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APOE as potential biomarkers of
moyamoya disease

Haibin Wu1†, Jiang Xu1†, Jiarong Sun1†, Jian Duan1, Jinlin Xiao1,

Quan Ren1, Pengfei Zhou1, Jian Yan1, Youping Li1,

Xiaoxing Xiong2 and Erming Zeng1*

1Department of Neurosurgery, The First A�liated Hospital of Nanchang University, Nanchang, China,
2Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China

Objective: The mechanisms underpinning Moyamoya disease (MMD) remain

unclear, and e�ective biomarkers remain unknown. The purpose of this study was

to identify novel serum biomarkers of MMD.

Methods: Serum samples were collected from 23 patients with MMD and

30 healthy controls (HCs). Serum proteins were identified using tandem

tandem-mass-tag (TMT) labeling combined with liquid chromatography-tandem

mass spectrometry (LC-MS/MS). Di�erentially expressed proteins (DEPs) in

the serum samples were identified using the SwissProt database. The DEPs

were assessed using the Kyoto Encyclopedia of Genes and Genomes (KEGG)

database, Gene Ontology (GO), and protein-protein interaction (PPI) networks,

and hub genes were identified and visualized using Cytoscape software.

Microarray datasets GSE157628, GSE189993, and GSE100488 from the Gene

Expression Omnibus (GEO) database were collected. Di�erentially expressed

genes (DEGs) and di�erentially expressed miRNAs (DE-miRNAs) were identified,

and miRNA targets of DEGs were predicted using the miRWalk3.0 database.

Serum apolipoprotein E (APOE) levels were compared in 33 MMD patients and

28 Moyamoya syndrome (MMS) patients to investigate the potential of APOE to be

as an MMD biomarker.

Results: We identified 85 DEPs, of which 34 were up- and 51 down-regulated.

Bioinformatics analysis showed that some DEPs were significantly enriched in

cholesterol metabolism. A total of 1105 DEGs were identified in the GSE157628

dataset (842 up- and 263 down-regulated), whereas 1290 were identified in

the GSE189993 dataset (200 up- and 1,090 down-regulated). The APOE only

overlaps with the upregulated gene expression in Proteomic Profiling and in

GEO databases. Functional enrichment analysis demonstrated that APOE was

associated with cholesterol metabolism. Moreover, 149 miRNAs of APOE were

predicted in the miRWalk3.0 database, and hsa-miR-718 was the only DE-miRNA

overlap identified in MMD samples. Serum APOE levels were significantly higher

in patients with MMD than in those without. The performance of APOE as an

individual biomarker to diagnose MMD was remarkable.

Conclusions: We present the first description of the protein profile of patients

with MMD. APOE was identified as a potential biomarker for MMD. Cholesterol

metabolism was found to potentially be related to MMD, which may provide

helpful diagnostic and therapeutic insights for MMD.
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1. Introduction

Moyamoya disease (MMD) is a chronic, rare cerebrovascular

disease characterized by progressive vascular occlusion affecting

the internal carotid arteries (ICAs) and formation of a

compensatory network of fragile vessels at the base of the

brain (1, 2). MMD is found globally, especially in East Asian

countries, such as Japan, China, and Korea (1, 3). In China,

the prevalence of the disease in Nanjing is 3.92/100,000 (4, 5).

MMD can cause ischemic or hemorrhagic stroke, and bleeding

is the main cause of death in adults with moyamoya disease

(1). There is a lack of effective drugs to treat moyamoya

disease as the exact mechanism of MMD pathogenesis

remains unclear.

Recently, an increasing number of studies have indicated the

association of moyamoya disease with RNF213 variant, a key

antimicrobial protein that strengthens the role of infectious or

autoimmune stimuli as a contributing factor to MMD onset (2, 6).

However, not all patients with MMD have the RNF213 variant,

indicating that the pathology of MMD is complex, including

genetic and environmental factors, and innate angiogenetic

capacity (7).

Many studies have shown IgG, IgM, and C3 are found on the

vascular wall patients with MMD. Moreover, the inflammatory

response causes hyperplasia of intimal vascular smoothmuscle cells

and neovascularization through the proliferation of endothelial

cells, resulting in lumen stenosis and reformation of collateral

circulation (8, 9). Circulating proteins such as MMP-9 and

caveolin-1 can help regulate the extracellular matrix of the

vessel wall, resulting in pathological neovascularization with

defective vessel structure, inducing negative arterial remodeling

and impairing angiogenesis in MMD (10, 11). Therefore, it is

important to detect serum proteins in patients with MMD to

further understand the pathogenesis of MMD.

To explore whether there is a serum biomarker for moyamoya

disease, we used proteomics to analyze the differentially

expressed proteins between moyamoya disease and healthy

people. We searched for overlaps with differentially expressed

genes in vascular tissues of moyamoya disease in the GEO

database. Bioinformatic analysis of the differentially expressed

proteins was further verified using independent samples.

In summary, we identified a novel serum biomarker and

proposed a potential pathogenic mechanism for the development

of MMD.

2. Materials and methods

2.1. Patients and serum samples

This study analyzed 114 serum samples obtained from 56

patients diagnosed with MMD, 28 Moyamoya syndrome (MMS)

patients, and 30 healthy controls at the First Affiliated Hospital of

Nanchang University (Nanchang, China) between September 2019

and August 2021. The study protocol was conducted in accordance

with the Declaration of Helsinki and was approved by the Research

Ethics Committee of the First Affiliated Hospital of Nanchang

University (Nanchang, China). All participants voluntarily signed

the informed consent forms.

MMD was diagnosed according to guidelines proposed by the

Ministry of Health andWelfare of Japan. The diagnostic criteria are

shown in Supplementary material.

2.2. TMT-based quantitative serum
proteomics

In the MMD group, three pooled samples were generated by

random mixing of three or four samples, and three pooled samples

were generated by random mixing of every 10 samples in the

HCs group. All pooled samples were lysed, trypsin-digested, and

analyzed using the Tandem Mass Tag-labeled serum proteome.

TMT analysis was performed according to a previously reported

method (12, 13). Clinical and group information is shown in

Supplementary Datasheet 1.

2.3. Di�erential expression analyses of
serum proteomics

To reliably identify differential proteins, we applied fold change

of proteins ≥ 1.2 and p-value < 0.05 to screen and filter the

identified proteins using the “limma” R package (14).

2.4. Microarray datasets of MMD and
preprocessing

We used “moyamoya disease” as a keyword on the Gene

Expression Omnibus (GEO) database (https://www.ncbi.nlm.nih.

gov/geo/), mRNA microarray datasets were obtained with the

accession no. GSE189993 and GSE157628 contained middle

cerebral artery (MCA) vascular wall tissue data from 32 MCA with

MMD samples and 20 control samples (12 patients with internal

carotid artery aneurysm and eight epilepsy patients).

miRNA microarray data were also collected from the GEO

database under Accession No. GSE100488, which analyzed the

circulating miRNA profiles from 10 peripheral blood plasma

samples with MMD and 10 peripheral blood plasma samples from

healthy controls.

2.5. Microarray datasets analysis

All the samples were normalized using the “limma” R package.

In this study, the GEO2R platform (http://www.ncbi.nlm.nih.gov/

geo/geo2r/) was used to detect DEGs and DE-miRNA between

MMD and control groups. The truncation criteria for DEGs were

set with | log 2 fold change | > 1.5, P < 0.05, and DE-miRNAs were

set with | log 2 fold change | > 0.5, P < 0.05.

Frontiers inNeurology 02 frontiersin.org

https://doi.org/10.3389/fneur.2023.1156894
https://www.ncbi.nlm.nih.gov/geo/
https://www.ncbi.nlm.nih.gov/geo/
http://www.ncbi.nlm.nih.gov/geo/geo2r/
http://www.ncbi.nlm.nih.gov/geo/geo2r/
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org


Wu et al. 10.3389/fneur.2023.1156894

2.6. Functional and pathway enrichment
analysis

The functional enrichment analysis of DEPs and DEGs

were performed on the Gene ontology (GO), and Kyoto

Encyclopedia of Genes and Genomes (KEGG) using “enrichGO”

and “enrichKEGG” R package.

2.7. Protein-protein interaction network
analysis

The list of DEPs and DEGs was updated to the STRING

database (version 11.5; https://cn.string-db.org/) to construct

protein–protein interaction (PPI) networks, with the minimum

required interaction score was set to 0.4. Cytoscape software

was used to obtain the hub genes and visualize the PPI

network map.

2.8. Target DE-miRNAs prediction of gene

The miRWalk database (Version 3.0; http://mirwalk.umm.

uni-heidelberg.de/) was used to predict the DE-miRNA targets

of mRNA.

2.9. Enzyme-linked-immunosorbent
serologic assay validation assay

The serum samples were diluted 1:32,000 in the kit-supplied

assay buffer. Next, 20 µL of standards was added to duplicates

in a clear, 96-well half-area plate (Costar Corporation, USA).

Serum concentrations were assessed using a highly sensitive

enzyme-linked immunosorbent assay kit. The ELISA assay

was performed according to the manufacturer’s instructions.

The absorbance was read at 560 nm in a Multiskan GO

microplate spectrophotometer (Thermo Fisher Scientific), and

the results were acquired by interpolation from a 4-parametric

logistic curve generated by Thermo Scientific SkanIT Software

version 3.2.

2.10. Statistical analysis

Continuous variables are presented as mean ± standard

deviation (SD). Categorical data were reported as counts

and proportions in each group. The data between the

groups were compared using the chi-square test (Fisher’s

exact test, where appropriate) for categorical variables

or 2-tailed Student t-test (Mann-Whitney U-test, where

appropriate) for continuous variables. Statistical significance

of all data was indicated by P < 0.05. A heatmap

was plotted using Sangerbox (Version 3.0; http://vip.

sangerbox.com), an online platform for data analysis

and visualization.

2.11. ROC analysis

We applied the receiver operating characteristic (ROC) curve

and used the area under the curve (AUC) to evaluate diagnostic

accuracy. The R package “pROC” (version 1.17.0.1) was used to

analyze the results and visualize the data.

3. Results

3.1. Screening of di�erentially expressed
proteins

Comparative proteomic analysis of serum from 23 patients

with Moyamoya disease (MMD) and 30 healthy controls was

performed using TMT labeling following LC–MS/MS analysis.

The clinical information is shown in Supplementary Table 1.

A total of 705 proteins with unique peptides were identified

(Supplementary Table 2). The differentially expressed proteins

between every two groups were obtained according to the criteria

of (fold-change ≥ 1.2 and P < 0.05). The results showed that 85

DEPs were upregulated, 34 proteins were significantly upregulated,

and 51 were significantly downregulated in MMD compared with

HCs (Figures 1A, B).

3.2. Bioinformatics analysis of di�erentially
expressed proteins

GO enrichment analysis revealed that these DEPs were

enriched in three GO terms: biological process (BP), cellular

component (CC), and molecular function (MF). BP processes

include very-low-density lipoprotein particle clearance, high-

density lipoprotein particle remodeling, and receptor-mediated

endocytosis. The CC included the collagen-containing extracellular

matrix, secretory granule lumen, cytoplasmic vesicle lumen, high-

density lipoprotein particle and very-low-density lipoprotein

particle. With respect to MF, DEPs were primarily enriched

in growth factor binding, protease binding, extracellular

matrix and lipase inhibitor activing (Figure 2A). The results

showed that these genes were functionally associated with

cholesterol metabolism.

These DEPs were also enriched in KEGG pathways, including

the cholesterol metabolism, Phagosome, Ferroptosis pathways,

complement and coagulation cascades, HIF-1 signaling pathway,

and Focal adhesion (Figures 2B, C).

To further investigate the links of the 85 DEPs, the online

STRING database was used to analyze and construct a Protein-

Protein Interaction (PPI) network. We identified two hub genes

associated with MMD according to the results of the PPI analysis,

including ACTB and APOE, and the results were visualized using

Cytoscape software (Figure 2D).
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FIGURE 1

Detection of di�erentially expressed proteins. Overall distribution of di�erentially expressed proteins. (A) Heat map of 85 di�erentially expressed

proteins in the two groups. In the color bar, red represents high expression, and purple represents low expression. (B) Volcano plot of the

di�erentially expressed proteins identified in the two groups.

3.3. Overlaps gene between with
proteomic profiling and GEO database and
bioinformatics analysis

In our study, we obtained two mRNA microarray datasets

from the GEO (GSE157628 and GSE189993) and searched for

DEGs using GEO2R. A total of 263 down- and 842 up-regulated

DEGs were identified from the GSE157628 dataset, and 1,090

down- and 200 up-regulated DEGs were identified from the

GSE189993 dataset. A volcano plot of each gene expression profile

was prepared (Figures 3A, B). Venn diagram analysis revealed that

526 DEGs and 70 down-regulated overlapping DEGs were found

in MMD compared to the control (Figures 3C, D). In addition,

APOE only overlapped with up-regulated gene expression in

proteomic profiling and in the GEO database (Figure 3E). Further

functional enrichment analysis suggested that APOE is associated

with cholesterol metabolism (Figure 3F).

3.4. Identification of DE-miRNAs between
MMD and MCA

Potential upstream miRNAs of mRNAs were predicted by

miRWalk3 database, and the intersection with DE-miRNA

(hsa-miR-718) in the GSE100488 dataset was used to obtain

candidate miRNAs of APOE. The heat map shows the total

number of miRNAs and DE-miRNAs in the GSE100488 dataset

(Figures 4A, B). Thirty-six DE-miRNAs were identified in

the peripheral blood plasma of MMD patients and normal

healthy controls, including 19 down- and 17 up-regulated

DE-miRNAs (Figure 4C). Venn diagram analysis revealed

that there was only one shared DE-miRNA (hsa-miR-

718) in the GSE100488 dataset and predicted miRNAs of

APOE using the miRWalk3 database (Supplementary Table 3;

Figure 4D).

3.5. Validation of APOE as an individual
biomarker in an independent cohort

We collected 33 patients with MMD and 28 patients without

MMD to investigate the potential of APOE as a biomarker

for moyamoya disease. The clinical information is shown in

Supplementary Table 4. The levels of APOE protein in serum

samples from MMD and MMS patients were further validated

using ELISA (Supplementary Table 5). As shown in Table 1, we

found that the serum levels of APOE protein differed significantly

between the two groups (P < 0.001; Figure 5A). The expression

levels of triglyceride (TG), total cholesterol (TC), low-density

lipoprotein (LDL), and high-density lipoprotein (HDL) in MMD

serum samples, while age and sex showed no significant differences

compared to the control group (P > 0.05; Figures 5B, C;

Table 1).

To determine whether APOE has diagnostic significance in

MMD patients, ROC analyses were conducted to explore the

sensitivity and specificity of DEGs for MMD diagnosis. The results

showed that APOE has diagnostic value in differentiating patients

with MMD from MMS patients (Figure 5D). The AUC value of

serumAPOEwas 0.703 (95%CI, 0.572–0.835), and the cut-off point

was 35.837 mg/l (57.1% sensitivity and 78.8% specificity).
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FIGURE 2

Bioinformatics analysis of di�erentially expressed proteins. Functional enrichment and protein–protein interaction analysis (A) GO enrichment results

for DEPs in biological processes. GO, Gene Ontology; BP, biological processes; CC, cellular components; MF, molecular function. (B) Bubble chart

displaying the enrichment of di�erentially expressed genes and the top 10 enriched KEGG pathways. (C) Chord plot displaying the enriched

enrichment network of di�erentially expressed genes and the top 10 enriched KEGG pathways. (D) The protein-protein interaction network was

analyzed using the STRING database. There were two nodes and 83 edges in the network.

4. Discussion

MMD is typically characterized by progressive narrowing or

stenosis, but its etiology and pathogenesis remain unclear (7).

Previous studies have confirmed that multiple molecular pathways

are involved in the pathophysiological processes of MMD,

including smoothmuscle cell and extracellularmatrix proliferation,

intima concentric fibrocellular hyperplasia, extracellular interstitial

remodeling, apoptosis, and vascular inflammation (15–20). In

addition, the investigation of MMD has been limited by the

difficulty of sample collection and lack of in vitro and in vivo

models. Proteins are direct effectors of biological mechanisms,

and serum proteins are widely used as biomarkers for clinical

diagnosis and mechanistic research of many diseases (21). In

this study, we compared serum protein profiles of patients

with MMD and healthy individuals to identify candidate

biomarkers, then a potential pathogenic mechanism of MMD was

proposed by bioinformatics. Furthermore, the serum biomarker

for enzyme-linked immunosorbent assay (ELISA) was validated in

independent cohorts.

Eighty-five DEPs were identified and GO term analysis

indicated that these genes are significantly associated with

cholesterol metabolism. APOE was the most significant genes

among these DEGs, which were identified as hub genes by

PPI network analysis. Besides, through KEGG pathway analysis,

we found that these DEPs were mainly enriched in cholesterol

metabolism, and may be involved in Ferroptosis pathways, HIF-1

signaling pathway and immune system. Taking the intersection of

up-regulated DEPs and two GEO datasets of up-regulated DEGs,

only APOE was identified. In the GSE188993 and GSE157628

datasets, middle cerebral artery microsamples of patients with

MMD and control groups were detected by microarray assay, and

high expression of APOE was found in two databases (22, 23).

However, the role of APOE in MMD has remained unexplored.
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FIGURE 3

Overlaps gene between with proteomic profiling and GEO database and bioinformatics analysis. (A) Volcano plot of di�erentially expressed genes in

the GSE157628 dataset. (B) Volcano plot of di�erentially expressed genes in the GSE189993 dataset. (C) Venn diagram showing the intersection of

di�erentially expressed genes between the GSE189993 and GSE157628 datasets. (D) Venn diagram showing the intersection of highly expressed

genes between GSE189993 and GSE157628 datasets. (E) Venn diagram showing the intersection of highly expressed genes in the GEO database and

Proteomic Profiling. (F) The protein-protein interaction network of APOE was constructed using Cytoscape.
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FIGURE 4

Identification of DE-miRNAs between MMD and MCA. Di�erentially expressed miRNAs were identified using the GSE100488 dataset. (A) Heat map of

miRNAs in the GSE100488 dataset (red indicates high expression, and blue indicates low expression). (B) Heat map of the 36 di�erentially expressed

miRNAs in the GSE100488 dataset (red indicates high expression and blue indicates low expression). (C) Volcano plots of di�erentially expressed

miRNAs in the two groups. (D) The Venn diagram reveals the intersection of DE-miRNAs between the GSE100488 dataset and predicted miRNAs of

APOE using the miRWalk3 database.

The APOE gene is located on the long arm of chromosome

19. It is polymorphic, with three major alleles (ε2, ε3, and ε4)

that significantly alter the structure and function of APOE (24).

Previous studies have shown that APOE gene polymorphisms

may play a role in micro-bleeds in patients with MMD, but

the mechanism is unclear (25). Baitsch et al. found that APOE

is derived from endothelium-resident macrophages, which

can cause vascular remodeling by influencing nitric oxide

soluble (NOS) factors (26). Some studies have shown that

macrophage infiltration has also been observed in MMD, and

the NOS guanylate cyclase-cyclic guanosine monophosphates

(NO-GC-cGMP) signaling pathways are associated with

vascular remodeling in MMD (27, 28). Therefore, to further

determine the relationship between APOE and the occurrence

and development of MMD, through a combination of GO

enrichment and KEGG pathway enrichment analyses, we

identified APOE as a key regulatory protein associated with

cholesterol metabolism. Previous studies have also shown

that APOE is involved in cholesterol metabolism (29–32).

Therefore, we speculated that cholesterol metabolism may

have implications for MMD. We also found that hsa-miR-

718 was the only DE-miRNA to overlap in the GEO dataset
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TABLE 1 Comparison of the baseline characteristics of patients with

MMD and MMS.

Variable MMD
(mean ±
SD), n =

33

MMS
(mean ±
SD), n =

28

P-value

Sex, female 21 (63.6%) 14 (50%) 0.29

Age (years) 48.76± 8.41 49.96± 10.90 0.64

TG (mmol/L) 1.47± 0.67 1.16± 0.54 0.05

TC (mmol/L) 4.56± 0.91 4.16± 0.95 0.1

HDL

(mmol/L)

1.31± 0.29 1.34± 0.30 0.67

LDL (mmol/L) 2.79± 0.71 2.42± 0.83 0.07

APOE (mg/l) 60.75± 33.99 39.93± 16.54 0.0003

P < 0.05 was considered statistically significant.

and predicted APOE miRNAs. Hsa-miR-718 has not been

previously reported to regulate APOE, which requires further

experimental verification.

Additionally, the serum proteins of APOE were further

validated by ELISA in serum samples from patients with and MMS

patients. We found that the serum concentration of APOE protein

differed significantly betweenMMDandMMS patients (P< 0.001).

Identifying specific protein markers is crucial for improving MMD

diagnosis. Our study showed that APOE has diagnostic value with

an AUC value of 0.703.

Nevertheless, the present study has some limitations. First,

the serum sample size was small, which can lead to statistical

biases in the analyses performed to investigate diagnostic value.

Furthermore, although the results of this study preliminarily

suggest an association between APOE and hsa-miR-718, well

designed in vitro and in vivo experiments are required to

confirm this result. Finally, the role of APOE in MMD

FIGURE 5

Validation of APOE as an individual biomarker in an independent cohort. (A) Serum APOE expression levels in the two groups were visualized using

violin plots. (B) Serum TG, TC, LDL, and HDL levels between the two groups are shown by violin plots. (C) Distribution of age between the two groups

is shown using violin plots. (D) ROC curve and corresponding AUC of APOE in the independent validation cohort (n = 61). DE, di�erentially

expressed; miRNA, microRNA.
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and the regulation of cholesterol metabolism remains unclear,

and further research is needed to confirm its function and

molecular mechanism.

Collectively, our findings suggest that serum

APOE is a potential biomarker in patients with

MMD, and cholesterol metabolism may be involved

in MMD.

5. Conclusion

Using TMT-labeling HPLC-MS quantitative proteomics

technology, we screened and identified biomarkers of MMD

and analyzed them at the serum level. Specific serum APOE

proteins for MMD were selected and evaluated to determine

their feasibility as candidate diagnostic markers of MMD. The

present study found that cholesterol metabolism might be involved

in the development of MMD. These findings may provide

important clues for further studies to clarify the pathophysiology

of MMD.
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