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Atherosclerosis is an important cause of cerebrovascular and cardiovascular 
disease (CVD). Lipid infiltration, inflammation, and altered vascular stress are the 
critical mechanisms that cause atherosclerotic plaque formation. The hallmarks 
of the progression of atherosclerosis include plaque ulceration, rupture, 
neovascularization, and intraplaque hemorrhage, all of which are closely associated 
with the occurrence of CVD. Assessing the severity of atherosclerosis and plaque 
vulnerability is crucial for the prevention and treatment of CVD. Integrating 
imaging techniques for evaluating the characteristics of atherosclerotic plaques 
with computer simulations yields insights into plaque inflammation levels, spatial 
morphology, and intravascular stress distribution, resulting in a more realistic 
and accurate estimation of plaque state. Here, we review the characteristics and 
advancing techniques used to analyze intracranial and extracranial atherosclerotic 
plaques to provide a comprehensive understanding of atheroma.
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1. Introduction

Cerebrovascular and cardiovascular disease (CVD) is a worldwide public health challenge 
and a major cause of morbidity, mortality, and economic burden. Vascular events, such as 
myocardial infarction and ischemic stroke, severely impair quality of life and are life-threatening. 
Atherosclerosis is a major contributor to the development of CVD (1). Although the incidence 
of cardiovascular events related to atherosclerosis can be effectively reduced by approximately 
50% through lipid level control, the ongoing risk of plaque events remains a significant 
concern (2).

The two main characteristics of atherosclerosis are increased plasma low-density lipoprotein 
(LDL) levels and vascular wall inflammation (3). Atheromatous plaques are formed gradually 
by the deposition of lipids into the subintima of arteries, with the participation of vascular 
smooth muscle cells (VSMCs) and macrophages (4). Vulnerable plaques exhibit notable features 
such as elevated inflammation, neovascularization, intraplaque hemorrhage (IPH), a large lipid 
core, and a thin fibrous cap (5).

A comprehensive scientific evaluation of atherosclerosis is crucial for preventing CVD. The 
progression of atherosclerosis is accompanied by plaque formation and vascular remodeling. 
The analysis of various types of plaque characteristics and vascular hemodynamics provides a 
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basis for identifying at-risk plaques and guiding interventions. 
Conventional imaging methods, including computed tomography 
(CT), magnetic resonance imaging (MRI), and ultrasonography, are 
currently used to determine various plaque characteristics from 
different perspectives. However, these methods only provide a cross-
sectional snapshot of the current state, disregarding essential 
properties known to be critical determinants of future risk. To address 
these challenges, emerging invasive and noninvasive imaging 
techniques, including intravascular ultrasound (IVUS), optical 
coherence tomography (OCT), and near-infrared spectroscopy 
(NIRS), are gaining prominence. Each of these methods provides 
unique insights into the various aspects of plaque composition. 
Consequently, our objective was to comprehensively review the 
physical characteristics of plaques and the methods employed for their 
assessment with the aim of enhancing our understanding of their role 
in atherosclerosis and CVD.

2. Characteristics of atheroma

2.1. Pathophysiology of atherosclerosis

Atherosclerosis is a chronic inflammatory disease in which 
changes in wall shear stress (WSS) and LDL infiltration are pivotal 
factors. WSS refers to the tangential force exerted by blood on the 
vessel wall as it flows parallel to the direction of blood flow (6). Under 
physiological conditions, WSS promotes endothelial cell (EC) growth 
and inhibits the expression of inflammatory factors and inflammation-
related pathways (7, 8). The accumulation of lipids and foam cells in 
the subintima disrupts the fluidity of the vessel wall, resulting in 
turbulent flow and subsequent alterations in WSS (9). These alterations 
in WSS have detrimental effects on ECs, including impaired function 
and compromised integrity of the arterial intima (10, 11).

In the initial phases of subintimal lipid deposition and 
accumulation of atheromatous substances, compensatory vascular 
mechanisms prevent luminal narrowing. However, when the growth 
of atherosclerotic plaques exceeds the compensatory capacity of the 
vessels, it leads to alterations in hemodynamics within the plaque and 
vascular structure (12). Protrusion of the plaque into blood vessels 
results in narrowing of the lumen diameter, disturbing blood flow 
downstream of the plaque. Consequently, an area characterized by a 
low WSS and high oscillatory vascular stress is established, promoting 
the persistent growth of atherosclerotic plaques (13, 14). Conversely, 
regions with higher WSS may exhibit a correlation with plaque 
regression. Lan et al. demonstrated a significant association between 
the total area of the high WSS region encompassing the stenotic lesion 
and the area of the high WSS region proximal to the lesion with 
regression of symptomatic intracranial atherosclerotic plaques (15).

Within the subintima, LDL infiltrates and undergoes gradual 
oxidation as it lacks sufficient protection from antioxidants (16). 
Oxidized low-density lipoprotein (ox-LDL), formed by LDL in the 
presence of oxides such as reactive oxygen species, is a strong ligand 
for macrophage scavenger receptors (cluster of differentiation (CD) 
36, SR-AI/II, and SR-BI), contributing to their uptake into 
macrophages (17). Furthermore, ox-LDL promotes smooth muscle 
cell migration from the tunica media (via platelet-driven growth 
factor and basic fibroblast growth factor) to sites of lipid deposition 
and abnormal proliferation (via insulin-like growth factor 1 and 

epidermal growth factor), which involves the secretion of extracellular 
matrix proteins (17, 18). Macrophage-like VSMCs also play a crucial 
role in facilitating the phagocytic clearance of ox-LDL and contribute 
to the formation of foam cell-like VSMCs that strongly associate with 
the lipid core (19). This combination of factors results in the 
progressive formation and development of a necrotic core of the 
plaque (Figure 1).

The dynamic equilibrium between plaque regression and 
progression is influenced by various biological processes, including 
inflammation, cell death, extracellular matrix degradation, and 
connective tissue repair responses. Plaque regression usually results 
from reduced plaque lipid content, LDL levels, and inflammatory 
status (20, 21). When lipid-lowering therapy reduced LDL levels to 
less than 70 mg/dL, investigators observed a reduction in the plaque 
lipid core area and significant plaque regression (22, 23). The classic 
lipid-lower statins not only inhibit LDL synthesis but may also 
promote the polarization of M2-like macrophages (24). M2-like 
macrophages accumulate at the sites of injury and release mediators 
that suppress inflammation in plaques, clear apoptotic cells, and 
promote tissue repair (25). It’s worth noting that Faisel et al. discovered 
that plaque regression in the carotid artery was commonly observed 
in larger plaques with fewer fibrotic characteristics, which indicate 
that plaque remission may not necessarily correspond to reduced 
cardiovascular risk (26).

2.2. Features of culprit plaques

The risk of different plaque events progressively increases as lipids 
and atheromatous material accumulate in the subintimal region. 
Disease progression is significantly influenced by plaque erosion, 
rupture, thrombosis, neovascularization, and IPH.

Neovascularization is characterized by immature blood vessels 
with sparse or even absent VSMCs and a lack of tight junctions 
between ECs, resulting in leakage of blood components from the 
vessels (27, 28). Hypoxic conditions within the plaque stimulate the 
release of vascular endothelial growth factor, promoting 
neovascularization, elevating microvessel density, and disrupting 
vascular organization (29). Moreover, in advanced atherosclerotic 
lesions, matrix metalloproteinase (MMP)-9 and plasma 
myeloperoxidase play a crucial role in promoting oxidation and 
inflammation, which consequently result in the degradation of the 
fibrous cap and compromises the stability of plaques. These factors 
ultimately facilitate the formation of IPH and infiltration of blood 
cells, which further promote plaque rupture. Zhao et al. reported that 
IPH was independently associated with a significant increase in lipid 
core volume (percentage difference in relative lipid core volume 
change: 50.3%/year, 95% CI: 19.4, 89.2, p < 0.001) and plaques with 
IPH had a greater decrease in lumen area than plaques without IPH 
(mean: −0.4 ± 0.9 versus 0.3 ± 1.4 mm2/year, p = 0.033) (30). This 
suggests that plaques with IPH undergo a transition into vulnerable 
plaques. After correcting for traditional risk factors, plaque load, and 
volume of the lipid-rich necrotic core, IPH volume remained 
significantly associated with the risk of acute ischemic stroke on the 
ipsilateral side (31). Bos et al. also observed a higher risk of stroke in 
patients with carotid IPH (32).

Plaque erosion, although milder than plaque rupture, is also 
associated with plaque stability. It disrupts the structural integrity of 
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the fibrous cap of the plaque, leading to the exposure of its contents to 
the bloodstream. Consequently, plaque erosion often coincides with 
thrombotic-like plaque rupture. Upon analyzing OCT images of 115 
patients with acute coronary syndrome, Kato et al. found that plaque 
erosion may already be present in early atherosclerosis (33). Patients 
with plaque erosion showed less positive vascular remodeling and 
neovascularization, indicating that plaque erosion is an early warning 
sign of plaque rupture [(34); Figure 2, left panel].

Disruption of calcium and phosphorus homeostasis occurs in 
foam and smooth muscle cells within microdomains after apoptosis. 
In addition, calcification-associated extracellular matrix vesicles 
aggregate to form foci of microcalcification (35). Moreover, 
differentiation of VSMCs into calcified cells is intricately linked to 
inflammatory and oxidative responses. These observations suggest 
that plaque calcification is a complex outcome arising from 
multifactorial interactions. The universal consensus is that the degree 
of calcification reflects the risk of developing atherosclerotic plaques. 
Dense calcification is generally indicative of stable plaques with a 
lower risk of adverse vascular events (36). Conversely, multiple small 
lesions featuring low-density calcification, particularly in proximity to 
the lipid pool and fibrous cap, signify fewer stable lesions and 
heightened risk of vascular events. Significant stenosis is observed in 
advanced atherosclerotic vessels and has been used as a predictor of 
myocardial infarction (37).

2.3. Distribution of intracranial and 
extracranial plaques

Atherosclerotic risk factors have a broad effect on the arterial 
system (38). However, plaque formation in the major large vessels is 

specifically influenced by factors such as hemodynamics (39), 
morphology (40), and variation in biochemical parameters (41). 
Atherosclerotic plaques mainly occur in large-and medium-sized 
arteries, including the carotid, coronary, femoral, and the circle of 
Willis arteries. Intracranial atherosclerotic plaques are eccentrically 
distributed in the basilar, anterior, middle, and posterior cerebral 
arteries and their branches, all of which have a diameter > 3 mm (42). 
In an observational study, Xu et al. divided the sagittal location of the 
middle cerebral artery (MCA) into four quadrants based on high-
resolution MRI (HR-MRI): superior, inferior, dorsal, and ventral, and 
found that MCA plaques were more frequently located in the walls of 
the ventral and inferior sections (43). Sun et al. further discovered that 
MCA plaques were most common in the proximal M1 segment, 
whereas MCA plaques causing infarction were mainly distributed in 
the ventral and superior wall (44). Their investigation also revealed the 
prevalence of plaques within the distal segment of the basilar artery 
(BA) (44). In a subsequent analysis involving 86 patients with plaques 
in the BA, Zheng et  al. categorized all cross-sections exhibiting 
eccentric plaques based on their orientation in the anterior, posterior, 
or lateral (left or right) center of the vessel. The results of this analysis 
revealed a higher likelihood of plaque distribution in the posterior 
wall among patients with pontine infarction [(45); Figure 3]. Patients 
with intracranial atherosclerosis (ICAS) have more severe strokes and 
longer hospitalization than those without (46).

Interestingly, ICAS exhibits a higher prevalence in the Eastern 
population and manifests at an earlier age than in the Western 
population. This difference may be  partly associated with the 
metabolic syndrome (47). Metabolic syndrome is a chronic 
noninfectious syndrome characterized by a cluster of vascular risk 
factors, including insulin resistance, hypertension, abdominal obesity, 
impaired glucose metabolism, and dyslipidemia (48). Hypertension is 

FIGURE 1

Inflammatory atherosclerosis, risk factors and subsequent complications. Traditional risk factors such as dyslipidemia, hyperglycemia, and hypertension 
play a crucial role in the development of atherosclerosis. Moreover, alterations in vascular blood flow, particularly abnormal WSS, contribute 
significantly to this pathological process. The presence of local inflammation in blood vessels is observed consistently throughout the progression of 
atherosclerosis, involving multiple cytokines and cell types. Ultimately, the rupture of atheromatous plaque in various arteries leads to the manifestation 
of diverse atherovascular diseases. HHcy, hyperhomocysteinemia; WSS, wall shear stress (Created with BioRender.com).
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more prevalent among Asian populations. Several gene 
polymorphisms associated with high salt sensitivity have been 
implicated as causative factors, including genes encoding α-adducin, 
angiotensinogen, and aldosterone synthase (49, 50). Lifestyle and diet 
also contribute to these differences. In Asian populations, heightened 
alcohol consumption and smoking are contributory factors that 
accelerate the progression of atherosclerosis. Excessive alcohol 
consumption in individuals with aldehyde dehydrogenase deficiency 
is associated with elevated blood pressure (49). Conversely, Western 
diets are closely associated with hypercholesterolemia, which is more 
strongly correlated with extracranial atherosclerosis than with 
intracranial atherosclerosis (50). Furthermore, the distribution of 
body fat and adiponectin levels in Eastern populations differs from 
those observed in Western countries (47, 51). These factors may 
be associated with the higher incidence of ICAS in Asian populations.

Circumferential extracranial atherosclerotic plaques rarely form 
in the carotid artery or its branches. Instead, these plaques tend to 
exhibit an eccentric distribution, primarily located at the carotid 
bifurcation and the external and posterior walls of the internal carotid 
artery (1). In coronary arteries, plaques predominantly develop in the 
proximal and mid left anterior descending artery, followed by 

proximal right coronary artery. Additionally, the proximal anterior 
descending artery exhibits higher plaque calcification compared to the 
other arteries (52, 53). Femoral artery plaques are primarily localized 
in the posterior wall of the common and deep femoral arteries 
(Figure 3). These plaques display lower levels of lipid deposition and 
inflammation and demonstrate a higher tendency for osteogenesis (54).

Atherosclerotic plaques may be distributed across multiple vessels. 
In a cross-sectional study of 3,067 adults (aged between 50 and 
75 years) in southeastern China, Pan et al. observed that atherosclerotic 
plaques were predominantly distributed in the aortic and iliac arteries. 
The presence of plaque in either the aortic or iliofemoral arteries 
indicated an 85.3% likelihood of the plaque being present in other 
vascular territories (55). A similar trend was identified by Lambert 
et al. in people with a low to moderate risk of CVD, in which they 
divided the arterial tree into 31 segments and analyzed the narrowest 
part of each segment. They found that 27% of the participants had 
atherosclerosis in multiple vessels and that the atherosclerosisis 
relatively evenly distributed throughout the cardiovascular system, 
such as the abdominal aorta, iliac arteries, subclavian arteries, and 
femoral arteries (56).

FIGURE 2

Biomarkers and parameters of atherosclerosis. Biomarkers, imaging parameters, biomechanical parameters, and anatomical parameters act as valuable 
indicators at distinct stages of atherosclerosis. Combining them to assess atheromatous plaques and vessels is fundamental and aids in predicting and 
guiding treatment. WSS, wall shear stress; IMT, intima-media thickening; LDL, low-density lipoprotein; GDF-15, growth differentiation factor 15; IPH, 
intraplaque hemorrhage; TPA, total plaque area; TPV, total plaque volume; WSSG, wall shear stress gradient; TA-WSS, time-averaged WSS; APS, the 
axial plaque stress; PR, pressure ratio; MMP, matrix metalloproteinase (Created with BioRender.com).
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3. State-of-the-art techniques

3.1. Advanced imaging technology

Radiographic risk factors for atherosclerosis include arterial 
occlusion, the degree of stenosis, and thrombotic lesions. To effectively 
assess the risk of CVD, researchers have persistently explored 
innovative examination techniques that provide comprehensive 
insights into plaque characteristics and vascular hemodynamics 
(Table 1).

3.1.1. Ultrasound
Ultrasonographic imaging is widely recognized as one of the most 

frequently used and cost-effective methods for assessing 
atherosclerotic plaques. However, owing to the principle of sound 
reflection, its sensitivity and specificity are low, which has the potential 
to underestimate the extent of arterial stenosis. The observed results 
are also influenced by the angle of the ultrasonic probe and the 
subjective perception of the examiner (75). Researchers have 
conducted IVUS and contrast-enhanced ultrasound examination to 
address these challenges. Placement of an IVUS probe in the vessel 
allows for better visualization of the vessel dimensions and plaque 
morphology, thus assisting with interventional treatment. 
Furthermore, IVUS improves the assessment of plaque characteristics 
such as shape, size, and location, and enables real-time observation of 
plaque composition and texture (57). With improvements in 
technology, IVUS has been further developed with the emergence of 
a more complete technique, virtual histology-IVUS. This reflects the 
fibrous component of the plaque well; however, the assessment of the 
necrotic component, fibrous cap thickness, and signs of rupture is still 
not satisfactory (58). A meta-analysis by Mishra et al. revealed that 
IVUS and its extended virtual histology-IVUS, are superior to CT/
MRI in carotid interventions (76).

Contrast-enhanced ultrasound is a technique that involves 
injection of microbubbles during an ultrasonic examination to 
enhance the reflective signal, allowing accurate assessment of the 
lumen and neovascularity within carotid plaques (57). Compared to 
conventional contrast agents, microbubbles eliminate the limitations 
of radiation exposure and nephrotoxicity (77). Cui et al. observed a 
high incidence of neovascularization within plaques in patients with 
mild to moderate stenosis, as detected using contrast-enhanced 
ultrasonography. This observation is considered an independent 
predictor of future vascular events in patients with recent ischemic 
stroke (78).

Pulse-wave imaging (PWI) is an ultrasound-based method that 
demonstrates systematic variations in arterial properties throughout 
the cardiac cycle to assess arterial rigidity and flexibility. In an in vitro 
simulation test, PWI exhibited excellent discriminatory capability for 
distinguishing between soft, medium, and hard plaque materials (60). 
Li et  al. also showed that PWI effectively differentiates between 
calcified and lipid plaque composition, enabling the prediction of 
atherosclerotic plaque stiffness (79).

3.1.2. HR-MRI
HR-MRI holds significant utility in the scrutiny and assessment 

of vascular atherosclerotic plaques, with a particular emphasis on 
intracranial manifestations. HR-MRI for vessel wall visualization 
commonly encompasses T1−/T2-weighted imaging, proton-density 
imaging, or contrast-enhanced T1-weighted imaging with turbo/fast 
spin-echo sequences or black-blood techniques (80). The lipid core 
is identifiable as areas exhibiting isosignal intensity on T1-weighted 
images and as regions with low to isosignal intensity on T2-weighted 
images. Conversely, the fibrous component appears isointense on 
both T1- and T2-weighted images. Calcifications are characterized by 
dark signal intensity on both T1- and T2-weighted images, although 
their sensitivity and specificity are notably inferior to those of CT 

FIGURE 3

Distribution of atheromatous plaques. The distribution of atheromatous plaques varies across different arterial systems, leading to distinct 
characteristics in their evolution and outcomes. MCA, middle cerebral artery; BA, basilar artery; CCA, common carotid artery; ICA, internal carotid 
artery; LAD, left anterior descending coronary artery (Created with BioRender.com).
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scans (80, 81). Initial IPH is discernible through high signal intensity 
on T1-weighted images and time-of-flight (TOF) imaging. In 
evaluating plaque inflammation, histological analyses of animal 
models have revealed a proportional relationship between the extent 
of macrophage infiltration in the vessel wall and the degree of plaque 
enhancement (82).

It’s worth noting that while these characteristics are readily 
discernible within the carotid system, the differentiation becomes 
notably more challenging within the narrower confines of intracranial 
arteries. Additionally, in the context of carotid plaques, researchers 
observed a preferential enhancement of the fibrous cap through 
gadolinium-based contrast agent (83). In evaluating intracranial 
vascular atherosclerosis, HR-MRI emerges as a precise tool for 
quantifying intracranial atherosclerotic stenosis, particularly in cases 
of moderate to severe stenosis. This accuracy stems from its direct 
visualization of both the vessel lumen and stenotic occlusive plaques, 
aligning well with findings from digital subtraction angiography (84). 
HR-MRI exhibits superior precision compared to magnetic resonance 
angiography when appraising BA stenosis and demonstrates efficacy 
in guiding endovascular interventions. Moreover, the application of 
contrast-enhanced HR-MRI proves adept at distinguishing between 
symptomatic and asymptomatic atherosclerotic plaques within the 
BA, surpassing conventional imaging variables and clinical risk factors 
in accuracy (85).

3.1.3. Positron emission tomography
Positron emission tomography (PET) is a non-invasive nuclear 

imaging technique that utilizes tracers to evaluate various biological 
processes related to atherosclerosis, including intraplaque 
inflammation, microcalcification, and angiogenesis (65). High-risk 
plaques exhibit distinctive metabolic characteristics such as elevated 
glycolysis, augmented utilization of amino acids, and reduced fatty 
acid oxidation. Several tracers have been developed to identify the 
differences in the molecular expression and metabolic profiles of cells.

The uptake of fluorine-18-fluorodeoxyglucose reflects the glucose 
metabolism status of tissues, which correlates with the levels of plaque 
inflammation. However, this method may result in false positives 
owing to non-specific uptake. Specifically, 11C-PK11195, 18F-FOL, and 
68Ga Pentixa have been used to detect mononuclear macrophages 
(66–68), providing a more accurate assessment of plaque inflammation 
levels. 18F-NAF is a tracer designed to detect active microcalcification 
within atherosclerotic plaques, thus facilitating the identification of 
vulnerable plaques (69). The function of 18F-Fluciclatide is intricately 
associated with angiogenesis through the quantification of αvβ3 
integrin expression. It serves as a marker for predicting plaque 
neovascularization and IPH (70). 68Ga-FAPI-04 is capable of 
recognizing intraplaque fibroblasts and is currently under 
investigation for its potential application in assessing the condition of 
fibrous caps (71). The evaluation of new tracers for predicting CVD 

TABLE 1 Imaging techniques for plaque features.

Imaging Application

US

IVUS Plaque location, size, and morphology (57)

VH-IVUS Better reflection of plaque necrotic core, thickness/rupture of fibrous cap (58)

CEUS IPH and neoangiogenesis: intraplaque enhancement or spot enhancement (59)

PWI Distinguishing between calcified and lipid plaques, predicting plaque stiffness (60)

CT

Plaque ulceration, rupture, size, distribution, calcification, vascular remodeling; incapability to accurately determine 

IPH, status of fibrous cap, neoangiogenesis, inflammation (61, 62)

SPCCT Quantifying fibrous cap thickness, area, and lipid-rich necrotic core area (63)

MRI

IPH: High signal in T1W, MP-RAGE, 3D TOF, 2D-FSE

Calcification: low signal in TOF, T1W, PD, T2W

LNRC: Unenhanced area of plaque in CE-T1W

Fibrous cap: Thin hypointense band between LRNC and vessel lumen (61, 64)

PET

18F-FDG Inflammation (65)

11C-PK11195 Activated macrophage (66)

18F-FOL Activated macrophage (67)

68Ga Pentixafor Inflammation, endothelial progenitor recruitment (68)

18F-NAF Microcalcification (69)

18F-Fluciclatide Neoangiogenesis (70)

68Ga-FAPI-04 Status of plaque fibrous caps (71)

OCT
Plaque calcification; thickness of fibrous cap; IV-OCT enhances identification of plaque lipid core, but complete 

imaging of large lipid core is difficult (72, 73).

NIRS Quantitative assessment of plaque lipid composition (57)

NIRF Plaque inflammation, oxidative stress, microcalcification (74)

US, ultrasound; IVUS, intravascular ultrasound; VH-IVUS, virtual histology intravascular ultrasound; CEUS, contrast-enhanced ultrasound; PWI, pulse wave imaging; CT, computed 
tomography; SPCCT, spectral photon-counting CT; MRI, magnetic resonance imaging; PET, positron emission tomography; OCT, optical coherence tomography; NIRS, near infrared 
spectroscopy; NIRF, near-infrared fluorescence; MP-RAGE, magnetization prepared rapid gradient echo; 3D TOF, 3D time-of-flight; PD, proton density; 18F-FDG, 2-deoxy-2-[18F]fluoro-D-
glucose; 18F-FOL, fluoride-18-labeled 1,4,7-triazacyclononane-1,4,7-triacetic acid conjugated folate; 68Ga-FAPI-04, gallium-6837 conjugated quinoline-based FAP inhibitor; LRNC, lipid-rich 
necrotic core; IPH, intraplaque hemorrhage.
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necessitates large-scale randomized clinical trials; however, radiation 
exposure and high costs may hinder their widespread adoption 
and application.

3.1.4. Optical coherence tomography
In atherosclerosis, OCT is employed to assess plaque calcification, 

neovascularization, fibrous cap thickness, and the interface between 
the plaque and vessel wall (86). OCT provides cross-sectional images 
of the arterial wall with a superior resolution of 1–15 μm, compared 
to a spatial resolution of approximately 100 μm for IVUS (72). Lipid 
plaques are characterized by the presence of diffuse signal-poor areas 
(lipid pools) and signal-rich bands (fibrous caps) with high signal 
attenuation on OCT (86). Nevertheless, capturing a comprehensive 
image of the lipid pool is often difficult because of limited penetration 
depth (72). Recent studies have attempted to employ OCT to assess 
cholesterol distribution within plaques (high-intensity, thin-linear 
regions, usually near lipid patches), but unfortunately showed low 
sensitivity (87, 88). Shindo et  al. assessed the morphological 
characteristics of carotid plaque rupture by OCT and showed that a 
carotid plaque cap thickness < 130 μm was the threshold for plaque 
rupture and that most instances of rupture were in the shoulder of the 
carotid plaque in 36 patients with high-grade stenosis (89). 
Intravascular OCT offers a more comprehensive approach that 
integrates time-series deep learning and achieves an impressive 89.6% 
accuracy in identifying plaque lipid cores, significantly enhancing 
identification efficiency (73). High-resolution clear imaging of the 
vessel wall and plaque morphology has also been applied to assist in 
stent implantation and assess stent status (90).

3.1.5. Near infrared spectroscopy and 
near-infrared fluorescence

Near-infrared fluorescence utilizes imaging based on the 
differences in the absorption and reflection of near-infrared light 
(wavelengths ranging from 800 to 2,500 nm) in different tissues. NIRS 
provides a quantitative evaluation of the lipid composition of plaques, 
thus compensating for the shortcomings of OCT. NIRS-based 
measurement of the maximum lipid core burden index within a 4 mm 
segment offers a quantitative estimation of lipid core size, exhibiting a 
strong positive linear correlation with the pathological evaluation of 
carotid artery stenosis (91, 92). Moreover, meta-analysis findings 
support the efficacy of this metric in quantifying and identifying 
individuals at high risk of plaque rupture and future major 
cardiovascular events (93). However, this technique does not assess 
the fibrous cap thickness, plaque burden, and vascular wall of the 
plaques. In view of this, researchers have integrated it with other 
techniques such as OCT and IVUS to comprehensively obtain plaque 
characteristics (57). Near-infrared fluorescence (NIRF) is an emerging 
technique for intravascular imaging. Utilizing fluorescent conjugates 
that selectively label particular cell types, near-infrared excitation light 
(650–900 nanometers) stimulates fluorescent agents, whereby the 
signal produced by the attenuation of fluorescent agents is acquired 
for imaging. Visualization of the inflammatory level, oxidative stress, 
endothelial permeability, and microcalcification of plaques can 
be  achieved using different fluorescent labels (74). Yudai et  al. 
validated the role of the Peptide-ICG2 (a fluorescent tracer targeting 
macrophages) in detecting atherosclerotic plaques vulnerable to 
embolism in mice (94). Researchers have also discovered many 
fluorescent dyes, including LO1-750, FTP11-Cy7, and osteoSense750 

(74, 95). Currently, indocyanine green is the only fluorescent dye 
approved by the US Food and Drug Administration for human use, 
and its application in detecting atherosclerotic plaques is 
anticipated (74).

To compensate for the limitations of single imaging modalities, 
multimodal imaging integrates multiple techniques to achieve a more 
comprehensive evaluation of plaque morphology. Novel imaging 
modalities, such as IVUS-NIRF, OCT-NIRS, OCT-NIRF, IVUS-OCT, 
IVOCT-NIRF, and IVOCT-NIRS, are currently undergoing preclinical 
evaluation. We  expect further progress in these studies to assess 
vulnerable carotid plaques more accurately.

3.2. 3D reconstruction and quantitative 
evaluation of plaque morphology

Although the current diagnostic standards and guidelines for 
coronary artery atherosclerosis are mainly related to geometric 
parameters derived from two-dimensional images of the coronary 
arteries, the characteristics of 3D reconstructed plaques have also 
received increasing attention.

Based on various types of imaging examination, researchers have 
used computer simulation technology to determine the characteristics 
of plaques in vitro. Through 3D reconstruction of plaques using 
carotid ultrasound, Spence et al. quantified the area and volume of 
plaques and described the relationship between plaque texture 
algorithms and plaque calcification (96). Another study by the same 
team confirmed the accuracy of plaque volume measurement (97). 
The scope of interest within 2D ultrasound is constrained by the 
movement of the ultrasound probe, thereby posing challenges in 
achieving clear visualization of the target site. Measurements 
pertaining to the volume of tissue or lesions are inclined to be less 
precise, often contingent upon the proficiency of the operator. While 
2D ultrasound generates a Doppler report encompassing various 
hemodynamic measurements, it falls short of delivering a 
comprehensive depiction of the arterial anatomy along with precise 
localization details. Conversely, 3D ultrasound offers an intuitive and 
efficient means to visualize tissues or plaques in three dimensions, 
alleviating operator fatigue and enhancing diagnostic precision 
(98, 99).

Currently, 3D imaging of atherosclerotic plaques provides a 
comprehensive depiction of the arterial lumen, external vessel wall, 
and calcified plaque (volume, surface area, and maximum length). 
This approach significantly minimizes the need for invasive methods 
of examination and their associated impact on patients (100). Guo 
et al. used 3D HR-MRI to investigate vascular remodeling and plaque 
morphology in patients with severe vertebrobasilar stenosis (101). In 
addition, another study compared an HR-MRI-based 3D carotid 
plaque radiomics model constructed using the radiomic features of 
3D T1-SPACE sequences with their contrast-enhanced counterparts 
using a conventional imaging model. The results revealed that an 
HR-MRI-based 3D carotid radiomics model exhibited improved 
accuracy in detecting vulnerable carotid plaques (102). Furthermore, 
Becher et  al. employed Adipo-Clear and immunolabeling in 
conjunction with light-sheet microscopy to conduct a 3-D 
reconstruction of mouse cerebral arteries. In contrast to traditional 
inspection, this approach enables the acquisition of valuable 
information regarding the plaque shape, total volume, cellular volume, 
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and cell-free volume (103). In intracranial atherosclerosis, the 
utilization of 2D black-blood techniques for visualizing angulated 
lesions or intricate intracranial arteries might hinder the attainment 
of cross-sectional images that are perpendicular to the arterial 
longitudinal axis. Conversely, the implementation of through-
multiplanar 3D reconstruction empowers researchers to examine 
intracranial plaques from various orientations, boasting a heightened 
spatial resolution. Moreover, this approach facilitates the capture of 
cross-sectional images precisely at the location of maximal luminal 
stenosis, as well as the proximal and distal reference sites. Notably, the 
3D technique effectively circumvents tilt artifacts, a proficiency 
absents in 2D scans that, in turn, could lead to an overestimation of 
both true wall thickness and vessel area (101, 104).

OCT-based reconstruction methodology and computational fluid 
dynamics (CFD) simulations are utilized for the computation of local 
hemodynamic quantities. Migliori et al. utilized time-averaged WSS 
(TA-WSS) to depict the blood flow characteristics around plaques 
before and after stent implantation surgery. This technique provides a 
remarkable and reliable visual image of blood flow around the plaque 
before and after stenting. An increase in the lumen cross-sectional 
area downstream of the lesion resulted in significant recirculation of 
the stream. Post-percutaneous coronary intervention surgery, a 
smooth lumen surface and well-apposed stent struts facilitated 
unobstructed blood flow without recirculation (105). This suggests 
that the combination of 3-D reconstruction and CFD simulation 
provides a visually compelling assessment of the therapeutic efficacy 
of stent implantation surgery.

The utilization of 3D reconstruction techniques to forecast plaque 
progression hinges on the formulation of the model itself. The 
precision of this endeavor is greatly influenced by the approach to 
construction and the methodology of correction. Errors that arise 
possess the potential to reverberate significantly, exerting a profound 
impact on the ultimate outcomes. While the propagated error in shear 
stress calculations appears negligible, it assumes a substantial 
magnitude when it comes to several variables within the plaque 
growth model. These inaccuracies in prognosticating plaque 
development could be attributed to several factors: (1) divergences in 
the reconstructed vessel geometry; (2) alterations in pressure gradients 
between the epithelial and endothelial boundaries; and (3) disparities 
between the assumptions regarding the initial concentration of VSMC 
within the arterial wall and the physiological reality (106).

3.3. Computational simulation: evaluations 
of hemodynamic and biomechanical 
parameters

Integrating various examination techniques and computer 
simulations, researchers have developed a variety of ‘virtual reality’ 
techniques to detect atherosclerotic plaques and blood vessels (107).

In 3D models, researchers estimate almost any hemodynamic 
parameter, including WSS, flow velocity around plaques, and carotid 
stenosis (107–109). Owing to the complexity of plaque geometry and 
composition, constructing a 3D plaque model is time consuming. 
Some researchers have proposed a 1-D/3-D hybrid model that aims 
to balance computational efficiency without compromising the 
accuracy of hemodynamic indicators (110). It should also be noted 
that because of the assumed rigid structural properties of the vessel 

wall, the WSS obtained using 3D models was higher than the actual 
value (111). Subsequently, a fluid–structure interaction (FSI) model 
was proposed to address the above shortcomings.

Using the FSI model, researchers have simulated the effects of 
atherosclerosis on the vascular and blood flow states, WSS, LDL 
permeability, vulnerable plaques, and surrounding features (112). 
Pakraven et al. employed the FSI model to investigate the status of 
coronary artery ECs and discovered that areas prone to atherosclerosis 
exhibited at least one of the following three attributes: low time-
averaged WSS, high WSS angles, and high longitudinal strain (113). 
Using the FSI model based on IVUS and OCT, Guo et al. acquired 
more accurate WSS, stress, and strain. The integration of plaque 
morphology from OCT and IVUS along with mechanical risk factors 
from the FSI model yielded the highest sensitivity and specificity for 
predicting plaque progression (114). The complementary nature of 
these techniques has substantially enhanced their accuracy in 
predicting plaque progression and assessing cardiovascular risk.

4. Vascular and plaque parameters

4.1. Multidimensional geometric 
parameters

4.1.1. Geometric parameters of the plaque
The intima-media thickness (IMT) is frequently used to 

characterize the early stages of atherosclerosis. It is strongly associated 
with vascular events and is a valuable predictor of early atherosclerosis 
(115). IMT is measured as the perpendicular distance extending from 
the upper margin of the intimal layer to the upper boundary of the 
adventitial layer on the posterior vessel wall, i.e., the combined 
thickness of the intima and the intima-media of the vessel wall. Some 
consensus suggests measuring the bilateral common carotid arteries 
more than 5 mm from the carotid bifurcation in the vessel wall at a 
distance relative to the ultrasound probe. The patient should be in 
dorsal recumbency with the head tilted 45 degrees to the contralateral 
side, and measurements should be taken during cardiac diastole (116, 
117). In healthy adults, there was good agreement between B-mode 
ultrasound and radiofrequency, with an interobserver correlation 
coefficient of 0.87 (118). George et al. found that carotid IMT is a 
predictor of clinical coronary artery disease and is associated with the 
serum levels of total cholesterol and LDL (119). Furthermore, it can 
be evaluated using relatively simple and convenient modalities, such 
as color Doppler and two-dimensional ultrasound (120). The 
American Society of Echocardiography has reached a consensus 
suggesting that a carotid IMT measurement of 1.5 mm or more in any 
segment of the carotid artery is a criterion for determining the 
presence of diffuse-type plaque lesions (121). The endothelial layer 
and subendothelial matrix (intima) comprise only 20% of the IMT, 
with the remaining 80% made up of smooth muscle cells 
(mesothelium). IMT is strongly correlated with age and hypertension. 
In a 2021 meta-analysis involving 119 clinical trials, investigators 
found that the degree of intervention effect on carotid IMT 
progression predicted the degree of CVD risk reduction (122). And 
measurements of IMT at multiple carotid system sites better predicted 
cardiovascular risk (123). Compared to two cardiovascular risk 
calculators (Omnibus Risk Score-ORS and Framingham Risk 
Score-FRS), carotid IMT better predicted stroke risk and there was a 
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positive correlation between common carotid IMT and stroke events 
(124, 125). It is worth noting that there is some current opinion that 
IMT is only a weak predictor of risk and changes very little over time 
(126). On a comprehensive basis, IMT remains an important indicator 
of atherosclerosis and has the ability to predict the risk of 
cardiovascular events even in advanced stages of atherosclerosis. 
Thickening of the intima can be caused by aging and hypertension, in 
addition to atherosclerosis; therefore, certain researchers propose that 
carotid IMT should be  regarded as indicative of advanced organ 
disease rather than solely a preclinical stage of atherosclerosis (121, 
127). The relationship between IMT and atherosclerosis may 
be  modified in the future as more comprehensive studies 
are implemented.

The total plaque area (TPA) is measured by tracing the perimeter 
of a plaque in longitudinal section, in the plane in which it is biggest. 
The sum of all plaque areas in the observation area is TPA. In 
two-dimensional ultrasound, the selection of a specific cross-sectional 
slice is often affected by the imaging angle and subjective human 
factors, rendering it less stable than IMT measurements. Total plaque 
volume (TPV) measurement relies on 3D ultrasound and computer 
technology (128). In the study conducted by Landry et  al., the 
researchers employed two distinct approaches to assess TPV. Initially, 
they utilized both a predetermined inter-slice distance (ISD) and an 
ISD derived from plaque endpoints. In the former approach, plaques 
were cross-sectioned perpendicular to the longitudinal axis of the 
vessel in the 3D ultrasound image. Subsequently, the contiguous 
contour area was averaged and then multiplied by the ISD, yielding 
incremental volumes as per a specified equation. The accumulation of 
these incremental volumes yielded the measurement of the overall 
plaque volume. Rigorous examination was performed to confirm the 
adequacy of the outlined contours in encompassing the complete 
plaque volume. Conversely, the latter approach involved a longitudinal 
assessment of the plaque to pinpoint its termination point. Here, the 
determination of ISD involved dividing the plaque length by an 
integer value representing the number of slices. This subsequently 
facilitated the calculation of the total plaque area. Upon a comparative 
analysis of these two methodologies for measuring plaque volume, the 
researchers observed that the coefficients of variation for TPV, as 
determined by the two approaches, exhibited a diminishing trend with 
increasing plaque volume. Notably, the TPV obtained through the 
former technique was consistently smaller than that derived from the 
latter approach. This discrepancy could be attributed to limitations 
inherent in the former approach, particularly in accurately identifying 
the distal extremity of the plaque (129). The processing and retouching 
process of the images was further optimized by algorithms to achieve 
semiautomatic measurement of TPV (130). By commencing the 
measurement protocol with reference to the point of carotid 
bifurcation, researchers effectively mitigated the extent of 
measurement variability. The approach has been successfully 
implemented in the context of carotid MRI studies (129, 131).

Compared to IMT, TPA and TPV account for overall 
atherosclerosis and are better predictors of plaque event risk. Owing 
to its slow changes over time, IMT exhibits lower sensitivity in 
capturing disease evolution than TPA and TPV. With a growth rate of 
approximately 0.15 mm/yr and a minimum carotid ultrasound 
resolution of 0.6 mm, changes in IMT require a significant amount of 
time for observation. Conversely, TPA and TPV exhibited changes at 
rates of approximately 10 mm2/yr and 50–100 mm3/yr, respectively. 

This demonstrates that TPV is the most effective measure for 
evaluating the treatment response (plaque reduction and plaque 
growth) (132).

4.1.2. Geometric parameters of the artery
Vascular structural variability, including bifurcation angle, relative 

size, and vessel integrity, is associated with the presence of 
atherosclerotic plaques. Larger internal carotid artery angles generally 
increase the frequency and area of blood recirculation along with lower 
WSS on the sinus wall, thereby increasing the risk of plaque formation 
(38, 133). In carotid artery structure simulation studies, an increased 
diameter of the vessel branches corresponded to a larger blood return 
zone. At the bifurcation point of the carotid artery, the internal carotid 
artery had a larger diameter than the external carotid artery. 
Consequently, this discrepancy in diameter led to a relatively lower 
WSS and a wider blood return zone. This observation may explain the 
higher prevalence of plaques in the internal carotid artery (134).

Observational studies have indicated a higher prevalence of 
incomplete Circle of Willis configurations than intact types among 
patients exhibiting atherosclerotic plaques in the MCA M1 segment, 
especially the incomplete posterior circle of Willis, which accounted 
for 83.9% of cases (135). On 3D-TOF-MRA images, vertebro-basilar 
artery geometry was qualitatively classified into four basic geometric 
configurations: walking, tuning fork, lambda, and no confluence. 
Zheng et al. observed the highest occurrence of plaques in the walking 
configuration of the vertebro-basilar artery. Furthermore, they 
discovered that patients with BA plaques in the lambda configuration 
exhibited significantly greater disparities in diameter between the left 
and right vertebral arteries (45). Arterial stent shape changes also 
cause local hemodynamic differences in the arteries, which may 
be associated with stent restenosis and CVD. Liu et al. simulated three 
variants of stent shape in patients with ICAS (enlarged, internally 
narrowed, and externally narrowed) and found that stent geometry 
significantly affected WSS, with the area neighboring the stent 
experiencing the most pronounced effects (136).

Vertebrobasilar dolichoectasia is characterized by pronounced 
dilatation, extension, tortuosity, or angulation of the vertebrobasilar 
artery, attributed to a range of diverse factors (137). Its pathogenesis 
is multifactorial, encompassing atherosclerosis, hypertension, 
developmental anomalies, and additional elements including infection 
(138). Among patients with vertebrobasilar dolichoectasia who have 
suffered a stroke, researchers have noted an elevated frequency of 
plaque occurrence (139). An augmentation in both the mean diameter 
and bifurcation height of the BA is firmly linked to the likelihood of a 
stroke occurrence. Excessive bifurcation angles tend to impose pulling 
and twisting forces on the perforating arteries of the BA, resulting in 
diminished blood flow (137, 140). Meanwhile, the widening of the BA 
diameter leads to a noteworthy reduction in blood flow velocity, 
thereby fostering the development of microemboli and subsequent 
lipid deposition. This sequence of events ultimately contributes to the 
formation of atherosclerosis and subsequent stroke incidents 
(137, 138).

4.2. Morphological parameters

The attenuation values on CT corresponds to the different plaque 
components. Some studies suggested attenuation values not exceeding 
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50 Hounsfield units (HU) for lipid components, whereas others 
suggested values below 30 or 60 HU (141–143). Although an 
attenuation threshold over 130 HU is commonly used to indicate 
calcification on two-dimensional CT, there are discrepancies in 3D 
reconstruction studies, where some suggest thresholds of over 300 or 
400 HU for calcification (144). In 2015, Puchner et al. suggested a 
threshold of >180 HU for calcified plaques (145); in contrast, in 2018, 
Kigka et al. indicated that attenuation values over 400 HU should 
be considered for calcified plaques (146). Limited by the resolution of 
CT and polymorphisms in plaque contents, quantitative differentiation 
of plaque components by attenuation values is difficult. Thus, the 
evaluation threshold for calcified and non-calcified plaques (mixed 
plaques) varies among clinical studies. According to the prevailing 
consensus, high-density calcification is generally defined as an HU 
density exceeding 350, while HU values ranging from 131 to 350 
indicate fibrous plaques, and a range of 31 to 130 HU corresponds to 
fibrofatty plaques. Additionally, HU values ranging from-30 to 30 are 
associated with the presence of a necrotic core (147, 148). Notably, 
low-density plaques (HU < 30) have been identified as the most robust 
predictors of myocardial infarction in patients presenting with stable 
chest pain (149). Coronary artery calcium (CAC) scores obtained by 
CT are associated with myocardial infarction risk and are independent 
risk factors for cardiovascular events. Liu et al. examined 19 patients 
with symptomatic stenosis caused by left coronary plaques and found 
a positive correlation between the number and volume of coronary 
plaques and calcification (150). Yoon et al. also showed a positive 
correlation between the plaque calcification score and degree of 
stenosis in 66 patients (151). Notably, CAC scores have been employed 
in guidelines as a surrogate measure for estimating the 10-year risk of 
cardiovascular events and for making lipid-lowering therapy 
decisions. Patients with CAC scores >400 demonstrated a significantly 
higher likelihood of developing CVD (147, 149, 152).

The thickness of the thin fibrous cap is defined as less than 65 μm, 
and this criterion is most commonly used to assess plaque stability 
(153, 154). Owing to artifacts such as edge blur and halo effects, 
fibrous caps are difficult to image using CT. Recently, a study 
demonstrated the effectiveness of spectral photon-counting CT in 
quantifying fibrous cap thickness, plaque area, and lipid-rich necrotic 
core area, showing good consistency with histopathological 
measurements (attenuation values in voxels distinguish plaque 
regions; the thickness of the regions is measured by multiplying the 
number and size of voxels) (63). This new technology offers promising 
possibilities for precise quantitative analysis of lipid cores and fibrous 
caps in plaques. In a preclinical study, spectral photon-counting CT 
identified monocyte accumulation in the arterial wall by recognizing 
a tracer reflecting the progression of atherosclerosis (155). The center 
frequency of IVUS imaging should be higher than 70 MHz to identify 
thin fibrous cap, which is a challenge for current IVUS imaging 
systems (156). In contrast, HR-MRI demonstrates the capacity to 
visualize the fibrous cap effectively. Instances of fibrous cap rupture 
are identifiable by the presence of partially obscured and irregular 
surfaces within T1-weighted or T2-weighted images (157).

The ability of CT to predict IPH remains unclear. Some studies 
have shown no significant difference in attenuation values between 
plaques with and without IPH on CT (158). However, Saba et al. found 
a statistical correlation between IPH and low HU values (HU values 
<25 after contrast medium administration, indicating the presence of 
IPH with a sensitivity and specificity of 93.22 and 92.73%, respectively) 

(159). It is worth stating that the difference may be explained by the 
presence of a lipid-rich necrotic core (61). HR-MRI effectively 
addresses this gap by demonstrating excellent utility. In the context of 
extracranial atherosclerosis, HR-MRI’s capability to identify IPH 
exhibits commendable intersubject reproducibility and reliability. 
Notably, HR-MRI displays a robust sensitivity range (81–90%) 
coupled with a high specificity range (74–90%) in the discrimination 
of IPH, fibrous cap, and lipid cores (160). These capabilities are further 
bolstered when employing contrast-enhanced HR-MRI. In 
observational studies focusing on basilar and internal carotid artery 
plaques indicate that IPH manifests as a signal intensity surpassing 
150% of adjacent gray matter’s signal intensity in T1-weighted images 
(80, 157).

4.3. Novel hemodynamic and 
biomechanical parameters

In the past decade, mathematical modeling and simulation have 
emerged as valuable noninvasive tools in the field of cardiovascular 
disease, aiding both basic scientific research and clinical decision-
making processes. Specifically, CFD plays a crucial role in identifying 
hemodynamic alterations. CFD models were meticulously calibrated 
to ensure accurate representation by leveraging diverse examination 
data and various parameters.

CFD simulations utilize clinical imaging data, such as results of 
ultrasound, OCT, CT, and MRI, to derive patient-specific estimates of 
crucial hemodynamic parameters, including the flow rate, pressure, 
fractional flow reserve, and WSS (161–163). After microcirculatory 
disturbances in the artery, there is a decrease in blood flow and 
translesional pressure drop, accompanied by an increase in the 
fractional flow reserve without significantly affecting the non-culprit 
branches (161). Nonetheless, severe stenosis in the large branches 
results in elevated distal microcirculatory resistance, significantly 
increasing the flow velocity and instantaneous wave-free ratio in the 
cognate branches (164). Furthermore, CFD has been employed to 
evaluate the impact of stent implantation on peripheral flow status. 
The WSS and LDL filtration rates exhibit notable variations depending 
on stent geometry and are closely associated with the final treatment 
outcome and occurrence of stent restenosis, which were previously 
challenging to assess in vivo (136). In static CFD simulation, the 
removal of side branches with a radius of less than 50% of the parent 
vessel has a negligible effect on the accuracy of the fractional flow 
measurement. Similarly, in transient CFD simulation, the impact 
remains minor. This observation contributes to the simplification of 
CFD model construction and adjusts for the effects of geometric 
variations of the surrounding arteries (165). CFD techniques have 
been extensively applied in atherosclerosis studies owing to their 
practicality and effectiveness. This has led to the derivation of 
numerous significant parameters or metrics, enabling a more visual 
assessment of CVD.

The WSS is the frictional force exerted by flowing blood on the 
vessel wall (6). TA-WSS and wall shear stress gradient (WSSG) are 
vital indicators reflecting the local hemodynamic state. Compared 
with static simulations, TA-WSS can reflect the average changes in 
WSS across cardiac cycles (105). Studies have shown that regions with 
high TA-WSS and low oscillatory shear index have larger necrotic core 
sizes, larger macrophage areas, and thinner fibrous caps in 
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atherosclerotic plaques (166). Moreover, local TA-WSS is significantly 
higher in patients with ischemic stroke or transient ischemic attack 
than in patients with asymptomatic carotid artery stenosis, indicating 
that TA-WSS may help stratify the risk of vulnerable carotid 
plaques (167).

The WSSG quantifies the magnitude of changes in the WSS along 
blood vessels. Under normal physiological conditions, a minimal 
gradient of shear stress is exerted by blood flow on the inner vessel 
wall (i.e., low WSSG) (168). Changes in the flow state occur when the 
blood vessel branches or narrows, resulting in elevated WSS and 
subsequent a high WSSG (169). An increase in WSSG levels is closely 
related to EC damage, heightened vascular permeability, and 
inflammatory infiltration, thus having a role in the formation and 
progression of atherosclerosis. In addition, WSSG is widely used in 
predicting arterial aneurysms. A high WSS influences the formation 
of MCA aneurysms, and positive WSSG promote this progression 
(170, 171).

Unlike the WSS, the axial plaque stress (APS) is calculated by 
isolating the axial component of the force exerted on the lumen or the 
plaque. The APS provides insights into the stress experienced by the 
plaque along the axis of the blood vessel and is affected by factors such 
as plaque shape, core stiffness, length of the lipid core, severity of the 
plaque, and vascular remodeling. Notably, in some studies the APS 
was significantly higher than the WSS (172–174). By constructing a 
CFD model of coronary artery blood flow, researchers discovered a 
linear correlation between upstream APS variation and the severity of 
vascular stenosis (173, 174). Alegre-Martinez et al. further elucidated 
that APS affects the risk of atherosclerotic plaque rupture and is 
related to the predilection for specific sites of plaque rupture (172). 
Another study reported that APS is an independent predictor of high-
risk plaques and an independent risk factor for acute coronary 
syndrome (175).

Translesional pressure gradients are important indicators of 
arterial hemodynamics. Changes in blood flow in front of and behind 
the atherosclerotic plaques are linked to the risk of plaque rupture. 
Studies use the translesional pressure ratio (PR = Pressurepost-stenotic/
Pressurepre-stenotic) as a surrogate indicator to describe translesional 
pressure gradient, with PR ≤ median defined as low PR, indicating a 
larger translesional pressure gradient (176, 177). Through the 
construction of CFD models, Leng et al. found that a low PR was an 
independent risk factor for recurrent stroke in patients with sICAS 
(177). Another study showed that lower systolic blood pressure may 
be associated with an increased risk of stroke recurrence in patients 
with larger translesional pressure gradients (176). More studies are 
warranted to clarify the relationship between translesional pressure 
gradient and atherosclerosis-related diseases to guide better 
prevention and interventions.

In 2007, Cancel et al. demonstrated in vitro that under convective 
conditions, leaky junctions of ECs were the main pathway for LDL 
uptake by arteries (>90%) (178). Low WSS reduces the expression of 
microfilament bundles and disrupts the barrier function of ECs, 
causing leaky junctions between ECs and subsequently resulting in 
LDL infiltration into the subendothelium (11). In 2018, a study 
showed that the concentration of the LDL boundary layer increased 
when recirculation occurred near the wall and that hypertension 
intensified this effect by promoting the entrapment of a higher 
number of LDL particles (179). This may provide a foundation for 
LDL infiltration into the subintima of the arteries. Roustaei et  al. 

further explained that the reason for the increased LDL infiltration 
rate in hypertension is the effect of reduced WSS on the number of 
leaky junctions and the impact of FSI on the widening of endothelial 
pores (180). This revealed the profound impact of hemodynamics on 
lipid trans-wall transport and EC function, verifying an important 
basis for the development of atherosclerosis (Figure 2, right panel).

Nanoparticles serve as transport media and carriers for diverse 
targeting substances. Researchers have used specially labeled 
nanoparticles to precisely track atherosclerotic lesions and increase 
the signal intensity of different imaging modalities (181). For example, 
anti-CD68 receptor-targeted Fe-doped hollow silica nanoparticles and 
iron oxide nanoparticles have been used to identify neovascularization 
and macrophages within plaques to evaluate plaque status (182, 183). 
Using nanoparticles as tracers, Hossain et al. analyzed blood flow and 
vascular deposition of circulating nanoparticles that recognize 
vascular cell adhesion molecule 1, E-selectin, and intercellular 
adhesion molecule 1 in the femoral artery of patients with peripheral 
artery disease (184). Furthermore, nanoparticles have the potential to 
provide precise treatment for atherosclerosis. Synthetic HDL-mediated 
targeted delivery of liver X-receptor agonists promotes cholesterol 
efflux from macrophages (185). In addition, CGS 25966 and CGS 
27023A are N-sulfonamidoacetyl amino esters that non-selectively 
inhibit MMP-1, MMP-2, MMP-3, and MMP-9 by chelating zinc ions 
at the active site of the enzyme, rendering them potential therapeutic 
targets (186).

5. New biomarkers

5.1. Biochemical biomarkers

Abnormalities in inflammation and lipid metabolism predict the 
risk of atherosclerosis. Plaque inflammation and its related metabolic 
markers are valuable indicators of plaque stability.

Growth differentiation factor 15 (GDF-15) is a member of the 
transforming growth factor β superfamily, which is closely associated 
with lipid metabolism and inflammation. During the initial phase of 
atherosclerosis, researchers have observed smaller atherosclerotic 
lesions in GDF-15−/− mice; however, this difference disappeared after 
12 weeks (187). In a recent cross-sectional study, Shima et  al. 
discovered that high-sensitivity C-reactive protein and GDF-15 levels 
were significantly higher in patients with coronary artery disease 
(p = 0.091 and p < 0.001, respectively) (188). Heduschke et al. pointed 
out that recombinant GDF-15 promotes macrophage autophagy 
activity and GDF-15−/− mice show reduced macrophage autophagy 
activity in plaques, which may be related to plaque regression and 
stability (189). Ackermann et al. further demonstrated that silencing 
GDF-15  in human macrophages inhibits oxidized low-density 
lipoprotein-induced lipid accumulation (190). Overall, the role of 
GDF-15 in the influence of inflammation on atherosclerosis appears 
to be multifaceted, suggesting that GDF-15 may serve as a predictor 
of plaque stability (191).

Neopterin, an oxidation product of 7,8-dihydroneopterin, is 
produced by activated macrophages stimulated by interferon-γ 
released from T lymphocytes (192, 193). Co-cultivation of ox-LDL 
with macrophages promotes the conversion of 7,8-dihydroneopterin 
to neopterin, highlighting its involvement in facilitating the clearance 
of ox-LDL (193). Shirai et al. showed that neopterin inhibits foam cell 
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formation, migration, and proliferation of VSMCs. Moreover, 
neopterin suppresses the phosphorylation of nuclear factor kappa-B 
transcription factor in human arterial macrophages and increases the 
expression of peroxisome proliferator-activated receptor γ (194). 
Clinical studies have shown that patients with coronary heart disease 
have significantly higher serum neopterin levels. In one study 
neopterin concentration was positively correlated with the degree of 
coronary artery stenosis (195). Sugioka et  al. also observed that 
neopterin levels were significantly higher in patients with complex 
carotid atherosclerotic plaques than in those with non-complex 
plaques (196). The observed elevation in neopterin protein expression 
within atherosclerotic plaques is likely attributable to the endogenous 
upregulation of neopterin proteins, which serve as a defensive 
response against the progression of atherosclerosis (194).

Other novel biological markers, such as galectin-3, may serve as 
surrogates to reflect plaque inflammation and calcification (197, 198), 
additionally pregnancy-associated plasma protein-A has been 
associated with vulnerable plaque features in patients with coronary 
artery disease (199), and the count of CD16+ monocytes has shown a 
correlation with preclinical CVD (200).

5.2. Genetic biomarkers

Atherosclerosis is a multifactorial disease influenced by genetic, 
environmental, and pathophysiological factors. Multiple genes and 
ncRNAs regulate lipid metabolism, inflammation, and endothelial and 
smooth muscle cell function. Gene expression analysis can reveal the 
dynamic state of a disease and provide insight into its potential causes. 
Meng et al. compared gene expression differences between healthy 
individuals and patients with atherosclerosis and found that TPM2 
was significantly downregulated in atherosclerotic samples (201). In 
another study, ITGAX, CCR1, IL1RN, CXCL10, CD163, and MMP-9 
were found to be significantly upregulated in atherosclerotic samples 
(202). Several genes participate in the various processes associated 
with atherosclerosis. For instance, SVEP1 induces the proliferation of 
vascular smooth muscle cells (VSMCs), elevates integrin levels, and 
triggers plaque inflammation, thereby contributing to atherosclerosis 
development irrespective of blood lipid levels (203). In contrast, JCAD 
governs the Hippo/YAP/TAZ pathway and mediates endothelial 
dysfunction, thus fostering atherosclerosis (204). These genes have the 
potential to serve as valuable risk indicators and treatment targets in 
individuals with atherosclerosis.

miRNAs are a class of endogenous small single-stranded 
non-coding RNAs approximately 22 nucleotides in length that 
regulate post-transcriptional gene expression by degrading target 
mRNAs or blocking their translation (205). miRNAs play important 
roles in regulating pathological processes such as cell adhesion, 
proliferation, lipid uptake, efflux, and the production of inflammatory 
mediators (206). The upregulation of miR-9 suppresses the formation 
of vulnerable atherosclerotic plaques through negative regulation of 
the p38MAPK pathway via OLR1 and enhances vascular remodeling 
in mice with acute coronary syndrome (207). Moreover, miR-9 has 
similar functions of inhibiting SDC2 and the FAK/ERK signaling 
pathway, reducing the plaque area in aortic atherosclerosis (208). 
Furthermore, the upregulation of miR-9 decreased the levels of tumor 
necrosis factor-α, IL-6, and IL-1β (207, 208). MiR-181a-5p and 
miR-181a-3p collectively reduce the expression of pro-inflammatory 

cytokines, decrease macrophage, leukocyte, and lymphocyte 
infiltration, and block nuclear factor kappa B activation and vascular 
inflammation by targeting TAB2 and NEMO (209). In contrast, 
overexpression of miRNA-155 promotes the activation of the 
nucleotide-binding oligomerization domain-like receptor protein 3 
inflammasome induced by ox-LDL, exacerbating atherosclerosis in 
ApoE−/− mice (210). Clinical studies have shown that compared with 
carotid atherosclerosis patients with stable plaques, miR-223 and 
miR-126 are downregulated in patients with unstable plaques (211). 
Besides, MiR-21 is highly positively correlated with the maximum 
lipid core area, number of lesion vessels, number of macrophages, and 
number of vulnerable plaques in patients with acute coronary 
syndrome and negatively correlated with fibrous cap thickness (212). 
These findings indicate the potential use of miRNAs as predictive 
indicators of plaque stability.

In addition to miRNAs, other non-coding RNAs, such as long 
non-coding RNA and circular RNA, have garnered growing attention 
owing to their involvement in atherosclerosis (205). Furthermore, 
single mutations, small insertions/deletions, and copy number 
variants in genes related to lipid metabolism are also associated with 
atherosclerosis (213). The regulation of genes related to lipid 
metabolism, vascular inflammation, and EC function is influenced not 
only by genetic factors, but also by changes in DNA methylation 
caused by environmental factors. These epigenetic changes may 
contribute to atherosclerosis (214).

6. Conclusion and prospect

The high costs of advanced imaging technologies such as PET, 
IVUS, NIRF, and NIRS are significant factors that limit their 
widespread use, and it is expected that this problem will 
be addressed in the future. Further exploration is needed to improve 
the accuracy and resolution of noninvasive examinations. Currently, 
various examination techniques capture the distinct characteristics 
of plaques and blood vessels, creating a vibrant area of research 
focused on integrating these techniques to enhance the 
understanding of plaques and blood vessels. The combination of 
emerging digital simulation and imaging techniques presents 
exciting opportunities in the field of atherosclerosis research. 
Consequently, the adoption of new patient-specific evaluation of 
hemodynamic or biomechanical parameters offers a fresh 
perspective for assessing CVD risk.

In conclusion, atherosclerotic plaques are an important cause 
of CVD. The location, growth, and properties of plaques are 
critical factors influencing clinical outcomes. In clinical practice, 
technological advancements have provided valuable insights into 
plaque composition, and the development of quantitative and 
qualitative analytical techniques holds promise for a more efficient 
and precise understanding of atherosclerosis. Accurate and 
scientific prediction of plaque rupture risk necessitates the 
integration of multiple indicators, including quantitative scoring 
of plaques and hemodynamic evaluation of arteries. The 
implementation of preventive measures and timely intervention 
can mitigate the impact of cardiovascular disease on patients’ 
lives. Analysis of plaque formation and progression may offer 
valuable insights and potential strategies for diagnosis 
and prevention.
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Glossary

CVD cerebrovascular or cardiovascular diseases

LDL low-density lipoprotein

IMT intima-media thickness

EC endothelial cell

VSMCs vascular smooth muscle cells

WSS wall shear stress

IPH intraplaque hemorrhage

BA basilar artery

TPA total plaque area

TPV total plaque volume

CT computed tomography

MRI magnetic resonance imaging

IVUS intravascular ultrasound

OCT optical coherence tomography

PWI pulse wave imaging

PET positron emission tomography

NIRS near infrared spectroscopy

IL interleukin

MMP matrix metalloproteinase

ox-LDL oxidized low-density lipoprotein

ISD inter-slice distance

CD cluster of differentiation

GDF-15 growth differentiation factor 15

CFD computational fluid dynamics

CAC coronary artery calcium

ICAS intracranial atherosclerosis

HR-MRI high-resolution MRI

MCA middle cerebral artery

NIRF near-infrared fluorescence

FSI fluid–structure interaction

WSSG wall shear stress gradient

TA-WSS time-averaged WSS

APS the axial plaque stress

PR pressure ratio
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