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Stroke is a central nervous system disease that causes structural lesions and 
functional impairments of the brain, resulting in varying types, and degrees of 
dysfunction. The bimodal balance-recovery model (interhemispheric competition 
model and vicariation model) has been proposed as the mechanism of functional 
recovery after a stroke. We  analyzed how combinations of motor observation 
treatment approaches, transcranial electrical (TES) or magnetic (TMS) stimulation 
and peripheral electrical (PES) or magnetic (PMS) stimulation techniques can 
be  taken as accessorial physical therapy methods on symptom reduction of 
stroke patients. We suggest that top-down and bottom-up stimulation techniques 
combined with action observation treatment synergistically might develop 
into valuable physical therapy strategies in neurorehabilitation after stroke. 
We explored how TES or TMS intervention over the contralesional hemisphere or 
the lesioned hemisphere combined with PES or PMS of the paretic limbs during 
motor observation followed by action execution have super-additive effects to 
potentiate the effect of conventional treatment in stroke patients. The proposed 
paradigm could be an innovative and adjunctive approach to potentiate the effect 
of conventional rehabilitation treatment, especially for those patients with severe 
motor deficits.
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Introduction

Stroke is a neurological syndrome caused by an acute vascular injury of the central nervous 
system. The syndrome incorporates the cerebral infarction, intracerebral hemorrhage, and 
subarachnoid hemorrhage (1). It is one of the primary causes of mortality and severe long-term 
disability. Among all causes of death, stroke ranks fifth following heart disease, cancer, chronic 
lower respiratory disease, and unintentional injuries/accidents (2). In 2019, the prevalence of 
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stroke was 101 million cases and there were 6.55 million deaths in 
global (3). As a major concern of global health, stroke poses great 
social economic burden, for example, the overall expenses of stroke in 
US was $52.8 billion in 2017–2018, with mean direct expenses of 
$8,242 for each patient (4). Stroke ranks second among all the 
contributors to disability-adjust life-years globally (5). Long-term 
complications of stroke include pain syndromes, depression and 
anxiety, cognitive decline and dementia, as well as falls and fractures 
due to gait instability (2). Motor impairment of the contralateral limb 
(e.g., loss or limitation of muscle control, mobility, power, and 
dexterity) is one of the commonest and most detrimental 
consequences after stroke (6, 7). Dysfunctional motor control affects 
functional independence of activities of daily living, and thus reduces 
the quality of life.

Neurorehabilitation after a stroke includes multidisciplinary 
rehabilitation methods to compensate for the motor deficit, restore 
motor functions, and improve the life quality of patients (8, 9). Despite 
intensive therapeutic efforts during stroke rehabilitation, a relevant 
amount of stroke survivors failed to regain their motor functions that 
are important for activities of daily living completely (10). Therefore 
new/advanced approaches are required to optimize motor functions 
and reduce disability in stroke patients. Based on basic behavioral 
science and neuroscientific knowledge, novel rehabilitative approaches 
have been developed to ameliorate perceptual abilities and improve 
motor functions after stroke in the last few years (11, 12). These novel 
rehabilitative intervention modalities included action observation 
treatment (AOT), non-invasive brain stimulation (NIBS) as well as 
repetitive peripheral electrical or magnetic stimulation (13). These tools 
share features of targeted modulation of central nervous system activity, 
and neuroplasticity induction, and might hereby generate therapeutic 
benefits (11, 14). In this perspective paper, we aimed to discuss how 
combinations with these novel stimulation techniques and approaches 
can be taken as potential rehabilitation methods for stroke patients.

Theoretical background and rationale

Brain structural damage of areas and connections, as well as 
inhibition of the ipsilesional primary motor and sensory cortex 
disrupts functional connectivity of the motor network and impairs 
functional network flexibility after stroke (15). A bimodal balance-
recovery model has been proposed as the mechanism of functional 
recovery after a stroke. The extent of structural reserve of the lesioned 
hemisphere is related to functional reorganization and the involvement 
of the affected hemisphere in motor control (16). The interhemispheric 
competition model dominates in stroke patients with high structural 
reserve (less impairment) (16). Functional neuroimaging studies 
showed a dysbalance of motor cortex excitability in post-stroke, which 
is relative hypo-excitability in the ipsilesional hemisphere and hyper-
excitability in the contralesional hemisphere (16–18). The hyperactive 
contralesional hemisphere inhibits cortical excitability of the 
ipsilesional hemisphere via transcallosal inhibition, and compromises 
motor output (19, 20). Based on the inter-hemispheric competition 
model, upregulating the excitability of the lesioned hemisphere and/or 
downregulating the excitability of the intact hemisphere may facilitate 
recovery in stroke patients (21). In patients with little structural reserve 
(more severe impairment), the vicariation model predicts stroke 
recovery. Activity in the contralesional hemisphere compensates for 

functional loss by the affected hemisphere (16). In this case, instead of 
predicting a worse outcome on the basis of the interhemispheric 
competition model, interhemispheric imbalance facilitates vicarious 
activity of the intact hemisphere, allowing substitutional plasticity (16). 
A recent longitudinal study by Lin et al. has verified this bimodal 
balance recovery hypothesis, indicating that the contralesional 
hemisphere modulates differently across chronic stroke patients with 
different levels of ipsilesional hemisphere reserve (22).

Neuroplasticity is an important physiological foundation for the 
neurorehabilitation of stroke patients. It refers to the life-long ability 
of the central nervous system for reorganization and adaptation, 
which includes strengthening and weakening synaptic connections, as 
well as the formation of new neural pathways. Neuroplasticity is a 
crucial foundation for learning and memory formation, and recovery 
of motor functions after neurological injuries (9). Modifying neural 
circuit function in response to external/environmental stimuli and 
subsequently affecting behavior, cognition, and motor function is a 
crucial property of the mammalian brain (23, 24). Functional plasticity 
and structural plasticity are two types of plasticity mechanisms (25). 
Functional plasticity refers to alterations in the strength of preexisting 
synaptic transmission, whereas structural plasticity incorporates the 
growth and deletion of synaptic connections (23, 25, 26). Synaptic 
plasticity can occur from the ultrastructure level to the brain network 
level along with short- and long-term alternations in Ca2+ dynamics, 
modulation of neurotransmission as well as expression of protein and 
gene (27). Synaptic plasticity is classified into Hebbian and homeostatic 
synaptic plasticity (25, 28). Hebbian synaptic plasticity is a positive 
feedback loop and unrestricted dynamics via strengthening (long-
term potentiation, LTP) or weakening (long-term depression, LTD) of 
synaptic transmission (24, 26, 29). In contrast, homeostatic synaptic 
plasticity is a negative feedback loop and stabilized neural dynamics 
in which synaptic efficacy decreases in the case of high neuronal 
activities and increases when activities are low (25, 30). Animal studies 
largely contributed to our knowledge about physiological plasticity 
mechanisms and led to further investigations of neuroplasticity in 
humans. In the neocortex, studies in animal models demonstrated a 
close association between motor learning and LTP-like plasticity (31–
33). In humans, LTP-like plasticity was explored in the primary motor 
cortex (M1) concerning use-dependent plasticity (34–37), its 
involvement in motor learning (38), and its relevance for compensation 
of motor cortex dysfunctions after brain lesions (39). Post-
transcriptional modifications of pe-existing protein account for LTP 
in the early phase, whereas alternations in the expression of genes and 
protein relate to LTP in the late phase (27). It has been shown that for 
studying the plasticity of the human brain, sensory inputs and 
non-invasive brain stimulation (NIBS) are able to alter respective 
cortical properties such as the strength of neural network connections, 
and movement representations (40, 41). Beyond its relevance to the 
learning formation of the healthy brain, cortical reorganization and 
adaptive plasticity apply to the field of neurorehabilitation (42–44).

Multimodal therapies in rehabilitation

Action observation treatment

Action observation and execution networks were found first in 
macaque monkeys. These networks are based on mirror neurons 
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which are all-important to comprehending the actions of other 
individuals (45). The notion of mirror mechanisms displays that 
individuals observing an action could not only activate an identical or 
similar motor or motor-related cortical network but also automatically 
promote execution and motor skill acquisition in an observer (46, 47). 
Functional neuroimaging studies showed an observation-execution-
dependent cortical network in human brains and revealed the 
overlapping of motor observation and motor execution in some brain 
regions. These networks incorporate M1, the primary somatosensory 
cortex, the ventral premotor cortex, several parietal areas, and the 
inferior frontal gyrus (48–52).

Respective observation-related network activation via observing 
a goal-directed movement of others promotes motor skill learning 
abilities and attainment of observers (53–55). Since long-term 
potentiation-like (LTP) plasticity is elevated by enhanced task-
dependent motor cortex excitability (31, 56), the underlying 
mechanism of acquisition of a new motor skill via action observation 
might include LTP-like plasticity of these specific brain regions and 
network (57–60). Motor cortex activation by action observation might 
thus have the potential to develop into an effective rehabilitative 
strategy. In healthy humans, action observation enhances motor skill 
learning (46, 61–63), and action-related motor capacity with the 
untrained hand (64). AOT, in which action observation followed by 
execution of an identical task, has been used to alleviate motor 
function deficits in patients with neurological disorders (65). A typical 
rehabilitation session of AOT consists of an observation phase and an 
execution phase. A video clip of an actor and an actress performing 
object-directed daily action from different perspectives is presented 
on a computer screen. Specific action can be divided into three to four 
motor acts. Patients need to observe the motor act and execute the 
observed act afterwards (65, 66). In patients with acute ischemic 
stroke, AOT for 10 days facilitates relearning of upper extremity motor 
skills (67). For patients diagnosed with cerebral ischemic or 
hemorrhagic stroke in the subacute phase, AOT potentiated upper 
extremity motor function recovery, improved manual dexterity, and 
increased quality of life (68). AOT for 4 weeks improved upper 
extremity function and daily living performance in chronic stroke 
patients, and AOT of first-person perspective showed more beneficial 
effects in comparison with AOT of third-person perspective (69). 
AOT for 4 weeks has also been shown to promote gait ability in 
chronic stroke patients, and functional AOT was more effective than 
general AOT (70).

Repetitive transcranial magnetic 
stimulation

TMS produces a time-varying magnetic field perpendicular to the 
stimulating coil, inducing electric currents in the cortical tissue 
beneath the scalp, and eliciting action potentials in targeted neuronal 
populations. As a neuromodulatory tool, repetitive TMS (rTMS) 
induces frequency-dependent after-effects. Low-frequency rTMS 
(LF-rTMS, ≤1 Hz) induces a prolonged decrease in cortical excitability, 
whereas high-frequency stimulation (HF-rTMS, ≥5 Hz) enhances 
cortical excitability (10, 71). Theta burst stimulation (TBS) is a subtype 
of rTMS, including intermittent (iTBS) and continuous (cTBS) 
stimulation that enhances and suppresses cortical excitability, 
respectively (72–74). HF-rTMS delivered to M1 concurrent with 

motor learning practice accelerated the rate of motor skill acquisition 
and improved motor performance in healthy individuals (75). It is 
assumed that the effect of this combined intervention is accomplished 
by the induction of LTP-like processes in the motor network, which 
promotes task-specific plasticity (75). In subacute hemorrhagic and 
ischemic stroke patients, delivery of HF-rTMS in the affected 
hemisphere facilitated motor function recovery of the paralytic hand 
(76). HF-rTMS over ipsilesional M1 promoted upper extremity motor 
recovery and daily living ability in acute stroke patients suffering from 
unilateral subcortical infarction in the middle cerebral artery (77). In 
subacute ischemic stroke patients, iTBS over the lesioned M1 prior to 
physiotherapy increased network connectivity between bilateral 
motor areas and M1, which is correlated with grip strength 
improvement (78). Resting-state interhemispheric motor network 
connectivity gradually decreases early after ischemic stroke and 
subsequently re-increases in the progress of motor function recovery 
(79). Application of iTBS facilitates reorganization of the motor 
network and induces neuronal plasticity, contributing to motor 
function recovery (78). It is proposed that HF-rTMS (76) and iTBS 
(78) over the ipsilesional M1 up-regulates the activity of the lesioned 
cortex. LF-rTMS applied over the unaffected motor cortex promoted 
motor function recovery and improved daily living ability in patients 
with cerebral infarction (80). LF-rTMS (80) and cTBS applied over the 
unaffected motor cortex down-regulates the excitability of the 
unaffected hemisphere and alleviates the interhemispheric inhibition 
imposed on the affected side. However, these approaches fail to induce 
beneficial effects in all stroke patients, and individuals respond 
differently to various stimulation parameters (81). 
Sankarasubramanian and co-workers demonstrated that upper limb 
reaching ability was facilitated by HF-rTMS over contralesional dorsal 
premotor cortex rather than standard stimulation approach (LF-rTMS 
over contralesional M1) in severely affected stroke patients (82). 
Therefore, classifying stroke patients into different subgroups (less 
affected vs. more affected) based on bimodal balance-recovery model 
is necessary for designing targeted and effective treatments.

Transcranial electrical stimulation

Some studies showed that transcranial electrical stimulation (tES), 
including transcranial direct current (tDCS), transcranial random 
noise (tRNS), and transcranial alternating current (tACS) stimulation 
can increase the acquisition and retention of motor skills and improve 
motor functions in healthy humans, and rehabilitation (83, 84). These 
intervention tools elicit long-lasting augments or decrements of motor 
cortical excitability, and these effects are dependent on brain state and 
cognitive task performance before and/or during the intervention 
(85, 86).

tDCS modulates motor cortex excitability and/or activity via a 
weak electrical current (87), which de- or hyperpolarizes neuronal 
resting membrane potentials (86, 88). tDCS has a polarity-dependent 
influence on motor cortex excitability and/or activity. When the anode 
is positioned over M1, the amplitude of motor-evoked potentials 
(MEP) is increased (89, 90), whereas cathodal tDCS decreases MEPs 
with standard dosages (89, 91). Dependent on stimulation duration, 
tDCS can induce after-effects, which resemble LTP-like or LTD-like 
plasticity (85, 86, 92). In healthy humans, anodal tDCS over M1 
during task execution improves motor learning (93–96). This effect is 
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likely accomplished via modulation of LTP-like plasticity, and 
enhancement of functional connectivity of respective brain networks 
via anodal tDCS, resulting in motor performance improvement. Some 
studies reported that cathodal tDCS over M1 reduced motor 
performance speed (95, 97), but improved motor learning under 
specific conditions (98, 99). It is proposed that cathodal tDCS 
diminishes cortical excitability (“noise reduction”) via induction of 
LTD-like plasticity, thus focusing cortical activity on the neurons 
relevant to motor learning (93, 98, 99). In patient populations, this 
intervention has the potential to relieve maladaptive neuroplasticity 
and improve the neurophysiological state of the targeted brain regions 
as well as motor functions. The effects of tDCS on stroke patients were 
not consistently reported in different studies. Ojardias and co-authors 
reported that one session of anodal tDCS over ipsilesional M1 had a 
significant beneficial effect on gait endurance in chronic hemiplegic 
patients (100). In chronic ischemic and hemorrhagic stroke patients, 
two sessions of anodal tDCS applied over the lesioned M1 improved 
movement planning and preparation in a standing reaching task 
(101). Likewise, cathodal tDCS can also induce some positive effects 
in patients with stroke. Zimerman and co-works reported that 
cathodal tDCS applied to the non-lesioned M1 facilitated hand motor 
skill acquisition and retention in patients with subcortical ischemic 
stroke (102). Cathodal tDCS positioned over the unaffected motor 
cortex enhanced dual-task gait performance in chronic stroke patients 
(103). Seamon and co-works, however, indicated that neither anodal 
tDCS over the lesioned M1 nor cathodal tDCS over the non-lesioned 
M1 induced any significant effect on walking performance in chronic 
stroke patients (104). The variable effects of tDCS might be due to the 
inherent heterogeneity of the stroke patients, the variability of the 
stimulation parameters and the choice of motor paradigms (105). For 
stroke patients who benefit from tDCS, the interhemispheric 
balancing model has been proposed as the mechanism for motor 
function improvement. Anodal tDCS upregulates ipsilesional cortical 
excitability, improves network connectivity, and leads to alterations in 
interhemispheric balance (10). Cathodal tDCS over the contralesional 
M1 leads to downregulation of the contralesional cortical excitability 
and upregulation of the ipsilesional cortical excitability via reduced 
transcallosal inhibition (10, 106). Restoration of interhemispheric 
balance might be  a relevant mechanism of tDCS-induced motor 
control improvement (107). As heterogeneity exists regarding the 
effect of tDCS on stroke patients, stratifying patients into different 
subgroups according to the etiology, the damage extent, and the phase 
of stroke is required to provide personalized therapeutic interventions.

tRNS is a relatively new neuromodulatory electrical stimulation 
method, which produces a white noise of a Gaussian or bell-shaped 
alternating current from 0.1 Hz to 640 Hz in a full-frequency spectrum 
or between 101 and 640 Hz in a high-frequency spectrum (108). Its 
random electrical oscillation spectrum in a full frequency spectrum 
or a high frequency spectrum applied to specific brain regions 
modulates neuronal membrane potentials, induces neuroplasticity, 
and results in an increase in motor cortex excitability (109–111). 
Proposed mechanisms of action are modulation of the neural signal-
to-noise ratio via stochastic resonance (112, 113), and stimulation 
effects involve voltage-gated sodium channels (114–116). tRNS 
facilitates motor skill acquisition and consolidation in healthy humans 
(111, 117). Regarding the impact of tRNS in neurorehabilitation, 
Hayward and co-authors demonstrated that tRNS over ipsilesional M1 
during reaching training improved clinical motor outcomes in chronic 

stroke patients suffering from severe arm dysfunction (118). tRNS 
combined with the Graded Arm Supplementary Program promoted 
upper extremity motor function recovery in ischemic stroke patients 
in the subacute phase (119). This implied that tRNS can boost 
functional adaptations of cortical tissue (118).

In tACS, another electrical non-invasive brain stimulation 
protocol, weak alternating sinusoidal currents over the cortical target 
region can entrain endogenous brain oscillations at some frequency 
brand (120). tACS enhanced either motor functions or cognitive 
functions via associated brain functions with stimulation frequencies 
matched to the natural dominant rhythm of the underlying brain area 
(121, 122). Antal et al. showed that tACS over M1 promoted motor 
learning in healthy humans (123). Beta-tACS over the lesioned M1 
reduced the variance of sensorimotor beta-oscillations in stroke 
patients (124). With respect to motor rehabilitation, beta-tACS might 
be suitable for facilitating the specificity of brain self-regulation-based 
neurofeedback via interference with endogenous cortical rhythms and 
intrinsic brain oscillations in stroke patients (124).

In the human brain, regions are interconnected in complex 
functional networks, incorporating multiple anatomically remote but 
functionally interlinked areas (125–127). Some studies demonstrated 
that tES modulates brain activity and/or excitability in both local areas 
under the stimulation electrodes and remote interlinked brain regions 
(10, 128). Brain hubs have a critical impact on dynamic interactions 
between brain areas and integrate the information from different brain 
regions of the network (127, 129, 130). The effects of tES involving a 
node or hub of a specific cortical network can spread to functionally 
connected brain areas (128, 131, 132). Due to activity-dependent 
network models, tES-generated cortical activity and/or excitability 
alterations are furthermore sensitive to the specific state of brain 
networks, and dependent on the level of the ongoing activity of the 
stimulated cortical networks (128, 133). A wealth of studies has 
reported that tES can modulate behavior dependent on the neural 
activity level of brain networks involved in a task (98, 99, 134–137).

Repetitive peripheral electrical and 
magnetic stimulation

Beyond non-invasive brain stimulation, peripheral stimulation 
techniques are also explored for their ability to improve 
neurorehabilitation. Non-invasive peripheral stimulation uses external 
devices to generate muscle contractions and sensory afferents that can 
be used in clinical settings to reduce pain and promote recovery of 
sensorimotor functions (138). Successful goal-directed movements 
necessary for interaction with the environment rely on the integration 
of sensory and motor information (139). Stroke is a common 
neurological disorder leading to compromised sensorimotor 
integration (140). Accurate sensorimotor integration of afferent and 
efferent signals in the cerebral cortex contributes to precise motor 
control and efficient action execution, and plays a critical role in 
motor learning. To target sensorimotor integration in stroke patients, 
either enhancement of afferent input to M1 by peripheral electrical 
stimulation (PES) or peripheral magnetic stimulation (PMS) to 
modulate motor output, or reduction of sensory input by temporary 
deafferentation, might be the potential therapeutic interventions (139).

PES activates not only superficial cutaneous receptors but also 
somatosensory nerve fibers (141, 142). PES over a muscle belly or a 

https://doi.org/10.3389/fneur.2023.1156987
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org


Qi et al. 10.3389/fneur.2023.1156987

Frontiers in Neurology 05 frontiersin.org

nerve at motor threshold intensity induces muscle contractions by 
depolarization of motor axons and facilitates motor unit recruitment 
(143). Modulation of afferent input by PES at motor threshold induces 
neuroplastic alternations and organizational changes in the 
sensorimotor cortex, and increases cortical excitability that produces 
adaptations in central motor pathways (144–147). PES over a nerve at 
sensory threshold intensity enhances somatosensory input, improves 
corticomotor excitability (148), facilitates connectivity in sensorimotor 
regions (149), and induces reorganization of cortical maps (150). 
Some studies reported that PES improves motor learning (151), motor 
memory consolidation (152), and inter-limb transfer of motor skills 
(149) in healthy individuals. In stroke patients, PES at motor threshold 
increased wrist range of motion and hand muscle strength, improved 
muscle tone and muscle electrical activity, enhanced functional 
performance of the upper extremity, and promoted daily living 
capacity (153, 154). In patients with subacute and chronic stroke, PES 
at motor threshold decreased muscle spasticity, increased muscle 
strength, facilitated gait performance, and promoted motor function 
recovery of the lower extremity (155, 156). One session of PES at 
sensory threshold reduced muscle spasticity, enhanced muscle 
strength and proprioception, and improved balance and gait ability in 
chronic stroke patients (157–159).

In comparison to PES, PMS is deemed to stimulate deeper tissue 
regions and induce strong muscle contractions for neuromuscular 
stimulation, with less pain, and fewer side effects with respect to 
stimulation of the spinal root, muscle belly, or nerve (160, 161). PMS 
increases peripheral venous blood flow (162), induces muscle 
contractions with minimal cutaneous sensations (138), and reduces 
spasticity and muscle hyperreflexia (163). PMS effects depend on the 
induction of the activity of proprioceptive afferents to the central 
nervous system, which results in modulation of the excitability of 
specific spinal circuits and the motor cortex (142, 164–166). PMS 
improved motor functions in healthy humans (167). In stroke patients, 
PMS can also induce some beneficial effects. It is reported that in 
patients with severe upper extremity paresis during the early acute and 
subacute phase of stroke, PMS prior to standard care promoted upper 
limb functions, improved daily living abilities, and accelerated the 
progress rate of motor function recovery (168, 169). In chronic stroke 
patients with ankle impairment, PMS improved ankle joint mobility 
and muscle strength, increased M1 transsynaptic excitability in the 
contralesional hemisphere, and decreased short-interval intracortical 
inhibition in both hemispheres (170, 171). It is hypothesized that 
proprioceptive afferents generated by PMS reduce GABAergic 
inhibition, and the induction of brain plasticity in the sensorimotor 
cortex may contribute to the increase of muscle strength (171). 
Furthermore, a single session of PMS significantly reduced spasticity 
along with decreased event-related desynchronization of mu rhythm 
in the contralesional hemisphere in subacute or chronic stroke 
patients (172). It is proposed that the reduction of spasticity might 
be  related to cortical activity alternations in the contralesional 
hemisphere (172).

Combined intervention therapies in 
neurorehabilitation

Action observation treatment, transcranial electrical or magnetic 
stimulation, and peripheral electrical or magnetic stimulation are 

important components for the development of new treatment 
methods in the field of neurorehabilitation.

The combined intervention of NIBS and action observation can 
modulate neuroplasticity and motor functions in both healthy and 
stroke patients. Our previous studies showed that tRNS over M1 
paired with mirror-matching action observation enhances 
observation-dependent motor cortex excitability, and then this effect 
promotes execution-dependent motor cortex excitability (137). Some 
studies reported that action observation improves connectivity 
between the ventral premotor cortex and M1, and movement 
execution promotes connections either between the dorsal premotor 
cortex and M1 or the supplementary motor region and M1 (55, 173). 
tRNS and motor observation might have synergistic effects in 
improving cortical excitability via premotor mirror neurons to directly 
and/or indirectly activate M1 neurons. Vice versa, 20 Hz tACS with 
target electrode over the left M1 and return electrode over the 
contralateral supraorbital region during movement observation 
inhibits motor cortex excitability and subsequently inhibits action 
execution-dependent cortical excitability (174). As a 
neurophysiological biomarker of functional reorganization, 
suppression of beta power oscillations is associated with motor 
learning and consolidation (175). These findings indicated that action 
observation combined with TES resulted in changes of task-dependent 
motor cortex activity, which could be  advantageous to prevent 
pathological alterations in stroke sickness (65). In stroke patients with 
ideomotor apraxia, AOT combined with LF-TMS over the intact 
hemisphere increased motor cortex excitability and facilitated the 
recovery of hand motor function (176). LF-TMS over contralesional 
M1 during observation of complex hand movements improved distal 
upper extremity functions in the subacute phase following stroke 
(177). Action observation coupled with PES induced a long-lasting 
increase in primary motor cortex excitability (178) and improved 
spontaneous movement tempo (179) in healthy persons. It is proposed 
that PES paired with action observation might be  a promising 
treatment technique in neurorehabilitation. PES is thought to provide 
movement-related afferent stimulation to consolidate the kinematic 
information learned from action observation and lead to neuroplastic 
adaptations (179).

Some studies explored the effects of transcranial magnetic or 
electrical stimulation combined with peripheral electrical or magnetic 
stimulation techniques in neurorehabilitation. In healthy individuals, 
the effects of combined brain and peripheral stimulation were 
inconsistently reported. Anodal tDCS (1 mA) alone for 5 min 
transiently increased cortical excitability, whereas anodal tDCS paired 
with PES prolonged the facilitating effect for up to 60 min (180). 
Likewise, cathodal tDCS (1 mA) alone for 5 min decreased the cortical 
excitability immediately after the stimulation, and the changes were 
prolonged for up to 60 min when combined with PES (180). The 
proposed mechanism is that anodal tDCS paired with PES induces 
LTP-like plasticity and cathodal tDCS combined with PES evoked 
LTD-like plasticity (180). Schabrun and co-authors, however, failed to 
find any summative effects after concurrent application of 1 mA tDCS 
and peripheral nerve electrical stimulation for 20 min, which might 
be  explained by the homeostatic plasticity mechanism (181). In 
another study, 2 mA anodal tDCS significantly increased MEP 
amplitude, whereas tDCS combined with PES did not induce any 
changes in MEP amplitude, indicating a suppression effect following 
combined stimulation (182). In patients within the first few days 
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following a stroke, anodal tDCS over the ipsilesional M1 coupled with 
PES of the paretic hand for 5 consecutive days promoted hand motor 
function recovery (183). In chronic stroke patients, tDCS over the 
ipsilesional M1 combined with PES prior to motor training 
potentiated the beneficial effects of motor learning beyond levels 
reached with tDCS or PES alone (184). This might be that tDCS paired 
with PES produces additive effects on motor functions through 
different pathways where anodal tDCS depolarizes neuronal 
membrane potential and modulates Glutamate as well as GABA 
concentrations (86, 185), whereas PES modulates GABAergic 
interneurons activity (184, 186). In contrast, Menezes and co-authors 
reported that one session of combined stimulation (PES of the paretic 
arm and tDCS over the ipsilesional M1) prior to motor training did 
not facilitate training effects on range of motion, gasp and pinch 
strength in chronic stroke patients with moderate to severe upper 
extremity motor deficits (187). As discrepancy exists, more studies are 
needed to optimize the simulation parameters to induce the beneficial 
effects of this combined intervention. Paired associative stimulation 
(PAS) modulates motor cortex excitability based on associative LTP/
LTD mechanism governed by Hebbian principles (188–190). When 
PES was applied 10 ms prior to TMS, motor cortex excitability was 
increased (facilitatory PAS), whereas motor cortex excitability was 
inhibited when PES is delivered 25 ms preceding TMS (inhibitory 
PAS) (190). Facilitatory PAS enhanced motor learning in healthy 
humans (191). It is suggested that PAS induces LTP-like plasticity, and 
triggers alterations in synaptogenesis and structure connectivity, 
leading to the facilitation of motor learning (191). Furthermore, 
facilitatory PAS can promote motor functions in stroke patients via 
the upregulation of motor cortex excitability in the ipsilesional 
hemisphere (192). Other forms of associative stimulation, though with 
limited investigations, showed some promise in treating neurological 
diseases. Kumru et al. reported that repetitive TMS at 0.1 Hz combined 
with rPMS at 10 Hz increased motor cortex excitability and reduced 
intracortical inhibition that might be  mediated by GABA-ergic 
inhibition, but repetitive TMS at 0.1 Hz or rPMS at 10 Hz, respectively, 
did not improve motor cortex excitability (193).

Both central and peripheral stimulation protocols modulate 
cortical activity in a state-dependent manner (194–197). The cortical 
activity in action observation and execution network can 
be  modulated by AOT and synchronously central and peripheral 
stimulation techniques. Combined top-down with bottom-up 
stimulation approaches could synergistically modulate cortical 
activity, spinal networks as well as motor unit recruitment in muscle, 
reduce spasticity and muscle hyperreflexia, and develop into physical 
therapy strategies in neurorehabilitation of stroke patients (Figure 1).

Both top-down and bottom-up stimulation techniques have shown 
some promise in promoting stroke recovery. However, as studies vary in 
the extent of the structural reserve, the simulation parameters, the phase 
of stroke, the duration of follow-up, and the outcome measurements, the 
therapeutic efficacy of different simulation techniques are inconsistently 
reported. The existing evidence is insufficient to make clinical 
recommendations in different phases post-stroke, and the way to 
appropriately apply these techniques in the clinical setting remains to 
be clarified. Top-down and bottom-up stimulation combined with AOT 
may have synergistic effects to reach a clinically meaningful level in stroke 
patients, which need to be  investigated in well-designed randomized 
controlled trial studies with prolonged follow-up.

There are a few limitations that should be  mentioned in this 
perspective. First, we did not differentiate the results following the 

time windows post-stroke. The neuromodulating effect of variable 
techniques may change in different stages of stroke. In addition, 
we  did not discuss other neurorehabilitation approaches such as 
mirror therapy, motor imagery and constraint-induced movement 
therapy. Last, we did not include other new forms of neuromodulation 
techniques for instance vagal nerve stimulation and extremely 
low-frequency magnetic fields (11).

Conclusion and future perspectives

Functional recovery after a stroke depends on the extent of 
structural reserve of the lesioned hemisphere. The interhemispheric 
competition model dominates in stroke patients with high structural 
reserve, whereas the vicariation model dominates in those with little 
structural reserve. In line with this bimodal balance-recovery model, 
future studies should explore the effects of (1) anodal tDCS, beta 
tACS, high-frequency tRNS, HF-TMS, or iTBS over the contralesional 
hemisphere combined with PES or PMS of the paretic limbs during 
motor observation followed by motor execution of an identical task 
on subsequent motor execution-dependent motor cortex excitability 
in the stroke patients of the severe lesioned hemisphere; (2) anodal 
tDCS, beta tACS, HF-tRNS or HF-TMS over the lesioned hemisphere 
and cathodal tDCS, LF-TMS, or cTBS over the non-lesioned 
hemisphere combined with PES or PMS of the paretic limbs during 
motor observation followed by motor execution of an identical task 

FIGURE 1

A schematic drawing of the two-stage stimulation model. 
Transcranial electrical or magnetic stimulation during action 
observation in a top-down manner combined with peripheral 
electrical or magnetic stimulation in a bottom-up manner develop 
into valuable physical therapy strategies in neurorehabilitation after 
stroke.
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on subsequent motor execution-dependent motor cortex excitability 
in stroke patients with high structural reserve of the lesioned 
hemisphere. Further research also considers its feasibility for recovery 
of motor functions in upper and lower limbs in stroke patients. The 
combination of these techniques followed by motor execution may 
have a synergic effect to optimize neuroplastic changes and improve 
motor recovery. The task-dependent neuronal network might 
be  efficiently connected when participants observed the 
correspondingly complex movement under the combination 
stimulation techniques, which then promoted task-dependent 
network activity during performance of the identical task. The 
proposed paradigms are an innovative approach and could be an 
adjunctive therapy to potentiate the effect of conventional 
rehabilitation treatment, especially for those patients with severe 
motor deficit. Future studies are required to improve the efficacy of 
the respective interventions, and to validate these results in larger 
multicenter clinical trials.
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