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Multiple sclerosis (MS) is an inflammatory and neurodegenerative disease that 
commonly results in nontraumatic disability in young adults. The characteristic 
pathological hallmark of MS is damage to myelin, oligodendrocytes, and axons. 
Microglia provide continuous surveillance in the CNS microenvironment and 
initiate defensive mechanisms to protect CNS tissue. Additionally, microglia 
participate in neurogenesis, synaptic refinement, and myelin pruning through 
the expression and release of different signaling factors. Continuous activation 
of microglia has been implicated in neurodegenerative disorders. We first review 
the lifetime of microglia, including the origin, differentiation, development, 
and function of microglia. We  then discuss microglia participate in the whole 
processes of remyelination and demyelination, microglial phenotypes in MS, and 
the NF-κB/PI3K-AKT signaling pathway in microglia. The damage to regulatory 
signaling pathways may change the homeostasis of microglia, which would 
accelerate the progression of MS.
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1. Microglia

1.1. The origin of microglia

Microglia were first discovered as a separate cell type by Pío del Río-Hortega in 1919. 
However, the exact origin of microglia remains unclear (1). Recently, an increasing number of 
studies have shown that microglia originate from yolk-sac progenitors during primitive 
hematopoiesis before the formation of bone marrow under homeostatic conditions (2) 
(Figure 1). Indeed, microglia were found in developing mouse embryos on embryonic day (E) 
9.5 (3). On E9.5 of mouse embryonic development, immature A1 and A2 cells are localized on 
the surface of the developing brain. A1 cells began to express CD antigen 45 (CD45). During 
this period, myeloid markers are usually not expressed. Later, A1 cells further develop into A2 
cells (4). Then, A2 cells migrate into the brain and begin expressing myeloid markers. A2 cells 
travel through the cerebral pial into the brain (5). It is presumed that many factors are involved 
in the process of microglial migration. No signaling molecule that can completely block 
microglia from entering the brain has been found (6).

1.2. The differentiation and development of microglia

In particular tissues, macrophages differentiate into different subtypes, such as Langerhans 
cells in the skin, alveolar macrophages, Kupffer cells, and microglia in the brain. Although these 
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macrophages express many shared myeloid- and macrophage-specific 
markers, each tissue-resident population of macrophages have a 
distinct gene expression profile (7, 8). Microglia display specific 
transcriptomes and epigenomes, including transforming growth 
factor-beta (TGF-β), Spi-1 Proto-Oncogene (PU.1), interferon 
regulatory factor 8 (IRF8), and transmembrane protein 119 
(Tmem119).

TGF-β1 signaling is indispensable for microglial survival. It 
is believed that the main downstream effectors of TGF-β signaling 
are small mothers against decapentaplegics (SMADs). In addition 
to controlling the activation state of microglia, TGF-β1 also 
maintains mature microglial homeostasis (9). For example, in 
TGF-β1-deficient mice, adult microglia fail to exhibit typical 
features, carry out their functions, and cannot survive (10). Other 
researchers have found that TGF-β1−/− mice not only  
exhibit neurological defects and marked microglial alterations 
but also do not show the microglia-enriched gene signature 
(11, 12).

PU.1 is the most abundantly expressed erythroblast 
transformation-specific (ETS) transcription factor in microglia in 
both mice and humans (13). PU.1 expression is correlated with 
microglial development and function. Stimulus-dependent 
transcription factors (SDTFs) can induce the activation of enhancer 
profiles, which mediate the response of microglia to injury (14). 
According to recent studies, the knockdown of PU.1 makes microglia 
more susceptible to death (15). In addition, microglial development is 
impaired in mice lacking PU.1 (16).

IRF8 is a heterodimeric partner of PU.1 that can also regulate the 
transcriptional programming governing microglial development (3). 
Studies have proven the existence of a positive feedback loop between 
PU.1 and IRF8. IRF8 and PU.1 directly target reciprocal gene 
transcription (17). PU.1 mediates IRF8 expression by acting directly 
on the IRF8 gene locus. Similarly, IRF8 regulates PU.1 expression 
through one of the upstream regulatory elements (URE) of the PU.1 
locus. During microglial activation, the abovementioned positive 
feedback loops sustain high expression of PU.1 and IRF8.

Tmem119 is also a specific marker of microglia via analyzing 
microglial transcriptome datasets in the physiological CNS (18). 
Unlike other molecules, the function of Tmem119 is still unknown 
(19). Tmem119 was also found to be  expressed in lymph nodes, 
skeletal muscle, and brown adipose tissue (20, 21). Beyond that, 
Tmem119 could not label all microglia (20). Microglia could attenuate 
the expression of Tmem119 under pathological conditions (19). 
Hence, there are some limitations to using Tmem 119.

1.3. The function of microglia in the healthy 
brain

Microglia have attracted increasing attention because of their 
diverse functions. Microglia in the developing CNS and early 
postnatal CNS, together with microglia in the adult brain, 
represent various functional entities. Microglia not only guide 
neurons and axons to form prenatal circuits but also prune 

FIGURE 1

The three stages of microglial maturity. Microglial maturity at three stages: yolk sac precursors (including erythro-myeloid progenitors (EMPs), A1 and 
A2 cells), embryonic microglia, and adult microglia. On embryonic days (E)7.5–8.0, EMPs, which are KIT-positive, lineage marker-negative, can 
be found in the blood islands of the yolk sac. On E9.5, immature A1 and A2 cells are present on the surface of the developing brain. A1 cells begin to 
express CD antigen 45 (CD45); later, these cells develop into A2 cells. A2 cells begin expressing myeloid markers, including CX3C chemokine receptor 
1 (CX3CR1, also called fractalkine receptor), colony-stimulating factor 1 receptor (CSF-1R, CD115), and emerin homolog 1 (EMR1, F4/80). In addition, 
the maturation of microglia is regulated by its endogenous transcription factors, including interferon regulatory factor 8 (IRF8), Runt-related 
transcription factor 1 (RUNX1), and PU.1. Embryonic microglia exhibit an amoeboid morphology without branching. Microglia are completely ramified 
on postnatal day (P)28 and maintain their ramified state until they become adult microglia.
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synapses and regulate synaptic plasticity. Moreover, microglia can 
present antigens and participate in the process of myelination and 
myelin pruning. Hence, microglia play a crucial role in 
maintaining the homeostasis of the developing brain and 
adult brain.

1.3.1. Guidance and support
During prenatal development, microglia are located at the 

crossroads of significant neuronal migratory routes and axonal tract 
pathways, where they guide neurons and axons in forming prenatal 
circuits (22). Microglia participate in neurogenesis through the 
expression and release of signaling factors that impact the development 
and health of neurons, phagocytosing neural progenitor cells (NPCs) 
in the brain. Microglia also phagocytose growing axons during early 
brain development to regulate their growth, which helps shape new 
brain structures (6).

1.3.2. Synaptic pruning
The classical complement cascade, which involves C3, C1q, and 

CR3 reside, is known to play a key role in synaptic pruning in the 
brain. C1q activates the cascade, and then C3 coats the offenders 
and attracts receptor 3 (CR3; a heterodimer of CD11b) to tag 
“weaker” synapses. Depletion of any critical players in this cascade 
(C1q, C3, or CR3) increases the number of synapses (23). Synaptic 
pruning is also regulated by the CX3CL1-CX3CR1 signaling 
pathway. In CX3CR1-deficient mice, synaptic pruning is impaired 
to some extent (24).

1.3.3. Synaptic plasticity
Microglia mediate synaptic refinement in the postnatal brain (25). 

Microglia-induced synaptic plasticity is dependent on BDNF 
secretion, which increases the phosphorylation of neuronal 
tropomyosin kinase receptor type B (TrkB) (26). BDNF-TrkB 
signaling is involved in long-term potentiation (LTP) induction, 
which is the principal mechanism of synaptic plasticity (27). Changes 
in the number of synapses can also cause changes in synaptic plasticity, 
so synaptic pruning is also crucial for the regulation of synaptic 
plasticity (28).

1.3.4. Antigen presentation
It has been suggested that microglia are the primary antigen-

presenting cells (APCs) in the CNS (29). Major histocompatibility 
complex (MHC) molecules are expressed at low levels in microglia 
(30). Under steady state conditions, MHC molecules are responsible 
for antigen presentation. Adult microglia also express genes associated 
with surveillance and the immune response, so they can constantly 
monitor the external environment. After stimulation, microglia can 
express de novo MHC and are able to develop into APCs (31).

1.3.5. Myelination and myelin pruning
In addition to these important functions, microglia secrete growth 

factors and support oligodendrocyte progenitor cells (OPC) and 
oligodendrocytes. Therefore, microglia can promote myelination 
under steady-state conditions. Under pathological conditions (for 
example, in MS), microglia also participate in the process of 
remyelination and demyelination. During the normal aging process, 
they also phagocytose excess myelin sheaths, which is called myelin 
pruning (23).

2. Microglia in multiple sclerosis

MS is the most common nontraumatic disabling disease among 
young adults (32). Additionally, MS is an inflammatory and 
neurodegenerative disease of the brain and spinal cord, and the 
characteristic pathological hallmark of MS is the loss of myelin, 
oligodendrocytes, and axons (33). Relapse remitting MS (RRMS), 
which accounts for 80–90% of MS cases, begins with episodes of 
neurological disorders and then partial or complete remission (34). 
Upon aging, patients with RRMS develop secondary progressive 
multiple sclerosis (SPMS) with fewer remissions and increasing 
clinical deterioration (35). Only 15% of MS patients have primary 
progressive MS (PPMS), which involves a steady and progressive loss 
of neurological function from the onset of the disease (36, 37). 
Progressive relapsing MS (PRMS) is the most uncommon form of MS, 
affecting approximately 5% of MS patients, and is characterized by a 
steady decline in health with unexpected spikes of deterioration and 
recovery (38). Although the clinical characteristics of MS are clear, the 
pathology of MS is a dynamic and continuous process (39).

Microglia provide continuous surveillance of the CNS 
microenvironment and initiate defense mechanisms to protect CNS 
tissue. Oligodendrocytes, the myelinating cells of the CNS (40), are 
often targets of autoimmune pathology during MS progression (41). 
There is emerging evidence that microglia actively contribute to 
inflammation that directly and indirectly contributes to 
neurodegeneration. Microglia are highly dynamic, so they can 
recognize changes in the cerebral parenchyma with their highly motile 
processes (2, 42). Microglia often keep a specific ramified morphology 
in healthy adult brain tissue. As soon as signs of injury, such as 
inflammation or tissue injury, are detected, microglia rapidly move 
toward the lesion site and transition into an activated state (43–45). 
Continued activation of microglia drives neuroinflammation and 
neurodegeneration (46).

2.1. Demyelination and myelin 
regeneration in MS: microglia and OPC

Myelin sheaths are generated by oligodendrocytes and wrap 
around axons (47, 48). As mentioned above, the characteristic 
pathological hallmark of MS is the loss of myelin, oligodendrocytes, 
and axons. Remyelination refers to the restoration of the myelin 
sheath around denuded axons (49) and is activated by the recruitment 
and differentiation of OPC (50). After migrating to the CNS, OPC 
adopt a premyelinating phenotype (preoligodendrocyes) and can wrap 
around axons. However, preoligodendrocytes are unable to form 
mature myelin. The expression of myelin basic protein (MBP) and 
myelin oligodendrocyte glycoprotein (MOG) indicates the 
development of mature oligodendrocytes (51). Mature 
oligodendrocytes contact and wrap neuronal axons with myelin while 
being connected to surviving myelin sheaths (52). While a substantial 
number of OPC are found in and around MS lesions, OPC recruitment 
and the differentiation of OPC into mature myelinating 
oligodendrocytes are impaired (53). Remyelination becomes less 
efficient as patients grow older and lesions become more chronic (50, 
54). According to a number of studies, the development of OPC and 
oligodendrocytes is affected by protein products expressed by 
microglia (6, 55). For instance, microglia-conditioned medium 
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increases the expression of platelet-derived growth factor (PDGF), 
vascular endothelial growth factor (VEGF), and insulin-like growth 
factor 1 (IGF-1), which promote the survival and maturation of OPC.

Microglia are involved in both the de and remyelination phases of 
MS (Figure 2). From the onset of demyelination, microglia provide a 
favorable environment for myelin regeneration (56), recruiting new 
OPC, providing trophic support, repairing damaged tissue, and 
clearing debris (57). In the surrounding MS lesions, microglia express 
Semaphorin-3F (SEMA3F), which can attract OPC to damaged areas 
(58). Apart from that, studies have also found that microglia express 
6,200 genes, including the upregulated genes Lrp1, Calr, CXCL10, 
CXCL13, Pdgfa, Pdgfb, Vegfa, Vegfb, TGF-β1, MMP12, and MMP14, 
in the cuprizone-induced demyelination model. These upregulated 
genes are involved in phagocytosing apoptotic cells and debris, 
recruiting OPC, and supporting oligodendrocyte remyelination, 
differentiation, and tissue remodeling (59). Microglia have been 
proven to be  fundamental for remyelination (60). To evaluate the 
effect of microglia on myelination, researchers examined the 
myelination of oligodendrocytes in larvae lacking microglia. IRF8 and 
CSF-1R are necessary for microglial development (3, 61). To eliminate 
microglia in the early stages of development, researchers used an 

antisense morpholino oligonucleotide designed to block the 
translation of IRF8 messenger RNA and a CSF-1R inhibitor that was 
used previously in larval zebrafish (62). Under these conditions, 
oligodendrocytes exhibited more sheaths (23). Myelin debris inhibits 
OPC differentiation, which markedly affects remyelination (63). In 
CX3CR1 gene knockout mice, phagocytosis of microglia is 
dramatically reduced after treatment with cuprizone, resulting in the 
persistence of myelin debris and inhibition of proper remyelination 
due to impaired OPC recruitment (60, 64, 65). Phagocytosis of myelin 
debris by microglia is essential for the initiation of lesion repair (66). 
Triggering receptor expressed on myeloid cells (TREM2), which is 
expressed on the cell surface and binds polyanions, thus activating 
downstream signaling cascades through the adapter DAP12 (also 
called TYRO protein tyrosine kinase binding protein) (67), has been 
found to be related to phagocytosis (68). In Trem2−/− mice, clearance 
of myelin debris and axonal support are impaired, the number of 
oligodendrocytes is increased, and inflammatory mediators are 
expressed after long-term cuprizone treatment, resulting in persistent 
demyelination (69). Moreover, myelin interacts with microglial MER 
proto-oncogene tyrosine kinase (MERTK). MERTK is indispensable 
for myelin phagocytosis (65). In vitro studies have shown that 

FIGURE 2

Demyelination and myelin regeneration in MS. A: Microglia can express platelet-derived growth factor (PDGF), vascular endothelial growth factor 
(VEGF), insulin-like growth factor 1 (IGF-1), CXCL10, CXCL3, TGF-β1, MMP12, and MMP14, which promote the survival and maturation of OPC and 
supporting oligodendrocyte remyelination. Myelin debris inhibits OPC differentiation, which markedly affects remyelination. From the onset of 
demyelination, microglia provide a favorable environment for clearing debris. The brain-derived neurotrophic factor (BDNF), CX3CR1, CX3CL1, and 
C3R are involved in this process. B: C1qa, interleukin-ɑ (IL-ɑ), and Tumor necrosis factor (TNF) secreted by microglia, which could increase the 
reactivity of astrocytes. Interleukin-1β (IL-1β) secreted by microglia, can activate astrocytes and allow the astrocytes to produce leukemia inhibitory 
factor (LIF). LIF can promote the differentiation of OPC into mature myelinating oligodendrocytes and relieve demyelination. Microglia are also 
recruited by astrocytes to the demyelinating lesions, which ensures the smooth process of phagocytosis. C: Encephalitogenic T cells might produce 
cytokines that directly activate microglia. Activated microglia are the principal source of CC and CXC-chemokines, such as CCL5. CCL5 promotes the 
activation and secretion of metalloproteinase-9 (MMP-9) in human microglia, which is in connection with the degradation of myelin proteins. Microglia 
also have a great ability to phagocytose apoptotic encephalitogenic T cells, which can influence the chemoattractive milieu.
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microglia stimulated with TGF-β express increased MERTK receptors, 
which have a good ability to clear myelin debris (70). A series of 
studies revealed the multiple mechanisms by which microglia exert 
beneficial effects on OPC survival and maturation (71).

2.2. Demyelination and myelin 
regeneration in MS: microglia and 
astrocytes

Classically, active MS lesions are highly inflammatory, showing 
infiltration of many lymphocytes, including CD8+ T cells, CD20+ B 
cells, macrophages, and CD4+ T cells (33, 72). In addition, resident 
cells of the CNS, including activated microglia and reactive astrocytes, 
are present in MS lesions (73). These infiltrating cells produce a large 
number of cytokines and other inflammatory factors that contribute 
to myelin destruction and axonal degradation. The degree of myelin 
regeneration depends on the severity of the disease. Microglia have an 
effect on the function of astrocytes (Figure  2). Researchers have 
discovered that microglia are indispensable for the activation of 
astrocytes by using cuprizone (CPZ)-induced mouse models of 
demyelination and remyelination (74). In mice that knock out 
cytokines secreted by microglia, including C1qa, interleukin-ɑ (IL-ɑ), 
and Tumor necrosis factor (TNF), the reactivity of astrocytes was 
reduced (75). Interleukin-1β (IL-1β) secreted by microglia, can 
activate astrocytes and allow the astrocytes to produce leukemia 
inhibitory factor (LIF) (76). LIF can promote the differentiation of 
OPC into mature myelinating oligodendrocytes and relieve 
demyelination in an animal model of multiple sclerosis (77). In further 
experiments, researchers have found astrocytes are also involved in 
the process of myelin debris removal (75). Microglia are recruited by 
astrocytes to the demyelinating lesions, which ensures the smooth 
process of phagocytosis (78). When the process is broken, OPC do not 
mature properly, resulting in the failure of remyelination. In MS, 
microglia participate in the whole processes of remyelination and 
demyelination (Figure 2).

2.3. Microglia and T cells interactions in MS

T lymphocytes are the basic organizers of most autoimmune 
responses, including MS (Figure 2). In MS, the encephalitogenic T 
cells might produce cytokines that directly activate microglia or 
through inducing the cerebral tissue damage indirectly activate 
microglia (79). Eugene D. Ponomarev first discovered that microglial 
activation in the CNS takes precedence over the appearance of 
neurological impairment symptoms in EAE and the peripheral 
macrophage cells flow over into the CNS, which further explains the 
activation of encephalitogenic T cells are necessary to the EAE onset 
(80). Activated microglia are the principal source of CC and 
CXC-chemokines, such as CCL2, CCL3, CCL4, CCL5, CCL12, and 
CX3CL1 (81). All of chemokines’ biological effects are performed by 
binding ligands to receptors. Chemokines play the main role in 
immunity and inflammation in MS. They attract the migration of 
pathogenic cells, interfering immune regulation of T-lymphocytes 
(82). Moreover, CCL5 promotes the activation and secretion of 
metalloproteinase-9 (MMP-9) in human microglia (83). MMP-9 is not 
only involved in the process of leukocyte extravasation but also in 

connection with the degradation of myelin proteins (84). Microglia 
also have a great ability to phagocytose apoptotic cells in the CNS, 
including encephalitogenic T cells, which can influence the 
chemoattractive milieu (85). Therefore, microglia may further disturb 
encephalitogenic T cells recruitment.

2.4. Paramagnetic rim lesions in MS

In MS, the white matter lesions are classified into active, inactive, 
and remyelinated lesions according to the distribution of inflammatory 
cells and the severity of demyelination (86). Slowly expanding chronic 
active lesions (CALs) mainly happen to those who occur 10 years after 
onset and CALs were seen more often in progressive MS than in 
relapsing disease (87). The paramagnetic rim lesions (PRLs) have been 
considered diagnostic MS biomarkers, which identify the CALs (88). 
Histological analysis has shown that PRLs correspond with iron-laden 
active microglia at the edges of CALs and indicate compartmentalized 
inflammation (89–91). When oligodendrocytes and myelin were 
damaged, microglia could phagocytose the iron released in the cells 
and the iron-laden microglia occurred at the MS lesions (92). 
Neuroimaging studies have revealed that the patients with progressive 
disease, compared to the patients with relapsing disease, have more 
rate of PRLs (93, 94). The clinical correlation about PRLs and more 
serious neurological impairments, is a more complex course. PRLs 
tend to the extent of involved lesions expanding 2 percent annually, 
according to a recent study on a new study on PRLs at 3-T MRI (93).

2.5. Microglial phenotypes in multiple 
sclerosis

As noted above, microglia have different functions in the 
embryonic, early postnatal, and adult stages and are multifunctional 
cells. Functional plasticity allows activated microglia to be polarized 
to either the M1 (pro-inflammatory) phenotype or the M2 (anti-
inflammatory) phenotype (95). M1 microglia secrete 
pro-inflammatory mediators and oxidative compounds, including 
IL-1, IL-12, IL-23, Iba-1, CD68, IL-1β, TNF-α, and nitric oxide (NO). 
Additionally, MHC class II, costimulatory molecules, Fc receptors, 
and integrins are expressed in M1 microglia. Eventually, M1 microglia 
become cytotoxic and promote inflammation (67, 96, 97). In contrast, 
M2 microglia can promote tissue repair by releasing anti-inflammatory 
mediators such as IL-4, IL-10, and IL-13 and upregulating the 
expression of the M2 markers CD206 and arginase 1 (Arg1) (98). M2 
microglia also secrete growth factors and neurotrophic factors, such 
as IGF-I, CSF1, nerve growth factor (NGF), BDNF, neurotrophin 
(NT)4/5, and glial cell-derived neurotrophic factor (GDNF).

Microglia are able to switch between the pro-inflammatory and 
anti-inflammatory states to maintain tissue homeostasis in response 
to the environment (99). In the experimental autoimmune 
encephalomyelitis (EAE) model of multiple sclerosis, both M1 and M2 
microglia play vital roles in remyelination (51). In early demyelination, 
the M1 phenotype predominates, while M2 microglia are more 
abundant in later stages. It has been discovered that M2 microglia 
drive oligodendrocytes differentiation and remyelination. When 
remyelination starts, M1 microglia obviously transform into anti-
inflammatory microglia. When remyelination is efficient, the M2 
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number is increased. Furthermore, M2 microglia-conditioned 
medium promotes the differentiation of oligodendrocytes, while the 
M1-conditioned medium inhibits this process (100). Despite this, 
microglial activation is not a simple dichotomy but is part of a 
spectrum of functional states (3). Emerging evidence suggests that the 
concept of M1/M2 microglia polarization may be outdated. In fact, 
transcriptome studies have shown that microglial activation is varied 
and context dependent (22).

Furthermore, according to their morphological 
characteristics, microglia can be divided into four types. These 
include what are known as ramified (micro somata but long 
ramifications), amoeboid (ramifications shorter, the cell somata 
larger), and phagocytic (no ramifications, just a rounded cell) 
(101). And dystrophic microglia are another cellular phenotype 
of microglia, which was considered to be one form of aging in 
microglia (102). Dystrophic microglia are rich among old people, 
and more and more recent studies discovered it also has been 
relationship to neurodegenerative diseases (103), such as MS. The 
morphology of dystrophic microglia is very different from 
hypertrophic microglia. They are characterized by fragmentation 
of cytoplasm, serious deformities of mitochondria, and distal 
branches becoming thinner (104). Research has suggested while 
M2 microglia play a protective role for CNS, finally they can 
convert to a dystrophic state (105). Dystrophic microglia produce 
more inflammatory mediators and loss the function of 
neuroprotection, which cause the disease to become worse (106).

As alluded to above, microglial activation is not a simple 
dichotomy. The whole-genome transcriptomics and unbiased 
proteomics studies have clarified problems associated with the 
microglial polarization response. The mixed phenotypes 
(intermediate phenotypes) have M1 and M2 markers at the same 
time, which occurs mainly in aging and various pathologic 
conditions, meaning M1 and M2 represent part of a spectrum of 
various activation phenotypes (107, 108). Even though an 
increasing number of people have realized that such a simplistic 
dichotomy (M1/M2) could not completely represent the complex 
phenotypes of microglia in vivo, this classification is important 
to the development of PET tracer (109). Under the circumstances, 
we  interpret the M1 (pro-inflammatory) in connection with 
neurotoxic functions and the M2 (anti-inflammatory) involved 
in recovery and reduce harmful effects.

2.6. The PI3K-AKT pathway in microglia 
may be involved in MS

In MS, signal transduction pathway abnormalities in microglia 
may be the main causes of microglial activation and exacerbation of 
neuroimmune responses. Studies have demonstrated that the 
phosphatidylinositol 3-kinase (PI3K) and protein kinase B (AKT, also 
commonly known as protein kinase B (PKB)) signaling pathways play 
a crucial role in the modulating microglial activity and inflammatory 
responses (110). The PI3K-AKT pathway regulates cellular activities 
such as neuronal cell proliferation, migration, and plasticity. 
PI3K-AKT signaling in the brain seems to be  closely related to 
microglial activity and activation. An increasing number of studies 
have shown that aberrant PI3K-AKT signaling participates in 
neurodegeneration and neuroinflammatory diseases (111).

Microglia express many key regulatory receptors that activate 
the PI3K-Akt pathway (112). As one of the first lines of immune 
defense, microglia express a number of different toll-like 
receptors (TLRs), including TLR2, TLR3, TLR4, TLR5, TLR7, and 
TLR9, on their surface (41). Among TLRs, TLR4 is an important 
receptor that mediates the inflammatory response and can 
interact with various immune stimulants. TLR4, which interacts 
with lipopolysaccharide (LPS), delivers downstream signals 
through myeloid differentiation primary response 88 (MyD88). 
Then, MyD88 phosphorylates tyrosine residues. Several studies 
have provided evidence that PI3K-AKT signaling is required for 
LPS-TLR4-dependent activation of microglia (113). Increased 
expression of TLR4 or constant TLR4 stimulation can lead to the 
subsequent activation of PI3K-AKT. PI3K is recruited via its p85 
domain, which leads to downstream signal activation (114, 115). 
In this setting, microglia are constantly activated, and 
neuroinflammation is perpetuated. Increased TLR4 expression 
on microglia suppresses their polarization toward the anti-
inflammatory phenotype and simultaneously prolongs the 
microglia-mediated proinflammatory response (116). In the 
brain, CSF-1R is primarily expressed by microglia (117). Contact 
of the CSF-1R receptor with microglia leads to oligomerization 
and the phosphorylation of its tyrosine residues, which are 
indispensable for PI3K recruitment (118). When expressed at 
high levels, CSF-1R and CSF-1 are considered mediators of 
demyelination in progressive MS, which exacerbates 
neuroinflammation due to the survival and constant proliferation 
of microglia (119). Furthermore, CX3CR1 activates the 
PI3K-AKT signaling pathway in a dose-dependent manner (51). 
CX3CR1 is a gene that is highly expressed in microglia. In 
summary, abnormal expression of TLR-4, CSF-1R, and CX3CR1 
leads to aberrant PI3K-AKT signaling and impairs brain 
development, thus promoting the onset of neurodegenerative 
diseases such as MS.

Currently, the role of PI3K-AKT signaling in 
neuroimmunology is still incompletely understood. The 
PI3K-AKT pathway regulates microglia in response to various 
extracellular stimuli. It plays an important role in activating 
microglia to produce proinflammatory mediators after 
stimulation (110). Researchers have found the lipophilic amino 
alcohol 4b can attenuate the pathogenesis of EAE by inhibiting 
the PI3K-AKT pathway (120). The emodin also has therapeutic 
effect on EAE mice, which can down-regulate the expression of 
phosphorylated (p)-PI3K, p-Akt and further inhibit microglia 
activation and inflammation (121). However, the PI3K-AKT 
pathway may also play a neuroprotective role in different 
diseases. Researchers have also confirmed that PI3K-AKT 
pathway activation is important for oligodendrocytes survival 
and axonal myelination in the EAE model (122).

2.7. The NF-κB signaling pathway in 
microglia may be involved in MS

Another signaling pathway associated with MS is the nuclear 
factor-κB (NF-κB) signaling pathway. The NF-κB, expressed by many 
cells such as microglia, neurons, and astrocytes, plays a strong part in 
inflammation and immunity (123). The NF-κB signaling system is 
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controlled by three interacting parts: NF-κB dimers, an inhibitor of 
NF-κB (IκB) regulators, and IkappaB kinase (IKK) complexes (124).

The activation of NF-κB is regulated by the canonical and 
non-canonical pathways. The canonical pathway can be activated by 
all kinds of stimuli, including cytokines, a number of pathogens, and 
different types of stress, which regulate proinflammatory gene 
expression (125). The non-canonical pathway was mainly activated by 
the TNF receptor superfamily members (126). This pathway 
contributed to maintaining immune homeostasis by participating in 
the development of the lymphoid tissues and various immune cells 
under healthy physiological conditions (126). In microglia, the 
pathway can be  activated Fas ligand after the combination with 
TNF-α (126).

In MS, the activation of NF-κB in microglia is a reaction to 
injury to the CNS. Activated NF-κB leads to a cascade of signaling 
events, including the production of IL-1, which promotes microglia 
generating more proinflammatory cytokines, nitric oxide (NO), and 
neurotoxic reactive oxygen species (127). These cause a prominent 
toxic effect on the nervous system and exacerbate neuronal 
degeneration. Under the stimulation of pathology, the largest group 
of activated NF-κB form in the canonical pathway is the RelA: p50 
(p65: p50) heterodimer, which plays a significant role in chronic 
inflammatory disease and neurodegenerative pathologies such as 
MS (125). Some compounds widespread in nature and some kinds 
of suppressors of cytokine signaling, perform a beneficial role in the 
treatment of EAE by downregulating NF-κB p65 signaling. 
Belinostat, the inhibitor of histone deacetylase, can meliorate 
symptoms of EAE through the downregulation of NF-κB p65 
protein expression (128). Matrine (MAT), naturally present in 
Sophora flavescens, also alleviates the condition of EAE. MAT 
downregulates NF-κB p65 Phosphorylation, which also happened 
during the treatment courses of EAE (129). In LPS-induced 
microglia, the high-density lipoprotein (HDL) could significantly 
reduce the expression of TLR4 and NF-κB p65 (130). And in EAE, 
HDL could alleviate the soakage of inflammation cells in the spinal 
cord and brain, reducing the ratio of M1 microglia (130). Microglia 
also influence the development of EAE by regulating the 
noncanonical NF-κB pathway. Research showed that the 
noncanonical NF-kB pathway in microglia can interact with T cell-
derived cytokine, which can accelerate the process of MS (131). 
Therefore, it has been a long-awaited goal to treat MS by directly 
targeting NF-κB pathway activation.

3. Conclusion

It is well known that remyelination failure is a significant challenge 
in the treatment of MS. Microglia, which are involved in myelin 
regeneration and play versatile roles in the pathogenesis of 
neuroinflammation and neurodegeneration, may be key therapeutic 
targets for diseases. Further studies are needed to better elucidate the 
precise roles of microglia in diseases and identify new therapeutic 
options that not only prevent new damage but also restore 
lost function.
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