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Mild Traumatic Brain Injury (mild TBI)/concussion is a common sports injury,

especially common in football players. Repeated concussions are thought to lead

to long-term brain damage including chronic traumatic encephalopathy (CTE).

With the worldwide growing interest in studying sport-related concussion the

search for biomarkers for early diagnosis and progression of neuronal injury has

also became priority. MicroRNAs are short, non-coding RNAs that regulate gene

expression post-transcriptionally. Due to their high stability in biological fluids,

microRNAs can serve as biomarkers in a variety of diseases including pathologies

of the nervous system. In this exploratory study, we have evaluated changes in

the expression of selected serum miRNAs in collegiate football players obtained

during a full practice and game season. We found a miRNA signature that can

distinguish with good specificity and sensitivity players with concussions from

non-concussed players. Furthermore, we found miRNAs associated with the

acute phase (let-7c-5p, miR-16-5p, miR-181c-5p, miR-146a-5p, miR-154-5p,

miR-431-5p, miR-151a-5p, miR-181d-5p, miR-487b-3p, miR-377-3p, miR-17-

5p, miR-22-3p, andmiR-126-5p) and those whose changes persist up to 4months

after concussion (miR-17-5p and miR-22-3p).

KEYWORDS

miRNA - microRNA, concussion, mild traumatic brain injury (mTBI), sport injury,

biomarkers

Introduction

The goal of this study was to assess whether circulating microRNAs can serve as

biomarkers of mild Traumatic Brain Injury in football players. Concussion, also called mild

Traumatic Brain Injury (mTBI), is a complex condition induced by external mechanical

forces on the brain. In general, mild TBI causes immediate neurological dysfunction, which

is the result of microscopic physical injury to brain tissue (1). In most cases, although the

neurological dysfunction resolves in a short period, the underlying physical injury to the

brain does not (2). In up to 15% of individuals with mild TBI the immediate neurological

dysfunction also does not resolve, or resolves only to recur within weeks and manifest as

persistent cognitive dysfunction (3), the post-concussion syndrome (4). American football

players are among the athletes at high risk for head injury. While advanced functional and

structural MRI techniques may help in the diagnosis of mild TBI, they are not performed

routinely to assess either clinical or subclinical TBI, allowing for repetitive TBI-and brain
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injuries-to accumulate (5). In addition, there is no quantitative

method to assess the clinical severity of TBI or correlate tissue

damage to the severity of the clinical syndrome. A non-invasive

objective test able to identify and quantitate both symptomatic

and asymptomatic brain injury would greatly improve the

treatment and management programs. If early treatment were

applied to clinical and even subclinical concussion, it would

potentially limit the development of post-concussion syndrome or

chronic TBI.

The dominant pathological injury in mild TBI is to the

white matter (6). Axonal injury results from the rapid stretching

of the axons, which then induce an uncontrolled flux of

ions, increased intra-axonal Ca2+, release of glutamate and

further depolarization of the neurons (1, 5, 6). Together with

mechanical breakage of microtubules, the ionic changes result

in interruption of axonal transport and accumulation of protein

products. This accumulation defines the classic neuropathological

phenotype of axonal swelling, which in the worst case, can

lead to the disconnection of axons. Additional cascades of

events may lead to apoptosis, mitochondrial dysfunction and

inflammatory processes. Importantly, changes in microRNAs can

reflect all those molecular and cellular events (7–10). Interestingly,

repeated head trauma in boxers leads to a syndrome with

clinical, pathological, and neurochemical similarities to Alzheimer’s

disease (AD) (11). This has also been recognized in professional

football players, leading to chronic traumatic encephalopathy

(CTE) (12–15).

MiRNAs are small 19–25 nucleotide, single-stranded, non-

coding RNAs that regulate gene expression by inhibiting mRNA

translation through incomplete base pairing (10, 16–18). Evidence

shows that trauma can induce changes in the expression of

miRNAs in the trauma-affected organ. In addition, miRNAs are

abundant and relatively stable in the blood, in which changes in

their expression can reflect pathological conditions. Changes in

plasma or serum miRNAs have been associated with a variety

of diseases, including animal (19) and human severe (20–25)

and sport-related TBI (26–30). A recent systematic review of

salivary miRNA in acute mTBI and persistent post-concussion

syndrome revealed 14 miRNAs with consistent directional change

after mTBI (31). One of the reviewed studies (32) developed a

model combining symptoms and neurocognitive measures with

miRNAs to aid with the diagnosis of mTBI, however, to date

there are no biomarkers by themselves that identify or track acute

mild TBI. Temporal assessment of plasma miRNA levels has been

evaluated in male and female amateur football players, and it was

found that circulating levels of 18 miRNA were deregulated in the

acute phase of concussion compared to pre-concussion baseline

(33). Our laboratory has developed a protocol to study miRNAs

in plasma/serum and cerebrospinal fluid (CSF) as biomarkers for

HIV-associated neurocognitive disorders (34–36). In the present

study, we have evaluated serum miRNA expression from collegiate

football players with and without concussion and found seven

miRNAs associated with acute concussion. Furthermore, we have

identified miRNAs associated with the acute phase post-concussion

and miRNAs whose dysregulation persists when the players return

to play about 3 weeks after concussion, as well as up to the end

of season (about 4 months), potentially indicating neuronal injury

even after clinical recovery.

Materials and methods

This study was approved by LSUHSC-NO Institutional Review

Board. All subjects from a college football team were informed of

the study during an initial meeting with the athletic director and

players. Written informed consent was obtained from all subjects

before the beginning of practice season and prior to enrollment

in the study. Subjects also filled out a preseason questionnaire

that assessed demographic data, health and concussion history,

concussion symptoms, and sleep patterns.

Inclusion criteria

Subjects had to pass the team’s history and physical

examination, be a member of the 2014–2015 college football

team, male, and 18–22 years of age.

Exclusion criteria

Voluntary refusal to participate in the study.

Protocol

When a significant impact to a player’s head was witnessed

by training staff, personnel, or team doctors, medical service

had to be provided to a player on the field, a teammate

reports another player’s symptoms, signs or playing dysfunction,

or a player requests an evaluation, the player is immediately

evaluated by an athletic trainer and then a team physician on

the sideline of the field. The player is taken to the athletic

training room and completes the Graded Symptom Checklist

which is a modified Sport Concussion Assessment Tool (SCAT-3)

and the computer-based Immediate Post-concussion Assessment

and Cognitive Testing (ImPACT) tests. The physician then

makes the determination of a diagnosis of acute concussion

based on a combination of history, physical exam, and these

tests. If acute concussion is diagnosed the player is placed

into the Athletic Training Concussion Management Protocol,

which is based on CDC and NCAA guidelines and policies,

removed from the field and observed/examined the rest of the

day. Post-concussive care documentation is given to family or

the player’s roommate, and he is re-examined the following

morning and daily by the athletic trainer and/or physician

with completion of a symptom checklist. When symptoms

have cleared, the player begins a graded exercise program

before full return to play. They are returned to play when

they are asymptomatic and have resolved any neurological

exam abnormalities.

Upon diagnosis of concussion the player was immediately

matched by position, weight, height, and concussion history

(based on the questionnaires) to a control player. The control

player was allowed to continue practice or play. Blood was

drawn from the concussed player within 1 h of the injury and

the matched control player at the end of that day’s practice or

Frontiers inNeurology 02 frontiersin.org

https://doi.org/10.3389/fneur.2023.1155479
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org


Wyczechowska et al. 10.3389/fneur.2023.1155479

game, usually within 2 h of the concussion. Additional blood

samples were obtained from both concussed and control players

at 18 h post-injury. The entire enrolled study population was

again sampled at the end of the season. The concussed and

control players’ blood were collected in multiple tubes, labeled,

and refrigerated until the end of that day’s practice or game,

then transported at 4◦C in an iced biohazard cooler using

a private courier to the LSUHSC-NO Neuroscience Center of

Excellence. At the Center samples were immediately centrifuged

at 3,500 rpm for 30min to separate the serum. The serum was

separated from the pellet and the sample stored at −80◦C for later

miRNA analysis.

MiRNA selection

A total of 70 miRNAs were selected for analysis in this study

based on the following criteria: these miRNAs are (1) enriched in

the brain and/or have a validated function in the brain, particularly

axonal and synaptic functions; (2) involved in neuroprotection,

particularly after injury; and (3) associated with neurocognitive

impairments and/or in non-sport related TBI. 17 out of the 70

profiled miRNAs were discarded because these were not detected in

most or all of the samples. The resulting 50 miRNAs were subjected

to further analysis (Table 1).

RNA extraction, quality control, and miRNA
profiling

RNA extraction and miRNA profiling were performed as

previously reported (34–36). RNA was obtained from 200 µl of

serum using the miRCURY RNA extraction kit (Qiagen, Woburn,

MA). To increase the RNA recovery, 1 µg of MS2 carrier RNA

was added to each plasma sample. 8 µl of total RNA was subjected

to retro-transcription using the Universal cDNA synthesis kit

(Qiagen, Woburn, MA), followed by RT-qPCR using miRNA

LNA primer sets (Qiagen, Woburn, MA). RT-qPCR was carried

out in duplicate on a Roche LightCycler 480 Real-Time PCR

System according to the Qiagen recommended protocol. Cycling

conditions were as follows: 95◦C for 10min, 40 cycles of 15 s

at 95◦C, and 60 s at 60◦C. Fluorescent data were converted into

cycle threshold (Ct) measurements by the Roche LyghtCycler

system software (Version 1.5; Roche). Quantification using 2nd

derivative maximum was further calculated with Roche Lightcycler

480 software. qPCR data were analyzed in GenEx Professional

5 software (MultiD Analyses AB, Goteborg, Sweden). Degree of

hemolysis was determined as the difference in Ct of miR-23a-3p (a

miRNA not affected by hemolysis) and miR-451a (an indicator of

hemolysis); this calculation was performed in GenEx. The amount

of target miRNAs was normalized relative to the amount of miR-

23a-3p reference gene, as determined by GeNorm, an application

of GenEx software. MiRNA pair analysis was performed following

a method published by Sheinerman et al. (37–39) and utilized

previously by us (35, 36).

TABLE 1 List of miRNAs subjected to statistical analysis.

hsa-let-7b-3p hsa-miR-210-3p

hsa-let-7b-5p hsa-miR-21-5p

hsa-let-7c-5p hsa-miR-221-3p

hsa-let-7d-3p hsa-miR-222-3p

hsa-let-7d-5p hsa-miR-22-3p

hsa-miR-106b-5p hsa-miR-22-5p

hsa-miR-126-5p hsa-miR-23a-3p

hsa-miR-127-3p hsa-miR-23b-3p

hsa-miR-132-3p hsa-miR-26a-5p

hsa-miR-133b hsa-miR-29a-3p

hsa-miR-134-5p hsa-miR-30b-5p

hsa-miR-143-3p hsa-miR-320a

hsa-miR-146a-5p hsa-miR-337-3p

hsa-miR-151a-5p hsa-miR-338-3p

hsa-miR-16-5p hsa-miR-374b-5p

hsa-miR-17-5p hsa-miR-376a-3p

hsa-miR-181a-5p hsa-miR-377-3p

hsa-miR-18a-3p hsa-miR-431-5p

hsa-miR-18a-5p hsa-miR-451a

hsa-miR-19a-3p hsa-miR-487b

hsa-miR-19b-3p hsa-miR-495-3p

hsa-miR-194-5p hsa-miR-532-3p

hsa-miR-197-3p hsa-miR-543

hsa-miR-200a-3p hsa-miR-744-5p

hsa-miR-20a-5p hsa-miR-92a-3p

Statistics

Statistical calculations were performed in GenEx Professional

software. Mann-Whitney tests were two-sided and set at 5%

level and 95% confidence intervals (CIs). Bonferroni correction

was applied to determine statistically significant miRNA and

miRNA pairs (p < 0.0001). The potential of miRNA and miRNA

pairs for use in the diagnosis of concussion was assessed by

estimating sensitivity and specificity based on an ROC analysis

using GraphPad Prism 9.

Results

Study subjects

A total of 57 players from the 2014 football season (August

through December) were enrolled and sampled. Ten sustained

concussions and they were matched to 11 non-concussed control

players (one control player was matched twice and had blood

samples drawn separately for each of his matched concussed

players) (Tables 2, 3). These 21 players were included in all data
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TABLE 2 Player demographics.

Subjects Non-
Concussed

% Concussed %

Number 11 10

Mean age 19 20

African American 8 73 6 60

Caucasian 3 27 1 10

Pacific Islander 0 0 1 10

Mixed race 0 0 2 20

Previous concussion 2 18 6 60

Depression 0 0 1 10

Current smoker 1 9 1 10

Past smoker 6 55 6 60

Demographics for the concussed and non-concussed players, provided by the self-reported

player questionnaires.

analyses. The average age of the 21 participants was 20 (range 18–

23). Fourteen players (67%) were African-American, four (19%)

were Caucasian, two (9%) were of mixed race, and one (5%)

was Pacific Islander. Eight players (38%) noted having a prior

concussion. Six players who had prior concussions stated that

football was the cause. The other two forms were left blank. Two

players noted having more than one prior concussion. One player

noted a history of depression. Fourteen players (67%) stated they

slept between 4 and 8 h per night. Of the 10 concussed players six

(60%) had previous concussions and six were linemen, three of

whom had previous concussions. Only two (18%) of the control

players had previous concussions.

MiRNAs associated with concussion

We profiled serummiRNAs from the 10 concussed and 11 non-

concussed control players. Blood was collected for each player at

2 and 18 h post-concussion, as well as at the end of the season

(average 106.4 days, Table 3). All players in the concussed group

had their blood drawn at the three timepoints, except for three

players, each missing either a 2, 18 h, or end of season timepoint.

One sample in the 18 h concussed group was discarded because of

poor RNA quality. In the control group we did not have the 18 h

blood draw for two players and the end of the season blood draw

for two players.

We first compared the combined 2, 18 h and end of season

timepoints from concussed players (n = 27 samples with controls

(n = 29 samples) and found one miRNA, Let-7c-5p, upregulated

in concussed players, while 12 miRNAs were downregulated (miR-

181c-5p, miR-146a-5p, miR-200c-3p, miR-22-3p, miR-17-5p, miR-

26a-5p, miR-154-5p, miR-210-5p, miR-19b-3p, miR-16-5p, miR-

29a-3p, and miR-181c-3p) (Figure 1A). Figure 1B shows relative

expression of the most differentially regulated miRNAs in the two

groups. The predictive potential of the four miRNAs that had the

lowest p-value (miR-181c-5p, miR-26a-5p, miR-17-5p, and miR-

22-3p) was determined through Receiver Operator Characteristic

(ROC) analysis, and the results are shown in Figure 2 (right panels)

in which the area under the curve (AUC), specificity, sensitivity,

and p-values are also indicated. Relative expression of each of these

four miRNAs in concussed and control players is also indicated

in Figure 2 (left panels). Note that the relative miRNA expression

(calculated as 2−1Ct) in Figure 2 correlates with normalized cycle

thresholds, Cts; therefore, higher numbers in the y-axis mean less

expressed miRNA.

Next, we compared each timepoint (2, 18 h, and end of the

season) from concussed players to matching timepoints from

controls. Results in Figure 3A indicate the fold change in miRNA

expression in concussed players compared to controls at 2 h, 18 h,

and at the End of the Season. Three miRNAs, miR-181c-5p, miR-

22-3p and miR-17-5p were differentially regulated at all the time-

points. Let-7c-5p was the only miRNA upregulated within 2 h

from concussion and remained upregulated after 18 h, although

the difference in the expression was not statistically significant at

this timepoint. Conversely, the 2-3-fold decreased expression of

miR-17-5p was statistically significant at each timepoint. Two of

the most downregulated miRNAs at the 2 h timepoint, miR-181c-

5p and miR-22-3p were also downregulated at 18 h, as well as

at the End of the Season, although the downregulation was not

statistically significant at the latter time-point. Unique miRNAs

were differentially regulated at the 2 h time-point (miR-16-5p,

miR-154-5p, miR-431-5p, miR-151a-5p, miR-181d-5p, miR-487b-

3p, miR-377-3p, and miR-126-5p), and 18 h timepoint (Let-7b-

3p). MiR-26a-5p was significantly differentially downregulated at

the 18 h and End of Season timepoints, while miR-19b-3p was

significantly downregulated at 18 h and not significantly at End

of Season. Figure 3B shows plots of ROC analyses performed

for the most dysregulated miRNAs with the lowest p-value at

each timepoint.

Di�erentially regulated miRNA pairs
We then evaluated the diagnostic potential of the combination

of miRNAs through the analysis of miRNA pairs (36, 40–42).

Figure 4A shows a list of 9 miRNA pairs that better differentiated

concussed players from controls (p ≤ 0.00001) at the combined

time points. The pair miR-181c-5p/miR-338-3p was the best in

differentiating with good sensitivity and specificity (Figure 4B)

concussed players from controls. The other 8 miRNA pairs

had similar p-value and comparable specificity and sensitivity;

therefore, Figure 4B shows the ROC analysis only for the best

overall pair (miR-181c-5p/miR-338-3p) and the best pair of the

remaining 8 pairs (miR-181c-5p/let-7d-5p). Next, we compared

miRNA pairs of controls and concussed players at each timepoint

(Figure 5). Overall, miR-181c-5p was the most represented miR at

the earlier timepoints of 2 and 18 h after brain injury. Interestingly,

members of the Let-7 family, and the cluster miR-17-92, were

represented in different pair combinations at each timepoint.

Downregulation of selected miRNAs is still
observed in players who came back to play after
concussion

We analyzed expression of selected miRNAs identified in the

above analyses (miR-133b, 143-3p, 146a-5p, 16-5p, 17-5p, 19b-3p,
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TABLE 3 List of players and the dates of blood withdrawal at the time of concussion, after 18 hrs and at the end of the season.

Concussed

Date of Concussion Position date 2h date 18h date ret play End of season # days from conc

1 8/5 DT 8/5 8/6 8/23 12/22 139

2 8/8 LB 8/8 8/9 8/23 12/22 136

3 8/8 WR 8/8 8/9 8/16 12/22 136

4 8/9 OL 8/10 8/13 12/22 135

5 8/9 OL 8/9 8/23 12/22 135

6 8/21 C 8/21 8/22

7 9/23 DT 9/23 9/24 12/22 91

8 9/27 FB 9/27 9/28 12/22 87

9 10/11 DE 10/11 10/12 12/22 73

10 11/19 S 11/19 11/20 12/22 33

Controls

Date Position date 2h date 18h End of season

1 8/5 DE 8/5 8/6 12/22

2 8/8 LB 8/8 8/8 12/22

3 8/8 WR 8/8 8/9 12/22

4 8/9 OL 8/9 8/10 12/22

5 8/9 C 8/9 12/22

6 8/21 C 8/21 8/23 12/22

7 9/14 S 9/14 9/14

8 9/23 DE 9/23 9/24 12/22

9 9/27 FB 9/27

10 10/11 DT 10/11 10/12 12/22

11 11/19 S 11/19 11/20 12/22

For 5 players, blood was collected when they returned to play. The number of days after concussion by the end of the season is reported, as well as the player position: DT, defensive tackle; C,

center; FB, fullback; WR, wide receiver; TE, tight end; OL, left and right guard; OG, offensive guard; OT, offensive tackle; DE, defensive end; LB, linebacker; S, safety.

221-3p, 22-3p, 26a-5p, 29a-3p, 338-3p, 377-3p, 487b-3p, Let-7c-

5p) in five players who returned to play after concussion compared

to controls (Figure 6). We found that at each timepoint miR-22-

3p and miR-17-5p still discriminated players who returned to play

after concussion from controls (Figure 6A), suggesting that changes

in circulating miRNA biomarkers could persist even after recovery

from the symptoms of concussion. Figure 6B shows the relative

expression of miR-17-5p and miR-22-3p in the indicated groups

and highlights their sustained downregulation (higher Ct values)

throughout the game season compared to controls.

Dysregulation of miR-17-5p in players with
potentially undiagnosed concussion

Based on miR-17-5p expression levels at the end of the season,

we generated two unsupervised clusters of samples using the

Kohonen self-organizing map available in GenEx software and

position-matched players (9 concussed and 9 controls). In general,

control players mapped within group 1 (Figure 7, green dots) and

concussed players clustered with group 2 (blue dots). Interestingly,

only three out of 9 players who returned to play after concussion

clustered with the group of control players (group 1), perhaps

indicating a restored neuronal fitness after the injury. On the

other hand, one sample in the control group mapped with group

2 (Figure 7, right panel), and this may be indicative of a non-

diagnosed concussion.

Discussion

In this exploratory study, we have utilized serum samples

collected over a period of 4 months during a college practice and

game season and determined the relative expression of selected

miRNAs in concussed players vs. matched (same position in the

field) controls. Since physical exercise profoundly affects miRNA

expression (43–45), we reasoned that the best control for the

concussed players would be a player exposed to a similar physical

exercise but without TBI. The serum in control players was

obtained at the same time as the concussed players (Table 3).

We analyzed 50 miRNAs and found that 13 miRNAs (Figure 1)
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FIGURE 1

Di�erentially regulated miRNAs in concussed players compared to controls. (A) List of di�erentially regulated miRNAs at all combined timepoints, as

determined by Mann-Whitney test. FC: fold change (2−11Ct). P-values are shown in the right column. (B) Box plot showing relative expression (2−1Ct)

of the selected miRNAs in the two groups of concussed (n = 27; blue) and control players (n = 29, green). Each box shows the distribution of the

measured miRNA value across the samples. The red dotted line in each colored box represents the median value. Red dot stars identify outliers and

extra outliers, respectively.
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FIGURE 2

Receiver-Operating Characteristic (ROC) analysis of miRNAs discriminating concussed players from controls. Left panels indicate relative expression

of the indicated miRNAs in concussed and control players. Note that higher Cts indicate lower expression. Area under the curve (AUC), sensitivity and

specificity are calculated for the cuto� point and are indicated in the ROC graphs together with the p-values (right panels); (A) miR-181c-5p

(concussed n = 27, controls n = 29); (B) miRNA-26a-5p (concussed n = 26, controls n = 29); (C) miRNA-17-5p (concussed n = 25, controls n = 29);

(D) miR-22-3p (concussed n = 27, controls n = 28).
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FIGURE 3

Relative expression of miRNAs discriminating concussed players from controls at di�erent time points after concussion and at the end of the season.

(A) List of di�erentially regulated miRNAs in concussed players vs. controls at 2 h (concussed n = 9, controls n = 11), 18 h (concussed n = 9, controls

n = 9) after concussion, and at the end of the season (concussed n = 9, controls n = 9). FC: fold change expressed as 2−11Ct. P-values are reported

in each table. Ns: non-statistically significant. (B) ROC analysis graphs for the most dysregulated miRNA with the lowest p-value at each timepoint.

AUC, sensitivity, specificity and exact p-values are indicated in the graphs.
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FIGURE 4

miRNA pair analysis increases sensitivity and specificity of miRNA biomarkers. (A) List of the miRNA pairs that best discriminate concussed players

from controls at all the combined time points (concussed n = 25, controls n = 27). P-values are indicated. (B) Relative expression and ROC curves of

the top ranked miRNA pairs, 181c-5p/miR-338-3p and miR-181c-5p/Let-7d-5p. AUC specificity and sensitivity are reported under the graph.
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FIGURE 5

miRNA pairs discriminating concussed players from controls at various points during game season. List of miRNA pairs that best discriminate

concussed players from controls at the indicated timepoints.

discriminated concussed players from controls (at all combined

timepoints) and four of them with very good sensitivity and

specificity (Figure 2).

When we compared samples from concussed players and

controls obtained at the same timepoint, we found 13 miRNAs

that discriminated the two groups at 2 h, 7 miRNAs at 18 h, and

6 miRNAs at the end of the season (Figure 3A). Notably, Let-

7c-5p was the only miRNA consistently upregulated significantly

at 2h and insignificantly at 18 h after concussion. The most

downregulated miRNA at the 2-h timepoint (fold change−7.65),

miR-181c-5p, maintained more than a 5-fold reduction after 18 h

from concussion and almost 3-fold at the end of the season.

Interestingly, one study reported that miR-181c-5p was part of

miRNA signature for primary blast-induced mild TBI evaluated in

hair follicles (46). We also found that miR-17-5p was significantly

downregulated near or >3-fold at every timepoint, including the

end of the season. This is important, since miR-17-92 cluster

facilitates neuronal differentiation and neuroprotection under

neuroinflammatory conditions (47–49). Unlike Papa et al., which

found miR-26a-5p upregulated after TBI (50), we found the same

miRNA downregulated 18 h after concussion and at the end of

the season (Figure 3). This discrepancy may originate from the

different groups used as the control in the two studies: Papa

used blood withdrawn at baseline from the same players, while

we used blood from players exposed to the same training but

without concussion.

The persistence of the changes in the expression of miR-17-5p

and miR-22-3p to the end of the season may indicate long-lasting

molecular changes even after full clinical recovery. Interestingly,

plasma miR-26a-5p and miR-16-5p discriminated non-sport

related TBI from healthy controls (24) perhaps confirming a

common pattern of injury in sport and non-sport-induced TBI.

Let-7c has been shown to be differentially regulated in cellular

and animal models of brain injury (ischemia and or TBI) and

have been proposed to have a neuroprotective function (51–55).

Downregulation of miR-22-3p has been observed in a cell model of

TBI (55) and in neurodegenerative disorders such as Huntington’s

disease andAD (7, 56, 57). Overexpression ofmiR-22-3p attenuated

neuronal injury caused by TBI (55) and protected from cell death in

models of neurodegeneration (33). Finally, changes in circulating

levels of miR-17, miR-92a, and miR-106a have been associated

with schizophrenia (58, 59). Remarkably, our data indicate miR-

17-5p and miR-22-3p as diagnostic markers potentially able to

discriminate persistence of neuronal damage even after physical

recovery (Figure 6A). In addition, the sole expression of miR-17-

5p was able to cluster controls and concussed players (Figure 7).

The presence of a control sample within the group of concussed

players may indicate an undiagnosed brain injury and the presence

of concussed players in the control group may indicate healing

of concussion.

MiR-19b-3p belongs to the miR-17-92 family of miRNAs, a

cluster consisting of six miRNAs (miR-17, miR-18a, miR-19a, miR-

20a, miR-19b-1, and miR-92a-1) that regulates neurogenesis and

angiogenesis in the central nervous system during development

and adulthood [reviewed in (60)]. MiR-92a-3p and miR-17-

5p distinguished concussed players from controls with good p-

values when paired with other miRNAs (Figure 5). Of interest,

plasma miR-92a also differentiated non-sport-related TBI from

healthy controls (24). The most downregulated miRNA, miR-

181c-5p (Figure 3), is involved in neuroinflammatory responses

in glial cells (61, 62) and it was part of a Extracellular

vesicle (EV) miRNA cargo signature associated with TBI (63).
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FIGURE 6

Diagnostic value of miR-17-5p and miR-22-3p. (A) Table showing miRNAs that discriminated players returned to the field after concussion (n = 5)

from controls [overall (n = 29), 2 h (n = 11), 18 h (n = 9), and End of the Season (n = 9)]. P-values are indicated; ns means non-statistically significant.

FC: fold change expressed as 2−11Ct. (B) Expression levels of miR-17-5p and miR-22-3p in the indicated groups of players, measured as 2−1Ct. The

dot indicates an outlier.

The miRNA pair that overall discriminated concussed from

control players was miR-181c-5p/miR-338-3p (Figure 4). Of

interest, thalamic-enriched miR-338-3p is a key mediator of

synaptic disruption in the auditory thalamocortical circuit

and the pathogenic mechanisms underlying psychosis in a

mouse model of 22q11.2 deletion syndrome and related cases

of schizophrenia (64). The association between miR-338-3p

expression and neurodegeneration has been additionally shown

in sporadic amyotrophic lateral sclerosis patients (65) and

prion induced neurodegeneration (66). The miRNA-pair analysis

approach was first described by Sheinerman to investigate plasma

miRNAs as potential biomarkers for mild cognitive disorders

(37), and we have used this type of analysis for cerebrospinal

fluid and circulating miRNAs as biomarkers of neurocognitive

impairments in HIV-1 infection (35, 36). In this study, miRNA

pair analysis confirmed the importance of miR-181c-5p expression

combined with the expression levels of miR-338-3p or Let-7-5p in

discriminating concussed from non-concussed players (Figure 4).

Interestingly, and of considerable diagnostic interest in the long-

term development of brain degeneration, was the observation of
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FIGURE 7

miR-17-5p could detect undiagnosed concussion and/or indicate

restored neuronal fitness after concussion. Unsupervised clustering

(Kohonen self-organizing map) of serum samples based on

miR-17-5p expression at the end of season timepoint (controls n =

9; concussed n = 9) indicates the presence of three players who had

concussion (blue dots) in group 1, otherwise constituted by control

players green dots, suggesting neuronal fitness recovery. The

presence of one control sample (pointed by an arrow) within the

group of concussed players may indicate an undiagnosed brain

injury in this player. Self-organizing map (SOM) was fixed

automatically at 1 (y-axis), and number of groups are indicated in

the x-axis.

a selective increase of a neurodegeneration-associated Let-7c-5p

(Figure 1A), a chromosome-21q21-encoded miRNA also known

to be specifically upregulated in Downs syndrome (trisomy 21)

(67, 68), AD (69, 70) and depression (71, 72). The selective

upregulation of this specific miRNA may be related to and

predictive for the initial triggering of brain damage and the onset of

neurodegeneration characteristic of both acute and chronic brain

injury as evidenced by TBI and AD.

A recent systematic review of salivary miRNA/TBI studies

(31) is consistent with the results of our study. Eight of the nine

reviewed studies contained exclusively mTBI subjects and seven

of the nine involved acute mTBI. The findings varied widely, but

despite the broad heterogeneity in TBI by sport, sex, age, and other

factors the authors identified 14 miRNAs with consistent up or

downregulation across the nine studies: let-7i-5p, miR-107, miR-

135b-5p, miR-148a-3p, miR-20a-5p, miR-24-3p, miR-27b-3p, miR-

29c-3p, miR-181a-5p, miR-182-5p, miR-26b-5p, miR-320c, miR-

27a-5p, miR-7-1-3p. We found that 4 of the significantly regulated

serum-sampled miRNAs in our study are in the same families as

these 14: Let-7c-5p, miR-26a-5p, miR-29a-3p, and miR-181c-5p. In

another review of 14 human TBI studies (20) 17 miRNAs were

found commonly in saliva, blood, and cerebral spinal fluid. Six

of these 17 were from miRNA families found in our study: Let-

7, miR-16, miR-26b, miR-29a, miR-29c, miR-181a. In conclusion,

the miRNAs detected in our concussion study overlap with the

findings across multiple clinical studies that sampled different

body fluids. In a longitudinal study, Shultz et al. have examined

plasma miRNAs as biomarkers of concussion in amateur football

players (both females and males) and found decreased expression

of miR-27a and miR-221 levels that inversely correlated with

concussion symptom severity (30). However, their use of each

concussed player’s pre-season blood sample as a control did not

control formiRNA from cumulativemusculo-skeletal injury. In our

study, we did not have pre-season blood samples, but controlled

for musculo-skeletal injury miRNA by using concurrent position

matched player controls. As we screened for specific, miR-27a

was not included in our selection; however, we found miR-221

downregulated in players who sustained concussion at the end of

season time point compared to the same time point of controls,

although the difference was not reaching statistical significance (p

= 0.056; data not shown).

Limitations in our study pertain to the small number

of subjects, the gender (all males) and race (mostly African

American), the screening limited to specific miRNAs, and lack

of correlation between miRNA expression and specific symptoms

of concussion. Nevertheless, important strengths of this study

include following the same team throughout an entire game

season, having a narrow age range (18–22), collecting the end

of season time point (as far as 4 months post-concussion), and

collecting blood from controls that matches the same time point of

concussed players.

In summary, we provide evidence of a serum miRNA signature

of 13 miRNAs associated with concussion in football players. Of

interest, this miRNA signature suggests long-lasting molecular

changes potentially associated with pathological behaviors that

could also be explored in follow-up longitudinal studies. The

upregulation of the Let-7c-5p miRNA may be a useful biomarker

related to and predictive of the initial triggering of brain damage

and the onset of neurological deficits in acute and chronic

neurodegeneration as evidenced by concussive brain injury, TBI,

Down’s syndrome, AD, and psychiatric disorders (67–72). At the

same time, miR-17-5p and miR-22-3p may be useful biomarkers

for persistent neuronal injury from mTBI.
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