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Objective: Anti-N-methyl-D-aspartate receptor encephalitis (anti-NMDARE) is 
autoimmune encephalitis with a characteristic neuropsychiatric syndrome and 
persistent cognition deficits even after clinical remission. The objective of this 
study was to uncover the potential noninvasive and quantified biomarkers related 
to residual brain distortions in convalescent anti-NMDARE patients.

Methods: Based on resting-state electroencephalograms (EEG), both power 
spectral density (PSD) and brain network analysis were performed to disclose 
the persistent distortions of brain rhythms in these patients. Potential biomarkers 
were then established to distinguish convalescent patients from healthy controls.

Results: Oppositely configured spatial patterns in PSD and network architecture 
within specific rhythms were identified, as the hyperactivated PSD spanning the 
middle and posterior regions obstructs the inter-regional information interactions 
in patients and thereby leads to attenuated frontoparietal and frontotemporal 
connectivity. Additionally, the EEG indexes within delta and theta rhythms were 
further clarified to be  objective biomarkers that facilitated the noninvasive 
recognition of convalescent anti-NMDARE patients from healthy populations.

Conclusion: Current findings contributed to understanding the persistent and 
residual pathological states in convalescent anti-NMDARE patients, as well as 
informing clinical decisions of prognosis evaluation.

KEYWORDS

anti-NMDAR encephalitis, EEG, power spectral density, brain network, clinical 
assessment

1. Introduction

As the most frequent human autoimmune encephalitis, anti-N-methyl-D-aspartate 
receptor encephalitis (anti-NMDARE) is characterized by diverse psychiatric and 
neurological features, such as memory impairment and psychosis (1, 2). In clinical practice, 
in addition to the evaluation from experienced physicians, the detection of IgG antibodies 
against the GluN1 subunit of the receptor in the serum and cerebrospinal fluid (CSF) has 
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long been the golden criterion for anti-NMDARE diagnosis (3, 4). 
Whereas the follow-up of antibody titers was not perfectly correlated 
with the disease course (5), antibodies may still be recognized in the 
CSF and serum of patients even after clinical recovery (6). Although 
75% of the patients have a favorable outcome with substantial 
recovery (7), persistent deficits in memory, attention, and executive 
functioning (8–12) still occur.

The diagnosis based on magnetic resonance imaging can 
be normal or nonspecific (13), providing limited diagnostic and 
prognostic value. Given a quantitative and specific method is 
lacking to guide noninvasive and precise evaluation for this 
disease, other objective tests seem to be  imperative to track 
therapy with a specific biomarker of brain activity, as well as to 
potentially monitor the treatment course. In this regard, the 
registration of spontaneous activity by electroencephalogram 
(EEG) seems to be a practical way, which has been extensively 
incorporated into clinical evaluations for its inexpensive, 
non-invasive, and widely available nature. EEG is abnormal in 
almost anti-NMDARE patients during the acute phase, showing 
disorganized background activity (1, 14), which seems to 
be useful in the clinical diagnosis of anti-NMDARE (15). Whereas 
the majority of previous EEG research concentrates on the raw 
signal manifestations during the acute stage (16, 17), further 
exploring the EEG biomarkers may have the potential for rapid 
diagnosis and prognostic evaluation of anti-NMDARE within 
varying courses. More importantly, scalp EEG provides a 
noninvasive and objective tool for studying the brain (dys)
function (18, 19); thus, EEG is believed to be capable to assess the 
brain deficits of anti-NMDARE patients even during 
convalescence, as well as to differentiate convalescent patients 
from healthy controls (HCs).

Hence, based on our previous studies which verified the 
negative effect of anti-NMDARE on the patient’s brain at different 
therapeutic stages, such as hyperactivated regional activity in 
hippocampus/parahippocampus and worse memory retrieval 
performance, etc. at the post-acute stage (20, 21), in the current 
study, quantitative EEG analysis was carried out to probe the role 
of the brain rhythmic alteration in the course of the anti-
NMDARE. Therein, we expected that the distinguished resting-state 
EEG metrics could be regarded as the biomarkers to quantify the 
therapy of anti-NMDARE and provide potential clinical guidance 
for the future follow-up of these patients. To achieve this, resting-
state EEG datasets of anti-NMDARE patients during the 
convalescence and gender- and age-matched HCs were collected. 
Theoretically, cortical oscillations play essential roles in a wide 
range of neural activities, especially since changes in spectral power 
by neurocognitive disease within specific rhythms have been wildly 
reported (22, 23). In addition, other than isolated brain regions, the 
network that helps reveal information propagation among spatially 
distributed regions (24) was also considered. As such, power 
spectral density (PSD) which provides valuable information on 
regional power characteristics of spontaneous activities was first 
investigated, and brain network analysis was performed to explore 
the intrinsic rhythmic difference between anti-NMDARE patients 
and HCs, which is expected to provide potential biomarkers for 
distinguishing convalescent anti-NMDARE patients from HCs, as 
well as tracking the therapeutic effect in future studies.

2. Materials and methods

2.1. Patients

Under the approval of the Ethics Committee of the First 
Affiliated Hospital, Zhejiang University School of Medicine, 36 
right-handed participants, including 18 convalescent anti-
NMDARE patients (15 females, age 27.22 ± 12.28, Table 1) and 18 
gender- and age-matched HCs (15 females, age 27.56 ± 11.51), were 
enrolled. Herein, all patients were diagnosed according to the 
detection of IgG antibodies for NMDA receptors and other typical 
clinical symptoms (1, 4). And in addition to the history of 
neurologic or psychiatric disorders, we also excluded the patient 
with abnormal lesions in magnetic resonance imaging (MRI) scans 
to exclude the possible coexisting conditions. Concerning the HC, 
these gender- and age-matched participants had been also 
confirmed to have no history of psychological or neurological 
disorders. Before resting-state EEG monitoring, all participants had 
fully understood the experimental protocol and signed the written 
informed consent.

2.2. Clinical status

Patients can be  diagnosed as stronger positive, positive, weak 
positive, and negative based on the antibody titers. And the modified 
Rankin Scale (mRS) was also measured to evaluate the neurological 
outcome per patient. In essence, patients are considered fully 
recovered (i.e., mRS = 0) if they can return to work; patients are 
considered mildly deficient (i.e., mRS = 1 or 2) if they can return to 
most daily activities and keep stable for more than 2 months; in other 
cases, patients were considered seriously deficient. Herein, all patients 
enrolled were considered in convalescence, as the antibody titer level 
was negative and the maximal mRS score was 1 according to the 
medical records (Table 1). In the meantime, we tested 8–18 antibodies 
of autoimmune encephalitis in the CSF and serum for all patients, and 
all of them showed only NMDA-IgG positive.

2.3. EEG data recording

The resting-state EEG was collected by 32-channel digital 
video-EEG systems (Nicolet v32, Natus Neurology Incorporated, 
Middleton, WI, USA). All electrodes were positioned in compliance 
with the international 10/20 system. The impedance of each electrode 
was kept below 5 kΩ, and electrode AFz was set as the reference. EEG 
was band-pass filtered at 0.01–100 Hz and sampled at 500 Hz.

2.4. EEG analysis

The analytical procedures are depicted in Figure 1 and consist of 
EEG pre-processing, PSD analysis, network analysis, and classification. 
The pre-processing aims to acquire artifact-free segments, and the 
following analyses will further explore the disease-induced aberrant 
patterns of resting-state rhythmic activity in convalescent patients. 
The details are described below.
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TABLE 1 Clinical and demographic information of the patients.

Participant Sex Age NMDAR-IgG 
onset

NMDAR-IgG 
recovery phase

mRS onset mRS recovery

Patient 1 F 50 1:32 1:1 5 1

Patient 2 F 32 1:32 1:1 5 0

Patient 3 F 15 1:32 1:1 5 0

Patient 4 F 22 1:32 1:10 5 0

Patient 5 F 25 1:32 1:1 2 0

Patient 6 F 20 1:32 1:10 3 0

Patient 7 F 24 1:32 1:1 5 0

Patient 8 M 46 1:3.2 0 5 1

Patient 9 M 28 1:32 1:10 5 0

Patient 10 M 58 1:32 1:1 5 0

Patient 11 F 22 1:32 1:10 5 0

Patient 12 F 15 1:10 1:1 5 0

Patient 13 F 17 1:10 1:1 5 0

Patient 14 F 29 1:32 1:1 5 0

Patient 15 F 19 1:32 1:10 5 0

Patient 16 F 21 1:10 1:1 5 0

Patient 17 F 29 1:32 1:10 5 0

Patient 18 F 18 1:32 1:1 5 0

FIGURE 1

Analysis procedures for resting-state EEG datasets of anti-NMDARE patients. (A) EEG pre-processing, (B) PSD analysis, (C) PLV network analysis, and 
(D) Classification.
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2.4.1. EEG pre-processing
The EEG datasets were first re-referenced to a neutral reference by 

the Reference Electrode Standardization Technique (REST) (25, 26). 
Thereafter, multiple standard procedures including the independent 
component analysis (27), 0.5–45 Hz bandpass filtering, 5 s data 
segmenting, and ±90 μV artifacts removal were carried out accordingly.

2.4.2. Power spectral density
For each participant, the remaining segments after preprocessing 

were trial-averaged, and the corresponding PSD was then calculated 
by Welch’s method within a frequency range of interest f, i.e., delta 
(0.5–4 Hz), theta (4–8 Hz), alpha (8–13 Hz), beta (13–30 Hz), and 
gamma (30–45 Hz). Subsequently, the scalp power topographies 
(SPTs) per band were plotted, and the absolute PSD (aPSD) was also 
evaluated. Specifically, based on the PSD of each frequency bin f, the 
aPSD value was defined and calculated as,
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where ξ denotes the types of anti-NMDARE patients or HCs.

2.4.3. PLV network
Based on the preprocessed EEG segments, the phase-locking 

value (PLV) was then applied to construct related functional brain 
networks (28). First, to assess the instantaneous phases, φu(t) and 
φv(t), of signals u(t) and v(t), the Hilbert transform (HT) was applied 
to establish the analytical signal H(t),
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where the P.V. is the Cauchy principal value. Consequently, the 
phases of the analytical signals, φu(t) and φv(t), are defined as,
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Then, the PLV can be calculated as,
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where N and t indicate the sample number and the time point, 
respectively. Δt denotes the sampling period, j is the j-th sample point, 
and wPLV represents the connection weight.

For each interested band, the weighted adjacency matrixes were 
formed to index the information exchange among all electrodes, and 
then matrices of all segments were averaged to obtain the final matrix 
for each participant.

2.4.4. Network properties
The characteristic path length (L) and clustering coefficient (C) 

were two essential network indicators reflecting the global and local 
information processing ability of brain networks, respectively, which 
can be computed by the brain connectivity toolbox (BCT, http://www.
nitrc.org/projects/bct/) (29) as,

 

C
M

w w w

w wi

j l ij il jl

j ij j ij
=

( )
−( )∈

∈

∈ ∈

∑
∑
∑ ∑

1

1

1 3

θ

θ

θ θ

,

/

 

(6)

 
L

M
L

N

d

Ni
i

i

j j i ij= =
−∈ ∈

∈ ≠∑ ∑
∑1 1

1θ θ

θ ,

 
(7)

where wij and dij represent the connection strength and the 
shortest weighted path length between node i and j, respectively. θ and 
M indicate the set of all nodes and the node number of the network, 
respectively.

2.4.5. Statistical analysis
Within each interested band, the independent sample t-test was 

statistically performed to quantify potential relationships, i.e., the 
differences in SPT, aPSD, network topologies, and properties, between 
the convalescent patients and HCs. Then, a false discovery rate (FDR) 
was performed to correct the p-values, in which the corrected 
significant p-values were verified to have at least p < 0.01.

2.4.6. Classification between the anti-NMDARE 
patients and HCs

Considering that PSD and functional networks reflect different 
aspects of spontaneous brain operation, both might provide 
complementary and comprehensive information for discrimination 
between anti-NMDARE patients and HCs. In this work, in addition 
to aPSD and network properties, the discriminative spatial pattern of 
the network (SPN) was also calculated (30). Hence, using the SPN 
features, aPSD, and network properties, we  further classified the 
convalescent patients from HCs by the support vector machine (SVM) 
with leave-one-out cross-validation (LOOCV) strategy (31). 
Thereafter, to evaluate the classification performance, the accuracy, 
specificity, and sensitivity were calculated as,
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where nPAs and nHCs represent the correct number of anti-
NMDARE patients and HCs, respectively. NPAs and NHCs represent the 
total number of anti-NMDARE patients and HCs, respectively.

3. Results

3.1. Differential scalp power topographies

Figure 2A exhibits the SPT patterns between convalescent patients 
and HCs in the five bands. Generally, in contrast to HCs, the EEG 
power of the convalescent patients experienced a significant 
enhancement within delta and theta bands (p < 0.01, FDR corrected), 
which were distributed in extensive frontal, parietal, and occipital 
regions. However, no differences were captured for the other three 
bands. Given the prominent variation of delta and theta SPT, the 

grand-averaged aPSD across all electrodes was calculated and 
statistically compared between both groups. As shown in Figure 2B, 
within both rhythms, the convalescent patients exhibit significantly 
increased aPSD, when compared to that of the HCs (p < 0.01).

3.2. Differential functional brain networks

In contrast to the PSD, functional network architectures for both 
interest bands (i.e., the delta and theta) show the opposite reorganized 
patterns (Figure 3A). Specifically, in the delta and theta bands, the PLV 
couplings spanning the frontal, temporal, and parietal lobes were 
attenuated for the convalescent anti-NMDARE patients in contrast to 
that of the HCs (p < 0.01, FDR corrected). Whereas, within the other 
bands, there only existed small portions of connections that exhibited 
significant differences. Figure 3B further shows the network properties 
of both bands, in which, the decreased C and longer L of the patients 
deviating from the HCs were found (p < 0.01), which coincided with 
the significantly reduced connections in Figure 3A.

3.3. Categorization into anti-NMDARE 
patients and HCs

Given the significant differences identified above, we  then 
investigated if these indexes could be regarded as biomarkers for 
anti-NMDARE identification. Thereinto, to capture the spatial 

FIGURE 2

Differential resting-state power spectrum density (PSD) between the convalescent patients and HCs. (A) Scalp topographies of PSD differences within 
the five bands. Red and blue regions represent the enhanced and suppressed EEG power of the patients compared to that of the HCs (p  <  0.01, FDR 
corrected), respectively. (B) Differential aPSD within the delta and theta bands. The blue and red bars indicate the HCs and patients, respectively. The 
symbol * represents p  <  0.01.
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network topologies, SPN was first applied to extract the inherent 
topological information. Notably, as exhibited in Figure 4, brain 
regions with significantly different network connections were 
highlighted with larger coefficients. Finally, by merging the aPSD, 
network metrics, and SPN features, we performed the classification 
of convalescent anti-NMDARE patients from HCs. Results show 
that an accuracy of 97.22%, specificity of 94.44%, and sensitivity of 
100% were achieved by SVM. Namely, only one out of 36 subjects 
were falsely classified into the opposite groups, indicating a good 
classification performance.

4. Discussion

Up to now, the objective and quantified evaluation of brain deficits 
in convalescent anti-NMDARE patients has not been achieved 
accurately and noninvasively. Developing specific and objective 
biological markers is of great significance for the prognosis evaluation 
and discharge of this disease. Given the diagnostic value of EEG has 
received increasing attention in anti-NMDARE, herein, resting-state 
EEG of convalescent anti-NMDARE patients was recorded during the 
hospitalization and based on which, SPTs and network patterns were 
investigated to identify the reorganized and distorted brain rhythms, 
as well as develop potential biomarkers for distinguishing convalescent 
patients from HCs.

In this study, the rhythm-specific SPTs that reflect the regional 
distortion of EEG power in convalescent anti-NMDARE patients 
are given in Figure 2A. Concretely, within both delta and theta 
rhythms, the larger rhythmic power, as well as the increasing aPSD, 

were found in patients and centralized mainly in the middle and 
posterior brain regions. It appeared that patients with anti-
NMDARE may experience disturbances in the brain rhythm even 
after undergoing treatment and recovering, especially for the delta 
and theta rhythms. Of note, the current results are globally in line 
with previous evidence showing that most patients have extensive 
EEG abnormalities characterized by generalized or focal slow delta-
theta activity (32), which might be  associated with a possible 
autoimmune etiology (33). As reported, delta oscillation is essential 
for the normal functioning of the human brain, and the increasing 
delta power has been widely documented in developmental 
disorders and pathological conditions, e.g., schizophrenia (34) and 
Alzheimer’s disease (35). Concerning the anti-NMDARE, the 
enhanced delta power in the NMDA-receptor antibodies positive 
model across a wide range of time-constant fluctuations has also 
been reported (36), while the weaker delta power thereby indicates 
a recovery in patients with encephalitis (37). Additionally, a higher 
delta peak is found to be associated with poorer clinical outcomes 
and thus indicates anti-NMDAR-mediated synaptic dysfunction 
(38). Considering theta activity is regarded as a credible EEG 
indicator of normal brain functions including attention and 
memory (39), and delta activity is involved in the integration of 
cerebral activity with homeostatic processes (40), the distortions of 
both rhythmic powers may thereby implicate the persistent and 
residual pathological states such as anhedonia or reward deficiency 
(40) in anti-NMDARE patients even after clinical recovery.

In contrast to the increasing EEG power, the attenuated network 
interactions that can quantify the dysfunctional resource allocations 
in these patients are depicted in Figure 3. In essence, previous studies 

FIGURE 3

Differential resting-state networks between convalescent patients and HCs. (A) Differential network topologies within the five bands. Red and blue 
lines represent enhanced and suppressed connectivity of the patients compared to that of the HCs (p  <  0.01, FDR corrected), respectively. 
(B) Differential network properties within the delta and theta bands. The red and blue bars represent patients and HCs, respectively. The symbol * 
represents p  <  0.01.
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have identified extensive impaired network connections in anti-
NMDARE patients during the acute stage, including the visual, 
lateral-temporal, frontal–parietal, and sensorimotor networks (41, 
42). Although these patients recruited in the current study had good 
therapeutical outcomes during convalescence, the inter-regional 
couplings within both delta and theta bands were still attenuated, in 
contrast to that of the HCs (Figure  3A). As proved in previous 
studies, the distorted frontal–parietal connections may relate to the 
psychotic symptoms (43), coinciding with the psychiatric model 
which relies on the frontal–parietal connectivity and NMDAR 
regulation (44). Additionally, abnormal frontal connectivity might 
also be  associated with disrupted executive function in anti-
NMDARE patients (45), while the attenuated occipital connectivity 
was assumed to be  accompanied by reduced visual acuity that 
correlated with disease severity (46). Collectively, current 
observations may suggest the residual expression of NMDARs across 
the extensive brain regions and emphasize its persistent detrimental 
influence in convalescent patients.

Another possible interesting issue was about the opposite 
alterations between EEG power and functional networks. This is an 
expected result as the hyperactivated EEG power across extensive 
brain regions (Figure  2A) in turn obstructs the inter-regional 
information interaction, thereby resulting in the reduced functional 
connectivity in Figure 3A. Further, the disturbed network topologies 
were also quantitatively measured by the changing network properties 
of C and L (Figure 3B). As network properties directly measure the 
network efficiency (47), smaller C and longer L consistently illustrate 
the decreasing information processing capacity and efficiency of the 

brain, and might also index the impaired brain efficiency in 
convalescent anti-NMDARE patients. As such, the human brain 
works in a relatively balanced way to effectively process information, 
the rhythmic alterations in patients were governed by the need for 
information processing, which may reveal the underlying 
pathomechanism of the anti-NMDARE.

Thereafter, specifically investigating in Figure 4, we observed that 
the SPN filters can directly capture the topological differences between 
the two groups, as brain regions with differentiated interregional 
information interactions were marked with larger coefficients. In the 
meantime, given the significant rhythmic alterations in patients found 
above, features of EEG power and network patterns were further fused 
to distinguish convalescent anti-NMDARE patients from HCs. As 
illustrated, the performance further confirmed that these EEG features 
were feasible and might be reliable biomarkers to quantify the residual 
brain deficits in convalescent patients, as an accuracy of 97.22% 
(specificity of 94.44% and sensitivity of 100%) was achieved. These 
consistently reminded us that the resting-state EEG metrics might 
be  the potential biomarker for future prognostic evaluation of 
convalescent anti-NMDARE patients, which could be  the future 
direction for the following studies.

One possible limitation would be  that the current analyses 
concentrated on the patients in the recovery phase, leaving the acute 
stage unmined. Therefore, in future works, patients in both the acute 
and recovery phases would be recruited, along with their EEG being 
collected. By performing related analyses, particularly the contrast 
between the two phases, the findings derived from our current study 
would be further validated.

FIGURE 4

The topographies of the SPN filters for the (A) delta band and (B) theta band, respectively.
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5. Conclusion

This study investigated the rhythm-specific distortions of EEG 
power and network topologies in anti-NMDARE patients even after 
clinical recovery. We found oppositely configured patterns of EEG 
power and networks in the delta and theta bands, as the hyperactivated 
brain power obstructs the inter-regional information interactions in 
patients and further leads to attenuated frontoparietal and 
frontotemporal couplings. Importantly, merging EEG power and 
network features of delta and theta bands helped reliably differentiate 
the convalescent patients from HCs. Taken together, our observations 
provide new insights into the neural mechanism underlying the 
residual brain deficits in convalescent anti-NMDARE patients, and the 
distinguished resting-state EEG metrics are also expected to serve as 
the biomarkers for quantifying the therapy of anti-NMDARE, as well 
as providing potential clinical guidance for the future follow-up of 
these patients.
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