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Introduction: Cerebral Palsy (CP) is the most common neurodevelopmental 
motor disability, resulting in life-long sensory, perception and motor impairments. 
Moreover, these impairments appear to drastically worsen as the population 
with CP transitions from adolescents to adulthood, although the underlying 
neurophysiological mechanisms remain poorly understood.

Methods: We  began to address this knowledge gap by utilizing magneto-
encephalographic (MEG) brain imaging to study how the amplitude of spontaneous 
cortical activity (i.e., resting state) is altered during this transition period in a cohort of 
38 individuals with spastic diplegic CP (Age range = 9.80–47.50 years, 20 females) 
and 67 neurotypical controls (NT) (Age range = 9.08–49.40 years, Females = 27). MEG 
data from a five-minute eyes closed resting-state paradigm were source imaged, and 
the power within the delta (2–4 Hz), theta (5–7 Hz), alpha (8–12 Hz), beta (15–29 Hz), 
and gamma (30–59 Hz) frequency bands were computed.

Results: For both groups, the delta and theta spontaneous power decreased 
in the bilateral temporoparietal and superior parietal regions with age, while 
alpha, beta, and gamma band spontaneous power increased in temporoparietal, 
frontoparietal and premotor regions with age. We also found a significant group 
x age interaction, such that participants with CP demonstrated significantly less 
age-related increases in the spontaneous beta activity in the bilateral sensorimotor 
cortices compared to NT controls.

Discussion: Overall, these results demonstrate that the spontaneous neural 
activity in individuals with CP has an altered trajectory when transitioning from 
adolescents to adulthood. We  suggest that these differences in spontaneous 
cortical activity may play a critical role in the aberrant motor actions seen in this 
patient group, and may provide a neurophysiological marker for assessing the 
effectiveness of current treatment strategies that are directed at improving the 
mobility and sensorimotor impairments seen in individuals with CP.
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1. Introduction

Cerebral palsy (CP) is the most common neurodevelopmental motor disability, with recent 
population-based studies reporting prevalence estimates of 1–4 per 1,000 live births (1, 2). The 
majority of the cases with CP result from a pre−/peri- natal insult, with a small sub-class being 
of a genetic etiology. This group of disorders commonly results largely in movement, balance, 
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and postural impairments, but is also characterized by impairments 
across sensory, perception, and cognitive domains (3). The scientific 
literature involving individuals with CP tends to focus on childhood 
and development, with little attention to the transition into adulthood 
(4–6). Even in individuals who are independently mobile in their 
youth and early adulthood, there is a marked decline in ambulation 
that often occurs in concert with premature aging (4). The clinical 
literature has reported that most adults with CP between the ages of 
20 and 40 years will experience some form of premature aging, which 
is characterized by motor function decline, as well as increases in pain, 
fatigue, and decreased cognitive functioning (4, 7–10).

Resting-state neuroimaging studies provide an inclusive approach 
to examining brain activity that largely avoids the confounding factors 
of variable cognitive capacity, attentional span, and motor deficits that 
can impede task-based paradigms across patient populations (11). As 
such, neuroimaging studies utilizing resting-state paradigms offer a 
unique opportunity to gain insight into the neurophysiology 
underlying cognitive and sensorimotor function (12–14). Currently, 
fMRI is the most commonly used tool for investigating resting-state 
activity and the existing studies focusing on those with CP have largely 
examined functional connectivity [FC; (15–18)]. These investigations, 
all of which have evaluated adolescence and young adults with CP, 
have generally found that FC is altered across a myriad of networks 
compared with neurotypical (NT) controls (15, 16). Specifically, 
studies have shown that youth with spastic diplegic CP have altered 
FC in the sensorimotor network, frontoparietal network and salience 
network (17, 18). Other studies have found that youth with CP have 
increased FC in sensorimotor regions, and decreased FC between 
sensorimotor cortices and the cerebellum, visual and parietal cortices 
(15, 17–19). A recent fMRI study from our laboratory has also 
reported an association between decreased FC in the occipital and 
sensorimotor cortices and the extent of alterations in the gait 
biomechanics of individuals with CP (20). This indicates that 
alterations in FC exist widely in youth with CP and that resting-state 
paradigms may have direct relevance to assessing the motor and 
cognitive dysfunction that is observed within this population. As 
mentioned above, the aforementioned fMRI studies focused on youth 
and young adults with CP and there are no studies to date examining 
the trajectory of resting-state activity in aging adults with CP. Thus, 
the long-term impact of the initial brain insult on the underlying 
neurophysiology is poorly understood.

Of late, there has been a growing interest in utilizing other 
dimensions of resting-state neural activity, such as the spontaneous 
cortical activity measured via magnetoencephalography (MEG). MEG 
is an ideal tool for intellectually and developmentally disabled 
populations, as it is noninvasive, silent, and has high temporal 
resolution (~1 ms) and spatial precision (~3–5 mm; (21)). Spontaneous 
activity reflects the seemingly random neuronal discharges, 
fluctuations in dendritic currents, and other electrical field phenomena 
that occur across the cortex in the absence of exogenous and 
endogenous inputs and is often examined using a band-limited 
approach that focuses on the canonical frequency bands. Previous 
MEG and electroencephalography (EEG) studies have demonstrated 
that resting-state network dynamics change with advancing age in NT 
populations (22–29). A recent investigation that represents the largest 
lifespan MEG study to date (6–84 yrs., N = 434) has revealed that there 
are linear age-related changes in the relative spontaneous cortical 
activity across the conical frequency bands (28). Specifically, this 

investigation showed that the relative power decreases across the delta 
and theta frequency bands with age, while there are linear increases in 
the power of the alpha, beta and gamma frequency bands. Despite 
these insights, the field has yet to probe the potential age-related 
changes in the spontaneous activity of those with CP. Assessing the 
linear trajectory of the cortical spontaneous oscillations might shed 
new light on the functional declines seen across the adolescent to 
adulthood timeframe. Furthermore, it might indicate that there is a 
potential for an accelerated aging profile in this patient population.

The overall goal of this investigation was to evaluate the 
age-related changes seen in the spontaneous cortical activity of 
persons with CP. This goal was accomplished by evaluating the MEG 
eyes-closed resting-state recordings collected by Trevarrow and 
colleagues that initially identified that the spontaneous cortical activity 
for persons with CP is uncharacteristic when compared with NT 
controls (30). Since the clinical literature has reported that most adults 
with CP between the ages of 20 and 40 years will experience some 
form of premature aging, we hypothesized that the persons with CP 
would have aberrant age-related changes in the linear trajectory of 
their spontaneous cortical activity when compared to NT controls.

2. Methods

2.1. Participants

The Trevarrow et al. (30) dataset used in this investigation was 
comprised of 105 participants (30). Thirty-eight of the participants 
had spastic diplegic CP (GMFCS I-IV, Mean Age = 22.08 ± 10.46 yrs., 
Age Range = 9.80–47.50 yrs., Females = 20) and 67 were NT controls 
(Mean Age = 19.56 ± 10.25 yrs., Age Range = 9.08–49.40 yrs., 
Females = 27). Further details on the distribution of the participants 
are shown in the Supplementary information. The exclusion criteria 
for this dataset included any musculoskeletal surgeries in the past six 
months, botulinum toxin injections in the past year, anti-spastic 
medications and/or GABAergic medications. Botulinum toxin 
injections were considered as an exclusion criterion because prior 
studies have shown that these injections can influence the spontaneous 
cortical activity (31–33). In addition, none of the participants had a 
prior history of epilepsy or mood disorders. As indicated in Trevarrow 
et al. (30), informed consent was acquired, and the youth assented to 
participate in the experiment. Furthermore, the local Institutional 
Review Board reviewed and approved the study, and all protocols were 
in accordance with the declaration of Helsinki.

2.2. MEG data acquisition, source imaging 
and frequency power maps

Complete details of the MEG acquisition, pre-processing and 
source imaging are found in Trevarrow et al. (30). Briefly, a 306-sensor 
Elekta/MEGIN MEG system (Helsinki, Finland) was used to sampled 
continuously at 1 kHz as the participants completed a resting state 
paradigm with their eyes closed for 5 minutes. MEG data processing 
was completed in Brainstorm (34) and largely followed the analysis 
procedure outlined in (35, 36). A high pass filter of 0.3 Hz and notch 
filters at 60 Hz and at its harmonics were applied. Cardiac and eye 
movement artifacts were identified in the raw MEG data and removed 
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using an adaptive signal-space projection (SSP) approach, which was 
subsequently accounted for during source reconstruction (37). Data 
were then divided into four-second epochs for detection and rejection 
of bad segments of data based on amplitude and gradient distributions 
per participant. There were no statistical differences in the number of 
epochs accepted for the respective groups (CP = 63.63 ± 5.33 epochs; 
NT = 63.88 ± 5.63 epochs; p = 0.822). On average, 83% of the epochs 
were included for the respective groups.

As in Trevarrow et  al. (30), minimum norm estimates were 
computed and normalized by a dynamic statistical parametric 
mapping (dSPM) algorithm for source imaging. An empty room 
recording to compute a noise covariance matrix for source imaging 
was utilized to account for environmental noise (38). The forward 
model was computed using an overlapping spheres head model (39). 
Finally, the imaging kernel of depth-weighted dSPM constrained to 
the individual cortical surface (40) was computed. Using the resulting 
source estimates, the power of cortical activity in the delta (2–4 Hz), 
theta (5–7 Hz), alpha (8–12 Hz), beta (15–29 Hz), and gamma 
(30–59 Hz) frequency bands were computed. Welch’s method with 1 
second sliding Hamming windows overlapping at 50% was used to 
estimate the power spectrum densities (PSD) on each four-second 
epoch for each MEG recording. To create relative maps, 
we standardized the PSD values at each frequency bin to the total 
power across the frequency spectrum. For each participant, we then 
averaged PSD maps across epochs to obtain one set of PSD maps per 
participant. Finally, we projected these maps onto the MNI ICBM152 
brain template when scaling was used during coregistration (41) and 
applied a 3 mm full width half max (FWHM) smoothing kernel. The 
resulting normalized source maps per frequency band were used for 
further statistical analysis.

2.3. Statistical analyses

We analyzed the whole-brain PSD maps in SPM12 to examine for 
spatially specific effects of age and group (CP vs. NT). For each 
frequency band, we ran an ANCOVA with group as a categorical 
predictor and age as a continuous predictor and modeled the 
respective interaction term. To correct for multiple comparisons, 
we applied threshold free cluster enhancement [TFCE; (42)] with a 
weighting factor of E = 0.6 and a cluster level family wise error (FWE) 
of 0.05 to the resulting statistical maps. Finally, TFCE maps were 
thresholded by utilizing the clusters that survived correction. Data 
from each of the clusters were averaged and used to display the 
corresponding effects. Note that the TFCE log transformed values are 
reported in the results.

3. Results

3.1. Main effect of group

The group main effect was similar to what is presented in 
Trevarrow et al. (30), where the individuals with CP had significantly 
stronger delta power with peaks in the left (CP = 30.8 ± 1.4%, 
NT = 26.6 ± 1.0%, TFCE = 5.63, pFWE = 0.013) and right 
(CP = 31.4 ± 1.3%, NT = 27.0 ± 1.0%, TFCE = 5.64, pFWE = 0.013) 
occipital areas compared to NT controls. Within the theta band, 

participants with CP had significantly stronger activity in the left 
occipital region (CP = 21.7 ± 1.0%, NT = 19.1 ± 0.6%, TFCE = 4.44, 
pFWE = 0.037). In contrast, controls had significantly stronger alpha 
activity, with peaks in the left (CP = 31.4 ± 2.1%, NT = 38.5 ± 1.7%, 
TFCE = 5.57, pFWE = 0.014) and right occipital (CP = 32.0 ± 0.6%, 
NT = 39.2 ± 1.7%, TFCE =5.50, pFWE = 0.016) areas, as well as the right 
prefrontal region (CP = 15.9 ± 0.6%, NT = 18.3 ± 0.6%, TFCE = 4.97, 
pFWE = 0.029) compared to participants with CP. In the beta band, 
participants with CP had increased power compared to controls in the 
left secondary somatosensory cortical area (CP = 9.2 ± 0.3%, 
NT = 7.9 ± 0.2%, TFCE = 5.46, pFWE = 0.016). Finally, in the gamma 
band, participants with CP had significantly stronger spontaneous 
activity relative to NT controls in both the left (CP = 4.8 ± 0.3%, 
NT = 3.5 ± 0.1%, TFCE = 7.02, pFWE < 0.001) and right SII regions 
(CP = 4.5 ± 0.2%, NT = 3.4 ± 0.1%, TFCE = 6.23, pFWE < 0.001).

3.2. Main effect of Age

We found widespread aging effects in the delta range across both 
hemispheres, with peaks in the left (TFCE = 8.02, pFWE < 0.001; 
Figure  1A) and right (TFCE = 8.40, pFWE < 0.001; Figure  1A) 
temporoparietal regions, indicating that power decreased with 
advancing age. Similarly, in the theta band, spontaneous power 
decreased with advancing age, with peaks in the left (TFCE = 5.39, 
pFWE = 0.017) and right (TFCE = 5.46, pFWE = 0.014) superior parietal 
regions (Figure 1B). Conversely, spontaneous power in the alpha band 
significantly increased as a function of age with peaks in the left 
(TFCE = 6.11, pFWE = 0.005) and right (TFCE = 6.32, pFWE = 0.002) 
temporoparietal regions (Figure  1C). Likewise, beta power also 
increased with advancing age with peaks in the left postcentral gyrus 
(TFCE = 8.11, pFWE < 0.001) and right superior parietal region 
(TFCE = 7.96, pFWE < 0.001; Figure 1D). Finally, spontaneous gamma 
power increased with advancing age, with peaks in the left 
(TFCE = 7.75pFWE < 0.001) and right (TFCE = 7.27, pFWE < 0.001) 
premotor regions (Figure 1E).

3.3. Group x age interaction

We observed a group-by-age interaction in the beta band, with 
peaks in the left (CP = 9.0 ± 0.3%, NT = 8.0 ± 0.3%, TFCE = 4.97, 
pFWE = 0.032) and right (CP = 9.0 ± 0.3%, NT = 8.0 ± 4.0%, TFCE = 4.79, 
pFWE = 0.039) motor areas (i.e., precentral gyrus, supplemental motor 
area, and premotor cortices; Figure 2). In each of these regions, the NT 
controls (b = 0.171; 95% CI = 0.129–0.213) showed a steeper increase 
in beta power with age than the participants with CP (b = 0.072; 95% 
CI = 0.008–0.137). No other age by group interactions were detected 
using our statistical approach.

4. Discussion

Our results demonstrated that the strength of spontaneous activity 
changes with age for both those with CP and NT controls, and that the 
location of such changes varies by spectral band. Furthermore, the 
central hypothesis of this study was also supported, as we uncovered 
an altered age-related trajectory of beta power within the sensorimotor 
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FIGURE 1

Main effects of age. Statistical maps thresholded with threshold-free cluster enhancement (TFCE) depict regions showing aging effects in the delta, 
theta, alpha, beta, and gamma bands. The corresponding scatter plots display relative power in percent units on the y-axis and age on the x-axis. The 
dots and trendline in each plot represent extracted values from each cluster peak per participant. (A) Delta (2–4  Hz) power decreased with advancing 
age in bilateral temporoparietal regions. (B) Theta (3–6  Hz) power decreased with advancing age in bilateral superior parietal regions. (C) Alpha (8–12  Hz)

(Continued)
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cortices in the participants with CP. Although the perinatal injury that 
persons with CP experience is defined as not being progressive (3), 
this finding suggests that the early perinatal brain injury may have an 
impact on spontaneous activity across the life span. We speculate that 
the psychosocial stress and/or adversity in the early years of life of 
those with CP might result in a heightened inflammatory response 
that can have long-term influence on the spontaneous cortical activity 
(43, 44). In the following sections we  will further discuss the 
implications of the current findings.

Our findings revealed robust age-related findings across all 
canonical frequency bands for both groups. Specifically, we found that 
delta and theta spontaneous power decreased in bilateral 
temporoparietal and superior parietal regions, respectively. 
Conversely, we found that alpha, beta, and gamma band spontaneous 
power increased in temporoparietal, frontoparietal and premotor 
regions, respectively. This aligns with previous work which has shown 
a decrease in power in slow wave frequencies such as delta and theta, 
and an increase in power in faster wave frequencies such as alpha, 
beta, and gamma with age (22, 26, 28). Recent work has further shown 
that this shift from low to high frequencies with age in a cohort of NT 
youths across development, finding widespread decreases in delta 
power and more focal increases in alpha, beta, and gamma power 
across development (36).

Our results also show that persons with CP have less prominent 
changes in the sensorimotor beta power with age than what is seen in 
the NT population. Our prior experimental results have 
overwhelmingly shown that task-based beta oscillations are aberrant 
when participants with CP plan and execute a motor action (45–47). 
Furthermore, Heinrichs-Graham and colleagues have revealed that 
the strength of beta sensorimotor cortical oscillations during 
movement in older adults is tightly linked with the spontaneous beta 
power in the same cortical tissue (23, 24). Taken together, it is possible 
that similar age dependent changes in the spontaneous cortical 

oscillations may play a critical role in the aberrant task-based beta 
cortical oscillations seen in individuals with CP. Further exploration 
of the potential link between the strength of task-based and 
spontaneous sensorimotor cortical oscillations are warranted, as such 
studies have the potential to further illuminate the neurophysiological 
mechanisms underlying the altered motor actions seen in this 
patient population.

Mechanistically, beta cortical oscillations are thought to 
be  modulated by γ-aminobutyric acid (GABA) activity. Prior 
pharmaco-MEG studies have shown that spontaneous beta amplitude 
in the sensorimotor cortices increases with the administration of a 
GABAA receptor agonist (48) or when a GABA transporter is blocked 
(49). GABAergic activity intrinsically plays a role in beta band power, 
therefore the increased strength of spontaneous beta activity may 
be due to heightened activity of GABAergic inhibitory interneurons 
(50). Previous PET investigations showed that individuals with CP 
have increased GABAA receptor binding potential within the motor 
cortices (51). These findings overlap with the age-related findings in 
beta power discussed above, suggesting that increased GABA activity 
in NT older adults as well as individuals with CP, could be driving the 
age-related effects seen in motor cortices in the beta frequency band.

There has been a growing interest in the use of MEG to assess the 
spontaneous cortical oscillations, with intentions of identifying clinically 
relevant biomarkers (28, 30, 52, 53). Prior experimental work has shown 
that MEG assessments of the spontaneous relative power of the respective 
frequency bands are reliable within the week and across several years (54, 
55). Together these studies have reported that the MEG assessments of 
the spontaneous relative power are highly reliable for the theta, alpha and 
beta frequency bands. This infers that the groupwise differences seen 
across the spontaneous theta, alpha and beta frequency bands, and 
age-related changes seen in the beta oscillations for the persons with CP 
are robust. We  also anticipate that the results presented here will 
be repeatable in subsequent studies for two reasons. For one, the alpha 

FIGURE 1 (Continued)
power increased with advancing age in bilateral temporoparietal regions. (D) Beta (15–29  Hz) power increased with advancing age in the left 
postcentral gyrus and right superior parietal regions. (E) Gamma (30–59  Hz) band power increased with advancing age with bilateral cluster peaks in 
premotor regions. The color bar next to each map shows the log transformed TFCE values.

FIGURE 2

Interaction effects of group and age. Scatter plots display relative beta power in percent units on the y-axis and age on the x-axis in bilateral left (A) and 
right (B) motor cortices. The blue circles and trendline represent NT controls, while the green circles and trendline represent participants with CP. In 
both regions, relative beta power increased in both groups, but with distinct slopes. The color bar between the two maps shows the scale of log 
transformed TFCE values. Extracted cluster peak average values are plotted for each participant in the graph.
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and beta oscillations are two of the dominant cortical rhythms that are 
tightly connected with sensorimotor and cognitive control. Secondarily, 
our methodology used an established, reproducible and open-source 
pipeline for assessing the spontaneous cortical activity (56, 57). As such, 
we anticipate that the next generation of studies will find very similar 
results as what is reported here.

4.1. Limitations

Although this investigation provides unique insights on the 
neurophysiology of persons with CP, it should be recognized that the 
noted differences are related to the spontaneous cortical activity and 
not the cortical activity that would be associated with processing 
stimuli or the production of a motor action. That being said, prior 
investigations have shown that the spontaneous activity impacts the 
degree of the cortical activity that would induced by stimuli (23, 24). 
Furthermore, it should be noted that although some participants may 
not be able to complete task-based paradigms due to cognitive or 
motor constraints (i.e., spasticity, contractions, etc.), almost all 
participants can sit quietly in the MEG to assess the spontaneous 
cortical activity. Hence, the spontaneous methodology employed here 
does have advantages. Other limitations include the use of a cross-
sectional design to evaluate the age-related changes in the 
spontaneous cortical activity as persons with CP transition from 
adolescents to adults. Although this approach is convenient, it does 
not allow for the evaluation of the individual longitudinal changes 
seen across this important time window. Furthermore, the approach 
employed in this investigation only focused on the age-related 
differences seen in the relative power of the respective cortical 
oscillations and did not examine the connectivity amongst the 
respective areas. We propose that such analysis will provide a more 
comprehensive understanding of how brain networks are impacted 
as adolescents with CP transition into adulthood. This investigation 
was MEG centric and did not include a complementary sensory and 
motor assessments, which limits our ability to more fully establish 
how aberrations in the respective frequency bands are related to the 
clinical declines seen in persons with CP as they transition into 
adulthood. Lastly, since the cohort included in this investigation 
predominantly spanned the adolescent to adult age range it still 
remains unknown if the noted altered spontaneous activity maintains 
the same trajectory as persons enter late adulthood.

5. Conclusion

In summary, our study found age dependent changes in spontaneous 
cortical activity in participants with CP and NT controls during the 
transition from adolescence to adulthood. Our age level analyses 
replicated previous literature with a general weakening of slower 
frequencies and a strengthening of higher frequencies. Most significantly, 
we found an altered age-related trajectory in the beta band in the bilateral 
motor cortices, such that beta band power increased more gradually with 
age in the individuals with CP compared to their NT peers. We predict 
that greater aberrations in the spontaneous motor beta oscillations are 
partially linked with the accelerated motor declines seen in adults with 
CP. Overall, these results provide new insight on how the perinatal brain 
injuries seen in persons with CP impacts their cortical physiology. 
Moreover, we speculate that the altered trajectory of spontaneous cortical 

activity may contribute to the progressive decline in motor function with 
age that is often reported clinically.
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