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Background: Impaired selective motor control, weakness and spasticity represent the 
key characteristics of motor disability in the context of bilateral spastic cerebral palsy. 
Independent walking ability is an important goal and training of the gluteal muscles 
can improve endurance and gait stability. Combining conventional physical excercises 
with a neuromodulatory, non-invasive technique like repetitive neuromuscular 
magnetic stimulation probably enhances effects of the treatment. This prospective 
study aimed to assess the clinical effects of repetitive neuromuscular magnetic 
stimulation in combination with a personalized functional physical training offered to 
children and adolescents with bilateral spastic cerebral palsy.

Methods: Eight participants Gross Motor Function Classification System level II and 
III (10.4 ± 2y5m; 50% Gross Motor Function Classification System level II) received a 
personalized intervention applying functional repetitive neuromuscular magnetic 
stimulation (12 sessions within 3 weeks; 12,600 total stimuli during each session). At 
baseline and follow up the following assessments were performed: 10-m-walking-
test, 6-min-walking-test, GMFM-66. Six weeks after the end of treatment the patient-
reported outcome measure Gait Outcome Assessment List was completed.

Results: GMFM-66 total score improved by 1.4% (p  = 0.002), as did scoring in 
domain D for standing (1.9%, p  = 0.109) and domain E for walking, jumping 
and running (2.6%, p  = 0.021). Gait speed or distance walked during 6 min did 
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not improve from baseline to follow up. Patient-reported outcome showed 
improvement in 4 patients in altogether 14 ratings. Caregiver-reported 
outcome reported benefits in 3 participants in altogether 10 ratings.

Conclusion: Repetitive neuromuscular magnetic stimulation promises to be  a 
meaningful, non-invasive treatment approach for children and adolescents 
with bilateral spastic cerebral palsy that could be offered in a resource-efficient 
manner to a broad number of patients. To further investigate the promising 
effects of repetitive neuromuscular magnetic stimulation and its mechanisms 
of action, larger-scaled, controlled trials are needed as well as comprehensive 
neurophysiological investigations.

KEYWORDS

congenital brain injury, motor impairment, selective motor control, physical exercise, 
neurostimulation, neuromodulation

1. Introduction

Bilateral spastic cerebral palsy (BSCP) caused by congenital or early 
acquired brain injury, yields a prevalence of 2.11 per 1,000 births and is 
one of the most common pediatric neurological disorders (1–3). 
Multimodal treatment aims to promote activity to foster and maintain 
the child’s capabilities and performance in activities of daily living 
supporting participation and quality of life (4–7).

Within new treatment concepts developing over the last years, the 
focus has changed somewhat away from a priori managing spasticity 
toward addressing the two other muscular key features of BSCP - weakness 
and impaired selective motor control, as well. Given the high likelihood of 
developing a crouch gait pattern during trajectory, training of the lower 
limb extensors and hip abductors becomes important to prevent and 
counteract the development of biomechanical malalignments of the lower 
extremity and pelvis, decrease compensatory trunk lean and enhance 
balance as well as endurance in standing and walking (8–16). In addition 
to orthoses that support foot leverage as well as aids supporting standing 
and walking, conventional and instrumented physiotherapy (e.g., robot-
assisted treadmill training, whole body vibration training), are helpful 
approaches to improve power and endurance in children with BSCP (4).

Limitations of these treatments might occur if a child is unable to 
selectively control a specific muscle/muscle group, reducing its efficacy 
and sustainability. However, additional externally applied stimuli could 
favor sensorimotor processing during motor training leading to a higher 
efficiency to overcome these boundaries. By triggering sensorimotor 
network reorganization, motor learning could be fostered on the long-
term. Repetitive neuromuscular magnetic stimulation (rNMS) combined 
with a task-specific motor training represents such a safe, well-accepted 
and feasible non-invasive, non-pharmacological, innovative approach of 
neuromodulation “from bottom up” (17–21).

rNMS is based on the principle of electromagnetic induction. A 
copper-winded coil is located above the target muscle/muscle groups, e.g., 
the gluteus muscles. The stimulation system evokes a magnetic field 
surrounding the stimulation coil. Based on the principle of electromagnetic 
induction, this magnetic fields in turn provokes an electric current in the 
tissue beneath (17–20). In this region, terminal motor branches are 
activated and a muscle contraction occurs (20). At the same time 
proprioceptive afferent information increases by indirect stimulation via 
muscle spindles and mechanoreceptors by the muscle contraction itself 
and directly via stimulation of terminal afferent nerve branches of the skin 
and joint capsule. This afferent information input results in cortico-spinal 

and cortico-cortico neuromodulation triggering sensorimotor network 
and cortical (re-) activation and (re-) organization (17–19).

Our research group developed a protocol of a functional rNMS 
(frNMS) training, that was applied to the gluteal muscles including 
children and adolescents with BSCP Gross Motor Function 
Classification System (GMFCS) level II and III.

This prospective study aimed to assess the clinical effects of repetitive 
neuromuscular magnetic stimulation in combination with a personalized 
functional physical training offered to children and adolescents with 
bilateral spastic cerebral palsy. The primary aim of the study was to assess 
the clinical effects of the frNMS intervention targeting to the gluteal 
muscle on gross motor function, in particular standing and walking 
capability. It was hypothesized, that gross motor function is improved 
after the intervention.

Here, data on the clinical effects assessed by clinician-observed, 
instrumented as well as a most recent patient-reported outcome measure 
are presented. The respective instruments were chosen to reflect the 
domains of activity and participation according to the international 
Classification of Functioning, Disability and Health, Children and Youth 
Version (ICF-CY) (22).

2. Methods

2.1. Ethics statement

The study protocol was approved by the institutional review board 
(vote 20–604). The study was conducted in accordance with the 
declaration of Helsinki and registered at the German Registry for Clinical 
Studies (DRKS00023766). Informed written consent of participants and 
their guardians was a perquisite for participating the study.

2.2. Study design

Monocenter, uncontrolled, prospective, open-label clinical study. A 
baseline assessment was performed within 6 days prior to the first therapy 
session; the clinical follow-up (FU) assessment took place within 6 days 
after the last session (Gross Motor Function Measure (GMFM-66), 
10-meter-walking-test (10MWT), 6-min-walking-test (6MWT)) (23–27). 
At baseline and at 6 weeks after the last session (FU-6) participants and 
caregivers completed the Gait Outcome assessment List (GOAL) (28, 29).
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2.3. Study population

Patients with BSCP, who are regularly seen in the institution’s 
outpatient clinic, were screened for eligibility for participating in the 
study. Inclusion criteria implied diagnosis of BSCP, Gross Motor 
Function Classification System (GMFCS) Level I to III, age between 6 
and 18 years and insufficient hip extension during walking and/or 
standing. Exclusion criteria comprised general contraindications of 
magnetic stimulation (implanted biomedical devices incl. Shunt 
systems, ferromagnetic implants, epilepsy), confirmed attention deficit 
(hyperactivity) disorder, intellectual disability (IQ < 70), orthopedic 
surgery or injection of botulinum toxin affecting the lower extremity 
within the previous three months and a hipflexion contracture >15°. 
In case the patient was eligible to take part in the study, the patient and 
their caregivers were offered the functional rNMS intervention and 
educated about the following treatment.

2.4. frNMS intervention

The frNMS intervention was composed of 12 a priori scheduled 
sessions taking part within 3 weeks. All training sessions were 
performed by trained therapists under the supervision of a board-
certified physiotherapist, who was trained in BSCP on an expert level. 
Every therapy session included 20 min of net stimulation time (10 min 
per body side). For stimulation protocol and set up of frNMS refer to 
Table 1 (Grosse et al., Functional repetitive neuromuscular magnetic 
stimulation targeting to the gluteal muscles in children with bilateral 
spastic cerebral palsy – safety, feasibility, and patient-reported outcome, 
submitted to Frontiers in Neurology February 8th 2023).

2.5. Clinician-observed outcomes

Participants completed the 10MWT at self-selected walking speed 
(SSWS), followed by maximum walking speed (MWS) two times each. 
In the 6MWT, the distance (in meters) walked in self-selected pace for 
6 min was measured and the times needed to rest (in seconds) including 
periods of standing or leaning against the wall were documented. The 
timing was stopped after having completed the six minutes or when the 

participant would interrupt the test because of fatigue (including sitting 
down). Participants were asked to wear the same footwear, orthoses or 
gait aid at both assessments (26, 27). In a previous study the MDCs95 
(minimal detectable change 95% confidence level) for the 10MWT at 
maximum walking speed was reported as 4.3 s and 17.7. s for GMFCS 
level II and III, respectively (27). For the 6MWT MDCs95 were reported 
with 64 m and 47.4 m for GMFCS level II and III, respectively (27).

GMFM-66 comprises activities of five dimensions including (A) 
lying and rolling (4 items), (B) sitting (15 items), (C) crawling and 
kneeling (10 items), (D) standing (13 items) and (E) walking, running 
and jumping (24 items). Each item is scored on a 4-point ordinal scale 
ranging from 0 to 3 (0 = no task initiation; 1 = initiation but <10% of 
task completed; 2 = initiation and 10–99% of task completed; 
3 = completion of task) (23, 24, 30, 31). Minimum clinically important 
differences (MCID) are available across all GMFCS levels for total 
score, dimension D and E (32).

2.6. Patient and caregiver-reported effects

At baseline and FU6, patients and their caregivers completed the 
Gait Outcomes Assessment List (GOAL) in its German paper-based 
version (28). GOAL is a questionnaire evaluating gait priorities and 
functional mobility of children with CP. The child and their caregivers 
assess the child’s performance and perception across seven domains 
covering altogether 48 items, respectively. Domain A: activities of 
daily living and independence; domain B: gait function and mobility; 
domain C: pain, discomfort, and fatigue; domain D: physical activities, 
sports and recreation; domain E: gait pattern and appearance; domain 
F: use of braces and mobility aids; domain G: body image and self-
esteem. Results entail a total GOAL score and individual domain 
scores (28, 29). To this day, no MCID have been reported. For the 
analysis on the individual level, a score change of ≥5 points was 
considered as improvement based on available test–retest data (28).

2.7. Data management

Patient characteristics, data collected during assessments and 
details of treatment during frNMS sessions were documented using 

TABLE 1 Stimulation protocol of the frNMS intervention targeting to the gluteal muscles.

Stimulation system

Round coil
12.5  cm 
diameter of the 
copper winding

3 Tesla max. 
Output

Integrated oil 
cooling system

Rectangular pulse 
shape

412 μs pulse 
duration

Stimulation protocol

ON-time (train) OFF-time (break) Frequency Duration Total trains Per exc. Total stimuli per exc.

3 s. (3 bursts per train) 6 s. 25/35 Hz alternately 2 min 14 1,155

Treatment protocol

Set of 21 physiotherapeutic 

exercises focusing on the 

gluteal muscles (hip 

extension, abduction, 

external rotation)

5 Exercises repeated for 

2 min on both body 

sides (including starting 

with “warm up”)

14 repetitions per 

exercise and body 

side

12,600 total stimuli per 

session during 

performance of physical 

exercises

Intensity (% of max. Output of the stimulator) was 

individually adopted for every exercise and body side 

during each session.

cm, centimetres; Hz, hertz; max., Maximal; ms, milliseconds; Nbr., Number; sec., seconds.
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paper-based clinical report forms and entered electronical Microsoft 
Excel data sheets (Microsoft Office Professional Plus 2016, Microsoft, 
Redmond, Washington, USA). Data entry was cross-checked by two 
independent analysts.

2.8. Statistical analyses

The statistical analyses were conducted using Microsoft Excel 
(Microsoft Office Professional Plus 2016, Microsoft, Redmond, 
Washington, USA) and SPSS (version 26/27; IBM SPSS Statistics for 
Windows, Armonk, NY, USA). If participants did not perform one of 
the assessments, they were excluded from the respective analysis. 
Absolute and relative frequencies, means, standard deviations (SDs), 
medians, and ranges were generated for subject and intervention 
characteristics including patient reported and clinical outcome.

All datasets were tested for normal distribution, by using the 
Shapiro-Wilks test and thereafter for statistically significant changes 
from baseline to FU or FU-6 with adequate tests: normally distributed 
10 MWT (at maximum walking speed) and 6 MWT, GMFM-66 
(except dimension D), GOAL scores of caregivers (except domains A, 
E, and G) as well as GOAL scores of participants (except domains 
total, B and E) by paired t-test; not normally distributed 10MWT (at 
self-selected walking speed), GMFM-66 D, remaining GOAL scores 
of caregivers and participants by Wilcoxon Signed-Rank test. The level 
of significance was set at p < 0.05.

3. Results

Eight children and adolescents with BSCP took part in the study 
(5 females, mean age at baseline: 10.4 ± 2y5m; Table 2). Regarding 
10MWT and 6MWT no clinically meaningful change was observed 
– nor on the individual, nor on the group-level (10MWT: SSWS: 
p = 0.246; MWS: p = 0.116; 6MWT: p = 0.688; Table 3).

The GMFM-66 total score significantly improved from 68.6 (SD 8.8) 
to 70.0 (SD 9.4) (∆ + 1.4), corresponding to a large sized clinically 
meaningful effect (p = 0.002) driven by medium effect sized benefits in 
two and large effect sized benefits in four participants (Table 3). Referring 
to domains A to C, seven participants reached maximum scores (100%) 
at baseline without any change in performance at FU, one patient reached 
98,6% at baseline and 100% at FU. In domain D, three participants 
experienced a clinical meaningful improvement of large effect size; 
regarding dimension E clinically relevant changes of medium effect size 
were reported in two patients, and of large effect size in two other 
patients (Table  3). On the group level, the score for dimension E 
improved from 63.2 to 65.8 (∆ + 2.6), displaying a statistically significant 
clinically meaningful change of large effect size (p = 0.021). Not any 
participant experienced a decrease in dimension D, E nor total score.

By GOAL, one participant reported improvement across all 
domains resulting in a 39% increase in his total score (Table 4). In 
addition, two other participants reported improvements in domain D 
(physical activities, sports & recreation), two participants in domain 
F (use of braces & mobility aids), one in B (gait function & mobility), 
one in C (pain, discomfort, & fatigue), and one other in G (body 
image and self-esteem), respectively. Caregivers reported 
improvements for one participant in domain A (activities of daily 
living & independence), B, D, E (gait pattern & appearance) and 

F. Further, improvement was reported for another participant in 
domain C, D, F and G, and another participant for domain E, 
respectively (Table 5). On the group level, improvements did not reach 
significance neither for patients nor caregivers (p > 0.05). A decrease 
of ≥5 points was reported for one patient each in domains B, D, F, and 
G, respectively.

4. Discussion

Eight children with BSCP GMFCS level II and level III underwent 
a personalized frNMS intervention targeting to the gluteal muscles to 
improve functioning of lower limb extensors and hip abductors 
aiming at an improvement of balance and endurance during standing 
and walking (Grosse et  al., Functional repetitive neuromuscular 
magnetic stimulation targeting to the gluteal muscles in children with 
bilateral spastic cerebral palsy – safety, feasibility, and patient-reported 
outcome, submitted to Frontiers in Neurology February 8th 2023).

These goals were accomplished as reflected by GMFM 
assessments. The increases in domain D “standing” of +1.9%, domain 
E “walking, running and jumping” of +2.6% and GMFM total score 
of +1.4% reflect clinically meaningful improvements in WHO-ICF 
domain activity.

As the multimodal treatment approach to BSCP already comprises 
a relevant number of interventions to choose from on an informed 
basis, it is important to set the outcomes achieved by frNMS in light 
to other instrumented training-based interventions and to highlight 
its difference against the other modalities (4).

First, robot assisted treadmill training represents an important 
option for children with BSCP (25, 26, 34–39). On the group level, 
reaching large effect sized changes in dimension D, E and GMFM-66 
total score, the benefits achieved by the frNMS intervention pointed 
in the same direction than the effects reported for robot-assisted 
treadmill training timely after 12 sessions training during 3 weeks in 
four different publications (n = 14, 18, 20, and 83 children with BSCP 
GMFCS level I to IV, mean age (years) 8.2 ± 5.4; 11.4 ± 4.9; 11.0 ± 5.1; 
10y8m ± 6y1m) (25, 26, 38, 39).

Regarding GMFCS level homogeneity, this study best compares 
to the report of Weinberger et al., who observed changes in GMFM in 
18 children (mean age 5.9 years) affected by BSCP GMFCS level II and 
III (40). In their study improvement achieved during each of three 
treatment blocks was particular emphasized in dimension D. The 
participants of the current frNMS study were older and started at a 
relevantly higher functional level given their baseline GMFM total, 
dimension D and E scores than the participants of the robot-assisted 
treadmill training study. Interestingly, although functional levels 
within their specific GMFM level were already quite high at baseline, 
beneficial effects could still be achieved by frNMS. This may point at 
the importance of specifically addressing impaired or missing selective 
motor control as a highly relevant treatment approach. Besides 
counteracting weakness, the massive proprioceptive inflow caused by 
the externally triggered muscular contraction is highly likely 
promoting central network (re-) activation and reorganization. 
Compared to robot assisted treadmill training, frNMS is far less 
resource-intensive, its application is easily trained and well feasible. 
These advantages could make it available to a higher number of 
children affected by CP with a wide-spread distribution of 
this approach.
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TABLE 2 Characteristics of children with bilateral spastic cerebral palsy, who underwent the frNMS intervention.

N Sex Age* GMFCS Level Neuro-imaging GA (w + d) BW (g) Previous interventions Mobility-related treatment goals

1 M 10y 7 m III PVL 32 + 3 1,820 3*BoNT, 6*RAGT To walk short distance in and outside without assistance, to climb 

and step down stairs by himself, perform toileting independently

2 F 8y 11 m II PVL 28 + 5 1,040 2*BoNT, 7*RAGT To be able to stand upright, increased endurance for standing 

upright and walking without assistance, stopping from walking, 

turn around on the spot while walking

3 M 10y 3 m II MRI without 

corresponding finding

41 + 4 3,930 3*BoNT, 1*WBV, 7*RAGT

1*frNMS

SDR in 2017

To ride a bike without training wheels, decreased body sway 

during walking, increased stability during walking

4 F 6y 11 m II PVL 29 + 3 1,140 6*BoNT, 1*RAGT To climb and step down stairs by herself without railing, 

increased endurance for walking with and without orthoses, 

keeping left heel down when walking with orthoses, increased 

stability for standing when being pushed, be able to perform 

one-leg-jump right and left, keeping left foot on pedal while 

riding a bike

5 F 13y 2 m III PVL 29 + 1 1,355 2*BoNT, 6*RAGT To climb stairs by herself without railing, to be able to stand 

upright and holding balance, increased walking endurance, 

increased leg stretching while walking

6 F 14y 3 m III PVL 26 + 2 730 1*RAGT Increased endurance for walking, increased balance while 

standing and walking, walking upstairs without railing, jumping 

far with both legs, to be able to dress herself faster

7 F 11y 11 m III PVL 33 + 0 2,150 6*BoNT, 2*RAGT Standing up with help, increased walking endurance and more 

effortlessly walking with support/walker/orthoses, to be able to 

stand free with orthoses

8 M 7y 1 m II PVL 40 + 0 2,975 3*BonT, 1*RAGT, 1*WBV Increased walking endurance, increased stability while walking, 

walking with heels on the ground, sitting on the ground without 

support by her own arms, to be able to ride a bike with training 

wheels

BoNT, Botulinumtoxin; BW (g), birth weight (in grams); DAFO, dynamic ankle foot orthesis; F, female; GA (w + d), gestational age (in weeks and days); GMFCS, Gross Motor Function Classification System; L, left; M, male; m, months; MRI, magnetic resonance 
imaging; N, number of participant; PVL, periventricular leukomalacia; R, right; RAGT, Robotic Assistant Gait Training; SDR, Selective Dorsal Rhizotomy; WBV, Whole Body Vibration; y, years; *Age at baseline assessment.
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Secondly, whole body vibration (WBV) represents another treatment 
option offered in neurorehabilitation for children with CP (4, 41). By 
introducing side-alternating WBV to conventional physical therapy, 15 
children with BSCP (mean age 9.6 years; GMFCS level not specifically 
reported) achieved significant improvements in dimension D and E after 
12 weeks of training, with effects in dimension E being significantly 
higher than in the control “standard physiotherapy” group (42). Four 
additional WBV studies were not comparable to this frNMS study given 
differences in study design and set up of the intervention (continuous 
training over 6 months, home-based training or intensive functional 
blocks of interval rehabilitation) (43–46).

Neuromuscular electrical stimulation (NMES) acts very similar 
to repetitive neuromuscular magnetic stimulation (4). In two 
studies including 11 and 20 children in the experimental group (age 
5 to 11 years and 8.6 ± 2.8 years, GMFCS level not specifically 
reported), the gluteal muscles were electrically stimulated adjuvant 
to conventional physical exercises over 4 to 8 weeks (47–49). In 
these studies, this combination for the gluteal muscles exhibited 
clinically meaningful benefits regarding dimension D and for 
dimension E (48, 49). In the study by Mohanty et al., these effects 
were significantly higher compared to the control group receiving 
conventional physical treatment only. Given the technical 

TABLE 3 Clinical effects of frNMS targeting to the gluteal muscles.

Assessment
10 MWT 6 MWT GMFM-66

SSWS (s) MWS (s) Distance (m) D E Total Percentiles

Patient
GMFCS 
Level

BL FU BL FU BL FU BL FU BL FU BL FU BL FU

1 III --- --- --- --- --- --- 84.6 84.6 36.1 38.9 61.5 62.4 85 90

2 II 8.2 9.0 4.3 4.5 393 426 82.1 82.1 70.8 73.6 69.6 70.8 55 60

3 II 8.3 7.6 3.2 3.6 500 456 89.7 89.7 86.1 87.5 77.5 78.3 75 75

4 II 11.7 9.6 4.3 4.1 324 343 82.1 82.1 77.8 77.8 72.2 72.2 85 80

5 III 12.6 10.7 8.1 5.3 350 312 79.5 82.1 61.1 66.7 67.0 68.9 n.a. n.a.

6 III 9.2 8.6 7.6 7.2 392 408 79.5 79.5 65.3 72.2 67.7 70 n.a. n.a.

7 III 25.5 14.2 14.1 12.3 170 215 43.6 48.7 11.1 12.5 51.6 53.1 40 50

8 II 9.5 10.8 3.9 2.9 618 625 84.6 92.3 97.2 97.2 81.9 84.0 >97 >97

Mean (SD) 12.1 

(5.7)

10.1 

(2.0)

6.5 

(3.6)

5.7 

(2.9)

392.4 

(130.0)

397.9 

(119.3)

78.2 

(13.4)

80.1 

(12.5)

63.2 

(26.0)

65.8 

(25.7)

68.6 

(8.8)

70.0 

(9.4)

-- --

p = 0.246 p = 0.116 p = 0.688 p = 0.109 p = 0.021 p = 0.002 --

Time taken for the 10-m-walking test (10MWT) for self-selected (SSWS) and maximum walking speed (MWS), distance walked in meters within the 6-min-walking test (6MWT) and total 
scores of GMFM-66 incl. scores of dimension D and E at baseline (BL) and follow up (FU); bold printed = change corresponding to a large [medium] sized effect of ≥ 5.3 [≥3.3]/ ≥2.4 [≥1.5] in 
dimension D, of ≥ 4.5 [≥2.8]/ ≥3.0 [≥1.8] in dimension E and of ≥ 1.5 [≥1.0]/ ≥1.2 [≥0.7] in total score for GMFCS level II/III, respectively. Across all GMFCS level MCID is ≥ 1.8 [≥1.2]/ ≥2.6 
[≥1.6]/ ≥1.3 [≥0.8] for dimension D, E and total score, respectively (32). GMFM-66 percentiles according to (33); n.a. due to age > 12 years.

TABLE 4 GOAL total and domain scores reported by participants at baseline (BL) and follow up (FU) each.

Domain Total A B C D E F G

Patient
GMFCS 
Level

BL FU BL FU BL FU BL FU BL FU BL FU BL FU BL FU

1 III 40.8 56.7# 43.2 54.3# 47.8 56.7 85.7 100# 10.4 16.7 30.6 52.8# 8.3 66.7# 41.7 62.5#

2 II -- — -- -- -- -- -- -- 23.8 54.8# -- -- 75.0 87.5# -- --

3 II 78.7 80.8 91.4 95.1 77.8 87.0 100 100 68.8 54.2# 66.7 66.7 83.3 91.7 62.5 70.8

4 II ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** **

5 III 74.0 74.0 93.8 93.8 80.0 80.0 97.1 97.1 47.6 47.6 58.3 58.3 -- -- 62.5 62.5

6 III 59.1 59.6 87.7 85.2 61.1 61.1 69.0 80# 29.2 29.2 55.6 55.6 66.7 66.7 40.0 40.0

7 III *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** ***

8 II **** **** **** **** **** **** **** **** **** **** **** **** **** **** **** ****

Mean (SD) - - 79.0 

(24.0)

82.1 

(19.0)

- - 88.0 

(14.1)

94.3 

(9.6)

36.0 

(22.7)

40.5 

(16.9)

- - 58.3 

(34.0)

78.2 

(13.3)

51.7 

(12.5)

59.0 

(13.2)

Median 66.6 66.8 - - 69.5 70.6 - - - - 57.0 57.0 - - - -

p = 0.181 p = 0.376 p = 0.371 p = 0.187 p = 0.575 p = 1.000 p = 0.228 p = 0.235

Bold/italic printed = increase/decrease of ≥ 5 points; # increase/decrease ≥ 10 points; participant 2 completed dimension D and F only at FU6. ** not reported as patient underwent 
percutaneous myofasciotomy during interval; *** participant herself was not available for long-term follow up; **** participant was not able to complete the questionnaire due to insufficient 
literacy in German.
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advantages together with the painlessness of magnetic stimulation, 
it is highly likely that children and therapists will favor rNMS over 
NMES (17–19).

Another way of non-invasive brain stimulation is the application 
of transcranial magnetic or direct current stimulation. Here, 
specifical cortical regions are targeted to facilitate or inhibit 
networks related to motor function and motor learning. Usually, 
transcranial neurostimulation is combined with physical or 
occupational training aiming at a promotion of mechanisms of 
neuroplasticity. With regard to gross motor function no studies 
exploring effects of transcranial magnetic stimulation (TMS) are yet 
available. But, for transcranial direct current stimulation two 
studies reported benefits in domain D  and domain E when adding 
tDCS of the dominant or ipsilesional M1 to treadmill or virtual 
reality training (10 sessions a 20 min each; 10/12 children, GMFCS 
level II and III; mean age 8.2 ± 1.6) (50–53).

Regarding GOAL, improvement in at least one domain was 
reported by 4 participants and 3 caregivers, respectively. Change was 
>10 in 66% of participants’ and in 50% in caregivers’ improved ratings, 
highly probably translating to meaningful effects on the individual 
level for the children’s everyday lives. As the GOAL is a quite recent 
tool, no interpretation of the numerical change regarding a minimal 
clinical important difference or comparison to effects attained during 
other interventions are available, yet.

Almost all of the eight patients performed very well in 10MWT 
and 6MWT at baseline compared to the available GMFCS-appropriate 
reference data and to other studies reporting on children affected by 
BSCP (26, 27, 35, 37). Ceiling effects together with the limited sample 
size may have hampered discrimination of treatment effects. Further, 
interpretation of the walking tests is hampered by the large range of 
time spans the MDC95 at MWS are based on and the absence of 
MDC95 for SSWS (27). However, as other research groups detected 
significant changes in walking speed and/or endurance by these 
clinical outcome measures after robotic assisted/resistance treadmill 
training, WBV, and tDCS, larger-scaled data for frNMS should 
be awaited prior drawing distinct conclusions on these parameters 
(26, 35, 37, 41, 50, 51, 54, 55).

Different mechanisms of action are likely to promote the beneficial 
effects of frNMS. The combination of painless neurostimulation 
inducing a physiologically sized contraction together with a set of 
tailored exercises directly enhances power of the stimulated muscle and 
improves motor units’ recruitment (17, 18, 56–66). A massive 
proprioceptive inflow to the central nervous system is triggered  - 
indirectly via muscle contractions through muscle spindles and 
mechanreceptors and directly via stimulation of terminal branches of 
afferent nerves (17, 18, 63–68). Centrally, sensorimotor network 
activation and reorganization may represent the key to promote 
voluntary activation of the target muscles. In addition, down regulation 
of spinal hyperreflexia may contribute to the positive effects of rNMS, 
as well (69, 70).

Two previous publications reported about a static rNMS treatment 
targeting the peroneal and tibial nerves in children with CP (71, 72). 
In the first report, 5 sessions of rNMS (1800 stimuli during each) 
resulted in a decrease of plantar flexor spasticity on the more affected 
side of five children with BSCP. Spasticity was measured by manual 
dynamometer assessment pre and post each session without any 
longstanding follow up measurements. In a succeeding report, the 
same protocol was applied to a boy affected by spastic hemiparesis. In 
this case the following observations were described: a decrease of 
plantar flexor spasticity, that sustained at 45 days post intervention; an 
increase of active and passive ankle dorsiflexion, that sustained at 
15 days but not at 45 days post intervention; improved gait parameters 
(stride length, velocity, cycle duration, cadence), that sustained at 
15 days but not at 45 days post intervention (71, 72). These 
observations are congruent to the improvements reported in our study 
regarding GMFM dimension E tasks.

In our institution we chose a very personalized frNMS approach. 
The definition of individual goals prior to the intervention supports 
self-empowered decision making and facilitates choice of the exercises. 
Moreover, the flexibility of the personalized set up allows for quick 
adaptions of training intensity and difficulty with consideration of 
endurance of participants during each single session.

The uncontrolled design and the limited sample size together 
with the personalized approach do not allow for any generalizable 

TABLE 5 GOAL total and domain scores reported by caregivers at baseline (BL) and follow up (FU) each.

Domain Total A B C D E F G

Patient
GMFCS 
Level

BL FU BL FU BL FU BL FU BL FU BL FU BL FU BL FU

1 III 39.1 44.1 24.7 40.7# 37.0 43.0 85.7 85.7 10.4 20.8# 36.1 41.7 50.0 58.3 45.8 29.2#

2 II 70.5 70.9 74.1 75.3 73.0 76.0 -- -- 72.2 72.2 69.4 69.4 75 62.5# 58.3 58.3

3 II 71.7 69.8 88.9 90.1 81.0 81.0 95.9 93.9 42.9 35.4 61.1 61.1 50.0 50.0 50.0 50.0

4 II ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** **

5 III 49.4 49.4 69.1 69.1 42.2 42.2 81.6 81.6 16.7 16.7 36.1 36.1 -- -- 50.0 50.0

6 III 47.2 46.8 79.0 79.0 61.4 61.4 -- -- 14.6 14.6 33.3 33.3 50.0 50.0 45.8 45.8

7 III 57.0 64.1 69.1 67.9 62.9 61.3 91.8 98.0 20.8 31.3# 58.3 58.3 58.3 91.2# 37.5 58.3#

8 II 63.3 66.6 70.4 74.1 69.0 61.0 95.9 98.0 40.5 38.1 30.6 47.2# 75 75 62.5 62.5

Mean (SD) 56.9 

(12.3)

58.8 

(11.6)

- - 60.9 

(16.0)

60.8 

(14.7)

90.2 

(6.4)

91.4 

(7.4)

31.2 

(22.1)

29.4 

(20.6)

- - 59.7 

(12.3)

64.5 

(16.0)

- -

Median - - 70.4 74.1 - - - - - - 36.1 47.2 - - 50.0 50.0

p = 0.170 p = 0.100 p = 0.960 p = 0.417 p = 0.504 p = 0.371 p = 0.478 p = 1.000

Bold/italic printed = increase/decrease of ≥ 5 points; # increase/decrease ≥ 10 points; −, not completed; ** not reported as patient underwent percutaneous myofasciotomy during interval.
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conclusions about the effectiveness of the frNMS intervention. All 
treatments were performed according to the best clinical practice by 
selecting exercises that contribute the most to the achievement of the 
goals set by the participants given their current level of functioning. 
However, some children may profit from longer stimulation times, a 
higher number of different exercises during each session, a higher 
stimulation intensity or more sessions within the same or a longer 
time frame. Regarding the choice of outcome parameters ceiling 
effects may have played a role to not detect any change on the group 
level by 10MWT and 6MWT. The timed up and go test may be a 
reasonable alternative for future studies, as may be the inclusion of a 
tool specifically designed to assess selective motor control (i.e., 
Selective Control Assessment of the Lower Extremity – SCALE) (73, 
74). Objective diagnostic measures to assess for clinical and 
neurophysiological effects (e.g., instrumented posturography, 3D gait 
analysis, EMG monitoring, muscle ultrasound, TMS mapping, fMRI) 
should be implemented within a future randomized, controlled trial. 
Future investigations on biomarkers serving as biological predictors 
of response as well as reflectors of treatment responsiveness are 
highly needed to stratify therapeutic offers and resources in the most 
effective and efficient way (39, 52). Although based on a limited 
sample size, the current findings are a first step to operationalize 
endpoints and to calculate sample size based on effects sizes for large-
scale, controlled clinical trials to further assess the effectiveness of the 
frNMS intervention.

5. Conclusion

For children affected by BSCP, motor training is often hampered 
by impaired selective motor control of the target muscles. The 
combination of physical exercise and repetitive neuromuscular 
magnetic stimulation (rNMS) bypasses this challenge. This prospective 
pilot study aimed to assess clinical effects of a newly developed 
functional rNMS intervention targeting to the gluteal muscles with 
regard to improve gross motor function, in particular standing and 
walking capability. The externally induced muscular contraction 
provokes a massive proprioceptive information inflow to the central 
nervous system and promoted motor achievements of clinically 
meaningfulness in this small sampled study. Compared to other 
technical supported training methods, rNMS could be easily provided 
to a broad number of paediatric patients as its application is not limited 
to tertiary centers. frNMS as developed by our research group has the 
potential to become an important treatment approach in the 
armentarium of comprehensive motor rehabilitation programs for 
children and adolescents affected by congenital or acquired brain injury.
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Glossary

6MWT 6-min-walking-test

BSCP Bilateral spastic cerebral palsy

CP Cerebral palsy

domain A Activities of daily living & independence

domain B Gait function & mobility

domain C Pain, discomfort, & fatigue

domain D Physical activities, sports & recreation

domain E Gait pattern & appearance

domain F Use of braces & mobility aids

domain G Body image and self-esteem

frNMS Functional repetitive neuromuscular magnetic stimulation

FU Follow-up

FU-6 6 weeks after the last session

GMFCS Gross Motor Function Classification System

GMFM-66 Gross Motor Function Measure

GOAL Gait Outcome assessment List

ICF-CY International Classification of Functioning, Disability and Health, Children and Youth Version

MCID Minimum clinically important differences

MDCs95 Minimal detectable change 95% confidence level

NMES Neuromuscular electrical stimulation

rNMS Repetitive neuromuscular magnetic stimulation

SCALE Selective Control Assessment of the Lower Extremity

SDs Standard deviations

SSWS Self-selected walking speed

TMS Transcranial magnetic stimulation

WBV Whole body vibration
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