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Background: Mutations in the dynein cytoplasmic 1 heavy chain 1 (DYNCI1H1)
gene are linked to malformations of cortical development (MCD), which may be
accompanied by central nervous system (CNS) manifestations. Here, we present
the case of a patient with MCD harboring a variant of DYNC1H1 and review the
relevant literature to explore genotype-phenotype relationships.

Case presentation: A girl having infantile spasms, was unsuccessfully administered
multiple antiseizure medications and developed drug-resistant epilepsy. Brain
magnetic resonance imaging (MRI) at 14 months-of-age revealed pachygyria.
At 4 years-of-age, the patient exhibited severe developmental delay and mental
retardation. A de novo heterozygous mutation (p.Arg292Trp) in the DYNC1H1 gene
was identified. A search of multiple databases, including PubMed and Embase,
using the search strategy DYNC1H1 AND [malformations of cortical development
OR seizure OR intellectual OR clinical symptoms] up to June 2022, identified
129 patients from 43 studies (including the case presented herein). A review of
these cases showed that patients with DYNC1 H1 -related MCD had higher risks of
epilepsy (odds ratio [OR] = 33.67, 95% confidence interval [CI] = 11.59, 97.84)
and intellectual disability/developmental delay (OR = 52.64, 95% Cl = 16.27,
170.38). Patients with the variants in the regions encoding the protein stalk or
microtubule-binding domain had the most prevalence of MCD (95%).

Conclusion: MCD, particularly pachygyria, is a common neurodevelopmental
disorder in patients with DYNCIHI mutations. Literature searches reveales that
most (95%) patients who carried mutations in the protein stalk or microtubule
binding domains exhibited DYNC1H1-related MCD, whereas almost two-thirds
of patients (63%) who carried mutations in the tail domain did not display MCD.
Patients with DYNC1 H1 mutations may experience central nervous system (CNS)
manifestations due to MCD.

KEYWORDS

DYNC1H1 gene, malformations of cortical development, variant, microtubule-binding
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Introduction

The dynein cytoplasmic 1 heavy chain 1 (DYNCIHI) gene
encodes a large (530 kDa) component of the multisubunit
dynein motor complex that mediates retrograde axonal transport
and other intracellular processes. These processes include Golgi
apparatus regulation, cargo transport, axonal transport, spindle
pole organization, organelle motility, and nuclear migration
throughout mitosis (1, 2). DYNCIHI mutations are associated
with various clinical manifestations that are typically divided
into two major categories: central nervous system (CNS)
symptoms (e.g., malformations of cortical development [MCD],
intellectual developmental disorder, and developmental and
epileptic encephalopathy [DEE]) (3-8); and neuromuscular
diseases (e.g., spinal muscular atrophy [SMA] with predominance
in the lower extremities and Charcot-Marie-Tooth [CMT], type 20
(1,2,9, 10).

The DYNCIH]1 protein has four domains: the tail (amino acid
[aa] residues 1-1373 and 4222-4646); the ATP-binding AAA motor
domain (residues 1868-3168 and 3553-4221); the linker (residues
1374-1867); and the stalk or microtubule-binding domain (MBD;
residues 3169-3552) (8). With a gene constraint Z score of 10.97
in the Genome Aggregation Database(gnomAD), DYNCIHI is
known to be exceptionally susceptible to missense mutations (11),
which account for most of the DYNCIH]I variants identified to
date (11). It remains unclear as to whether any association exists
between the location of mutations in the DYNCIHI gene and the
complex and variable clinical symptoms observed in individuals
harboring these variants.

MCDs are structural abnormalities that impede normal
cortical development, including microcephaly, macrocephaly,
grey
matter heterotopia, lissencephaly, cobblestone malformation,
polymicrogyria,

malformation

brain overgrowth spectrum, focal cortical dysplasia,

radiological ~ spectrum  of  cobblestone

and  polymicrogyria, schizencephaly, and
dysgyria (12). Patients with MCDs may be asymptomatic or
exhibit a range of symptoms, including cognitive impairment,
developmental delay, and epilepsy with drug resistance (13).
MCD is a common(28%) condition associated with DYNCIH]I
mutations (14). However, the association between MCD and
CNS—
has yet to be comprehensively evaluated in individuals with
DYNCIHI mutations.

In this study, we present the case of a child with MCD owing

clinical symptoms—especially those affecting the

to a missense mutation in the DYNCIHI gene and review the
literature to explore the association between the location of gene
variants and MCD or other clinical symptoms.

Case presentation

The case was a 4-year-old girl and is the only child
of unrelated and healthy parents without a family history
of neurological disorders. The patient was born at term by
spontaneous delivery and exhibited no postnatal abnormalities.
The onset of seizures as epileptic spasms began at the age
of 5 months. At this time, electroencephalography (EEG)
revealed hypsarrhythmia, thus leading to a diagnosis of infantile
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spasms. Adrenocorticotropic hormone and multiple antiseizure
medications, including vigabatrin, failed to control the seizures.
A ketogenic diet and vagus nerve stimulation were ineffective at
treating the condition, and spasms began when the child was 2
years-of-age (Figures 1A, B). Over time, the type of seizure evolved
into absence seizures (confirmed by EEG). The patient exhibits
severe developmental delay, with independent sitting at 9 months,
and remains unable to walk unassisted. These symptoms were
accompanied by severe intellectual disabilities and poor language
skills, with a vocabulary consisting of only 10 words.

Brain magnetic resonance imaging (MRI) revealed small,
broad, and flat gyri in the bilateral multiple lobes, indicating
pachygyria (Figures 1C-F). Genomic DNA of the proband and
her parents was extracted from peripheral blood for trio-
whole-exome-sequencing (WES), using a method similar to
that used in our previous study (15).The results revealed a
de novo heterozygous variant (p.Arg292Trp) in the DYNCIHI
gene. In silico analysis using PolyPhen-2 and MutationTaster
further indicated that the p.Arg292Trp mutation was “probably
damaging,” which was consistent with the PROVEAN server data;
the variant was categorized as probably pathogenic according
to the American College of Medical Genetics and Genomics
guidelines (Supplementary Figure S1). Function- and stability-
change predictions were performed as previously described (16,
17). The results showed that this variant caused significant damage
to the encoded protein (Figure 2).

Genotype—phenotype analysis

Relevant studies were identified from the existing literature by
two independent reviewers (WG and PE, two pediatric neurologists
with more than 10 years of experience) by searching MEDLINE,
PubMed, Embase, Google, and the China National Knowledge
Infrastructure. Most studies on DYNC1H1 have found that most
mutations are missense mutations, while mutations that clearly
result in protein truncation, such as frameshift or nonsense
mutations, are relatively rare (14). At present, the pathogenic
mechanism of DYNC1HI1 is not fully understood. Animal study has
shown that heterozygosity for a null mutation in DYNCI1HI does
not cause overt phenotypes in mice (18). In light of this, we only
included patients carrying missense mutations in the present study.
The search strategy utilized was as follows: DYNC1H1 AND/OR
missense AND [malformations of cortical development OR seizure
OR intellectual OR clinical symptoms] until June 2022. The search
results were restricted to studies in humans that were published in
either English or Chinese. To ensure an accurate diagnosis of MCD,
we excluded subjects without brain MRI reports.

SPSS v26.0 (IBM, Armonk, NY, USA) and Prism (GraphPad,
La Jolla, CA, USA) software were used for statistical analysis. Data
were analyzed with the chi-squared test. A logistic regression model
was used to identify risk factors for MCD. Differences with p < 0.05
were considered statistically significant.

In total, we identified 129 cases (including the patient reported
in the current study) with DYNCIHI missense variants and
neurologic/developmental phenotypes from 43 studies (3-5, 8-
10, 14, 19-54). Among them, there were 71 individuals with MCD
(55%), 81 (63%) with intellectual disability/developmental delay
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FIGURE 1

Brain MRl and EEG of the individual with DYNC1 H1 variant p.Arg292Trp. (A) Interictal EEG showed multifocal spike-wave complexes at 2 years old. (B)
EEG at spasm onset (2 years old) revealed brief, high y oscillations combined with slow delta waves (red arrow). (C) (Axial plane, T1 flair), (D) (Axial

plane, T1 flair), (E) (Sagittal plane, T1 flair), (F) (Sagittal plane, T1 flair) and (G) (Sagittal plane, midline, T1 flair). MRI performed at 4 years old and
revealed posterior predominant pachygyria (red arrow).
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The variant residue is a tryptophan which has an aromatic side chain (ie containing an aromatic
ring), which can stack against other, and make it unhydrophilic.

Function and stability prediction of variants. (A) Prediction of p.Arg292Trp function. (B) Prediction of variant stability.

[ Aromatic
[ Tonic

[ Polar
| Clash

(ID/DD), and 59 (46%) with epilepsy (Supplementary Table S1;
Figure 3A). The proportion of patients with epilepsy was higher
in the MCD group than among those without MCD; the same
was true for patients with vs. without ID/DD (Table 1). MCD was
associated with an elevated risk of epilepsy (odds ratio [OR] =
33.67, 95% confidence interval [CI] = 11.59, 97.84) or ID/DD (OR
= 52.64,95% CI = 16.27, 170.38) (Table 1). In these MCD patients,
58 cases reported the details of their MRI, 45 had pachygyria(one
as agyria)(45/58, 78%), and gradient details were available for 35
patients; most of them (30/35, 86%) were posterior predominant,
while the remaining five patients were anterior predominant. Of
the 45 patients with pachygyria, 41 had epilepsy(41/45, 91%). In
addition, 15 patients had hypoplasia of the corpus callosum(15/58,
26%), 11 had polymicrogyria(11/58, 19%) and seven among them
were frontal (7/11, 64%) (Supplementary Table S1; Figure 3A). Of

Frontiersin Neurology

the 51 patients for which the time of seizure onset was reported, 37
had an onset in infancy(37/51, 73%). Of the 22 patients with known
seizure outcomes, 18 developed drug-resistant epilepsy(18/22,
82%). Patients with pachygyria had a higher proportion of epilepsy
and ID/DD when compared to those without MCD (Table 1).
Pachygyria was associated with an elevated risk of epilepsy (odds
ratio [OR] = 108.65, 95% confidence interval [CI] = 27.43, 430.38)
or ID/DD (OR = 44.00, 95% CI = 11.79, 164.17) (Table 1).
Compared with patients with other subtype of MCD(n=13),
patients with pachygyria had a higher proportion and an elevated
risk of epilepsy(OR = 11.96, 95% CI = 2.67, 53.47) (Table 1).
There were 93 mutations identified in the 129 individuals:
44 mutations were located in the tail domain (44/93, 47%), 10
in the linker domain (10/93, 11%), 25 in the motor (AAA)
domain (25/93, 27%), and 14 in the stalk/MBD(14/93, 15%).
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FIGURE 3
(A) The proportion of malformations of cortical development and subtype in the patients with DYNCIHI1 mutations; (B) Prevalence of MCD.
Prevalence of different variants in the 4 domains of the DYNC1 HI protein; (C) Prevalence of pachygyria. Prevalence of different variants in the 4
domains of the DYNC1H1 protein. PMG, polymicrogyria; CC, corpus callosum.

There were statistically significant differences in the prevalence of
MCD prevalence according to the domain in which the DYNCIH1
variant was located. The highest prevalence was observed in
patients with variants in the stalk/MBD (95%; Figure 3B). The same
phenomenon has also been reported in children with pachygyria in
that the highest prevalence was observed in patients with variants
in the stalk/MBD (84%, Figure 3C).

Discussion

DYNCIH]I-related disorders are heterogeneous and can affect
the development and function of the CNS, peripheral nervous
system (PNS), or both (14). Historically, more attention has
been given to PNS diseases such as SMA or CMT than CNS
manifestations. In this study, we reported a case of a DYNCIHI
variant presenting with CNS symptoms, reviewed the literature
on DYNCIHI mutations in MCD, and identified a higher
prevalence of MCD than previously reported (14). We suspect

Frontiersin Neurology

05

that this discrepancy may be because we excluded subjects without
brain MRI data. Although DYNCIHI is widely expressed in
different tissues, our multi-databases searches (e.g., Genotype-
Tissue Expression, Human Protein Atlas, Functional Annotation
of the Mammalian Genome, and ConsensusPathDB) indicated
that DYNCIHI expression may be higher in brain and muscle
tissues, especially in the cerebral cortex and skeletal muscles. The
DYNCIHI protein is also involved in neuron-specific processes,
specifically retrograde axonal transport. Cytoplasmic DYNCI1H1
is an essential component of the cytoplasmic dynamic protein
complex and is upregulated during normal development of the
nervous system (2, 55). In a previous study, Hoang et al. suspected
that the mutations found in DYNCIHI and associated with disease
may have either a dominant-negative or dominant gain-of-function
effect (56). Their study showed that these mutations strongly
inhibited the gliding of microtubules by dyneins immobilized
on surfaces, compromised the activation of processive dynein
movement, reduce the run length of processive dynein-dynactin-
N-terminal coiled-coil domain of Bicaudal-D2 complexes, and
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TABLE 1 Comparison of central nervous system disorders in patients with DYNC1 H1 variants with or without malformations of cortical development
and with or without pachygyria.

Patients with MCD Patients without 95% ClI P value
(n=71) MCD (n = 58)
Epilepsy 54 (76%) 5(9%) 58.49 33.67 (11.59,97.84) <0.001*
<0.001°
ID/DD 67 (94%) 14 (24%) 67.39 52.64 (16.27,170.38) | <0.001°
<0.001°
Patients with pachygyria (n = Patients with MCD but
45) without pachygyria (n = 13)
Epilepsy | 41 (91%) 6 (46%) 10.51 11.96 (2.67, 53.47) 0.0012
0.001°
ID/DD 42 (93%) 12 (92%) 1.167 (0.11, 12.26) 1.000¢
0.898°
Patients with pachygyria (n Patients without MCD (n =
=45) 58)
Epilepsy | 41 (91%) 5(9%) 69.77 108.65 (27.43,430.38) | <0.001°
<0.001°
ID/DD 42 (93%) 14 (24%) 44.00 (11.79, 164.17) <0.001¢
<0.001°

CI, confidence interval; DYNC1HI, cytoplasmic dynein 1 heavy chain 1; ID/DD, intellectual disability/developmental delay; MCD, malformations of cortical development; OR, odds ratio.

2Chi-squared test.
bLogistic regression analysis.
CFishers’ exact test.

ultimately compromise the expression and motility of the dynein
complex in vitro (56). Furthermore, Hoang et al. found that
the mutations with the strongest effects on dynein motility were
associated with MCD in humans (56). The mutation detected
in our patient (p.Arg292Trp) was previously reported by Benson
et al. (43), and a previous study reported that a female with this
mutation had focal epilepsy (with onset between 13-18 months)
and intellectual disability. A similar phenotype was observed
in our patient in that she had early-onset epilepsy and severe
intellectual disability.

Lissencephaly is a subtype of MCD that is characterized by
a thickened cortex and a gyral abnormality ranging from agyria
to pachygyria. This condition usually involves the entire brain
or large areas of the cerebral hemispheres with an anterior or
posterior predominance (12). Many genes have been identified
as being associated with lissencephaly, including LISI, DCX,
ARX, CDK5, and DYNCIHI. Various genes may cause the
differences in gradients observed. LISI-related lissencephaly is
more likely to result in a posterior-to-anterior gradient, whereas
DCX-related lissencephaly is associated with an anterior-to-
posterior gradient (57). For DYNCIHI-related MCDs, Scoto
et al. (10) demonstrated posterior predominant lesions were
the most common manifestations. Our current analysis showed
that the most common subtype of DYNCIH]I-related MCD was
posterior predominant pachygyria, this finding was consistent with
the conclusions drawn by Scoto et al. (10). Another subtype,
polymicrogyria, is unlike pachygyria in that iappears to be more
predominant in the frontal region. MCDs have been previously
linked to hypoplasia of the corpus callosum. In this study, we
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identified 15 MCD patients with corpus callosum hypoplasia;
consequently, we consider that this may be one of the characteristic
features of DYNCIH]I-related MCD.

Besides imaging abnormalities, CNS symptoms have been
observed in patients with MCD and the DYNCIHI mutations.
Most individuals with MCD have epilepsy and/or ID/DD. Our
literature review found that 76% of individuals with MCDs had
recurrent seizures, which is consistent with the rate of 75%
reported in a previous study (58). MCDs are an important cause
of epilepsy, especially early-stage medically refractory epilepsy
(59). In this study, cases in which where clinical details were
available indicated that epilepsy had an early onset, and the patient
subsequently developed drug resistance. Seizures occur in over
90% of children with lissencephaly (57). Compared to other MCD
subtypes with vary widely clinical manifestations, such as PMG
and macrocephaly, children with lissencephaly have a relatively
higher risk of developing epilepsy (57). In our study, 91% (41/45)
of patients with pachygyria/agyria had epilepsy; in addition, the
risk and proportions of occurrence were significantly increased
when compared to children with other subtypes of MCD, this
finding was consistent with a previous report (57). MCD patients
may present with developmental delay and cognitive impairment
(60); however, according to our literature review, the proportion
of ID/DD cases among patients with MCD was alarmingly high.
We believe that two factors contribute to this phenomenon:
neurological dysfunction caused by the DYNCIHI mutation, and
the cognitive impairment caused by seizure onset. It is important
to consider that minor imaging abnormalities may also be involved
and could have been overlooked in previous investigations. After
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comparing the symptoms of patients with and without MCD, we
consider that CNS symptoms are more likely to be due to MCD
caused by DYNCIH] variants than the mutation itself.

While the majority of individuals had mutations in the motor
domain stalk, patients with mutations in the DYNC1H]1 tail domain
were more likely to have isolated neuromuscular symptoms such
as SMA and CMT (52). Furthermore, patients with mutations in
the motor domain (including the AAA domain and MBD or stalk)
are more likely to develop MCD (19, 61), which is supported by
the results of our literature review. In addition, we found that
patients with variants in the stalk/MBD are more likely to develop
pachygyria. However, given the large size of the DYNC1H1 protein,
and its complex interactions with various other proteins, mutations
that affect tertiary structure could also result in alterations to
functional outcomes and symptomatology (54). Therefore, the
results of this study should be interpreted with caution.

There were some limitations to the current study that need
to be considered. First, the nature of the literature review did not
allow us to acquire any additional information on the reported
cases. Second, to ensure an accurate diagnosis of MCD, we excluded
some patients with clinical symptoms but without brain MRI
examination, thus reducing the reliability of our results. Third,
due to the lack of detailed information for some cranial MRI
results, particularly with regards to the gradient of pachygyria, it
was not possible to determine the precise proportion of posterior
predominant pachygyria in all patients with MCD, even though it is
the most commonly observed manifestation, Moreover, the analysis
results related to pachygyria must also be treated with caution.
Although these findings are of interest at the theoretical level, they
require experimental validation in future studies.

In conclusion, posterior predominant pachygyria (a subtype
of MCD) is a common neurodevelopmental disorder in patients
that possess DYNCIHI mutation. Most patients (95%) who carry
mutations in the protein stalk or microtubule binding domains
exhibit DYNC1HI1-related MCD, whereas almost two-thirds (63%)
who carry mutations in the tail domain do not display MCD. In
patients with DYNCIHI-related disorders, CNS symptoms tend
to be associated with MCD, with seizure onset often occurring in
infancy and drug resistance developing over time.
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