Missense Uncertain 

significance

0.00079872 0.0001 0.0001 0.00232

D0044 5 5q31.3 rs79526416 T C Missense Uncertain 

significance

0.00079872 0.0001 0.0001 0.00232

C0038 5 5q31.3 rs79526416 T C Missense Uncertain 

significance

0.00079872 0.0001 0.0001 0.00232

NDUFA12 D0039 12 12q22 rs183579321 T C Missense NA 0.00019968 0.00007421 0.00007716 0.00131

PARK7 D0012 1 1p36.23 rs756040385 G A splicing Likely benign NA 0.00004119 0.00003655 NA

D0025 1 1p36.23 rs71653619 G A Missense Benign 0.0061901 0.0081 0.008 0.0003

NDUFB11 B0012 X Xp11.23 NA G C Missense NA NA NA NA NA

C0026 X Xp11.23 rs368074350 G A Missense NA NA 0.00002308 0.00002801 NA

DLD D0016 7 7q31.1 rs200148324 C T Missense NA 0.00039936 0.000008314 0.000008128 0.0005

Chr, chromosome; Ref, reference; Alt, allele; 1KGP, 1,000 Genomes Project; ExAC, Exome Aggregation Consortium; gnomAD, Genome Aggregation Database. NA, Not applicable.
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for dealing with stressful events. Mitochondria are involved in 
regulating the stress response mitochondrial biology is tissue- 
and cell-specific, particularly in the immune system (51). Social 
stress is a risk factor for the development of MDD (52) and 
contributes to mitochondrial dysfunction, leading to 
inflammatory disturbances (53). One study of metabolomic 
signatures reported that mitochondrial oxidative phosphorylation 
(OXPHOS), morphology, and recycling were crucial elements of 
the stress response. In addition, the authors reported upregulated 
protein expression of Complexes I, II, and IV in resilient animals, 
demonstrating that the electron respiratory chain is positively 
associated with chronic stress (52). Another study found that the 
changes in protein levels related to mitochondrial dysfunction 
were dependent on peripheral inflammation, which regulates the 
severity of MDD (54). Moreover, plasma levels of inflammatory 
cytokines such as C-reactive protein (54) and interleukin-6 (55) 
are regarded as markers of mitochondrial disturbance and are 
known to modulate the severity of depressive symptoms. A 
longitudinal study showed of patients with treatment-resistant 
depression undergoing anti-inflammatory treatment with the 
tumor necrosis factor antagonist infliximab identified peripheral 
blood gene transcripts enriched for oxidative stress and 
mitochondrial degradation, which were related to increases in 
psychomotor reaction time (55). The inflammatory signaling and 

metabolic reprogramming in the immune system were associated 
with inflammation in patients with depressive disorders and may 
promote psychomotor retardation. In another study, alterations 
in the dynamic regional homogeneity of the brain were observed 
between 65 first-episode, treatment-naïve patients with MDD 
and 66 HCs, which correlated with the 16 gene modules 
investigated in the weighted gene co-expression network analysis. 
The expression profiles of the gene modules were enriched for 
immune, mitochondrial, protein, and synaptic signaling (56).

Taken together, multiple lines of evidence indicate that stress 
regulation and neuroimmunology are key areas linking 
mitochondrial function and MDD etiology. Genetic studies may 
also provide novel insights into different antioxidants and anti-
immunotherapies that are safe for adjunctive treatment of 
depressive symptoms (57). Based on the available evidence and 
the current findings, these therapies may be  ideal for patients 
with MDD exhibiting stress-related immune impairments.

4.4. Limitation and further investigation

Although our findings provide insight into the role of eCB 
gene mutations in the pathogenesis of MDD, the current study 
was limited by its small sample size and the use of a literature 

FIGURE 4

The possible mitochondrial mechanisms associated with the top seven genes in the eCB pathway analysis. The subunits of complex I are encoded by 
NDUFS4, NDUFV2, NDUFA2, NDUFA12, and NDUFB11. PARK7 encodes the DJ-7 protein, while DLD encodes dihydrolipoamide dehydrogenase (DD), 
which in turn affects the enzyme complexes such as BCKD, PDH, and αKGDH. The eCBs 2-arachidonoylglycerol (2-AG) and anandamide (AEA) are 
synthesized in the postsynaptic membrane on demand. Then, 2-AG may enter the presynaptic membrane via CB or simple diffusion, following which it 
may inhibit oxidative function by acting on CB1 at the mitochondrial membrane (mtCB1) and regulating the subunits of complex I. Ultimately, the 
effects of this process on the TCA cycle reduced production of ATP, ROS generation, and reduced OXPHOS. In addition, disturbances in the balance of 
GLU and GABA exert an effect on synaptic function. Abbreviation: complex I: mitochondrial complex I (NADH: ubiquinone-oxidoreductase); BCKD: 
branched-chain alpha-keto acid dehydrogenase; PDH: pyruvate dehydrogenase; αKGDH: alpha-ketoglutarate dehydrogenase; TCA: tricarboxylic acid; 
ATP, adenosine triphosphate; ROS: reactive oxygen species; OXPHOS: oxidative phosphorylation; GLU: glutamate; GABA: γ-aminobutyric acid GABA; 
2-AG: 2-Arachidonoylglycerol; AEA: anandamide or N-arachidonoylethanolamine; CB1: cannabinoid receptor 1; mtCB1: cannabinoid receptor 1 
expressed on the mitochondrial membrane.
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review to examine potential molecular mechanisms. As this was 
a cross-sectional study comparing patients with MDD to HCs, 
additional studies are also required to determine the direction of 
causality. Moreover, future studies should aim to examine the 
impact of epigenetic modifications, the expression profile of 
these gene variants, and real gene–gene interactions in the 
context of MDD. Given that MDD is a multifactorial disorder 
influenced by genetic and environmental factors and the 
interactions between them, these elements should also 
be included in future studies. Lastly, we were unable to exclude 
potential confounders known to affect mitochondrial function, 
such as lifestyle factors, childhood trauma, chronic stress, and 
suicidal behaviors. The current study should be  considered 
exploratory, and its findings must be  verified in a large-scale 
longitudinal cohort and validated experimental models.

It is noteworthy that MDD is a complex multifactorial disease. 
Several mechanisms for MDD pathogenesis have been proposed 
including neuroinflammation, neurotransmitter abnormalities, 
neuroendocrine dysfunction, mitochondrial abnormalities, and 
altered stress regulation. No single factor impacts the final effect, as 
each factor can both modulate and is modulated by other factors, 
resulting in intricate relationships and complex interactions. The 
complex relationship between mitochondrial function and the 
manifestation of MDD remains unclear, and the current findings must 
be interpreted with caution.

5. Conclusion

In conclusion, our analysis identified profiles of genetic variation in 
Han Chinese patients with first-episode MDD and the possible genetic 
mechanisms by which the retrograde eCB pathway exerts an influence of 
MDD in these patients. Our preliminary study broadens the current 
understanding of the complex genetic basis of MDD and highlights 
genetic mutations in the eCB pathway as potential etiological factors 
associated with the pathogenesis of MDD. Identifying specific mutations 
in this pathway may be beneficial for targeted MDD therapy in the future.
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