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Minimally invasive treatment for 
glioblastoma through endoscopic 
surgery including tumor 
embolization when necessary: a 
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Background: Although there have been some reports on endoscopic glioblastoma 
surgery, the indication has been limited to deep-seated lesions, and the difficulty 
of hemostasis has been a concern. In that light, we  attempted to establish an 
endoscopic procedure for excision of glioblastoma which could be  applied 
even to hypervascular or superficial lesions, in combination with pre-operative 
endovascular tumor embolization.

Methods: Medical records of six consecutive glioblastoma patients who received 
exclusive endoscopic removal between September and November 2020 were 
analyzed. Preoperative tumor embolization was performed in cases with marked 
tumor stain and proper feeder arteries having an abnormal shape, for instance, 
tortuous or dilated, without passing through branches to the normal brain. 
Endoscopic tumor removal through a key-hole craniotomy was performed by 
using an inside-out excision for a deep-seated lesion, with the addition of an 
outside-in extirpation for a shallow portion when needed.

Results: Endoscopic removal was successfully performed in all six cases. Before 
resection, endovascular tumor embolization was performed in four cases with 
no resulting complications, including ischemia or brain swelling. Gross total 
resection was achieved in three cases, and near total resection in the other three 
cases. Intraoperative blood loss exceeded 1,000 ml in only one case, whose tumor 
showed a prominent tumor stain but no proper feeder artery for embolization. In 
all patients, a smooth transition to adjuvant therapy was possible with no surgical 
site infection.

Conclusion: Endoscopic removal for glioblastoma was considered to be  a 
promising procedure with minimal invasiveness and a favorable impact on 
prognosis.
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Introduction

Glioblastoma, one of the most common primary brain neoplasms, 
comprises 15% of all intracranial neoplasms and 60–75% of astrocytic 
tumors (1). Its treatment outcomes have improved only incrementally 
over the last several decades, with a tragic course, having a mean 
survival time fewer than 2 years after diagnosis, despite many efforts 
having been made in various fields, including surgical resection, 
radiation therapy, chemotherapy, and treatments based on novel 
concepts (2–4). Regarding surgical treatment, maximizing the extent 
of resection, which must be  balanced finely with minimizing 
morbidities, has been confirmed to be essential for extending patients’ 
survival time (1, 5, 6). A broad variety of refinements to achieve 
optimal resection have been made through the utilization of multiple 
modalities, including preoperative techniques such as diffusion tensor 
imaging (7), functional magnetic resonance imaging (MRI) (8–10), or 
magnetoencephalography (11), and intraoperative modalities such as 
image guidance (12), photodynamic diagnosis, for instance using 
5-aminolevulinic acid (13), functional mapping via awake surgery, 
intraoperative ultrasound imaging, or intraoperative MRI (14, 15). 
Nevertheless, the prognosis of this devastating disease has not been 
substantially improved. Given this state of affairs, anything that can 
contribute to ameliorating the bleak prognosis of this disease is to 
be greatly desired.

Current neurosurgical procedure is undergoing what could 
be  considered a transitional era, with a conventional operating 
microscope (OM), an endoscope, or an exoscope employed 
divergently according to the lesion or to surgeons’ preferences. The 
OM, which appeared in the 1960s, revolutionized improvement in 
neurosurgical outcomes (16, 17) by providing a stable, illuminated, 
magnified, 3-dimensional view, though at the cost of sacrificing the 
surgeon’s ergonomic comfort insofar as a bulky object between the 
operative field and the surgeon’s eyes (18). In contrast, an exoscope, 
developed through advances in digital imaging, offers an operative 
view equivalent to an OM and superior ergonomics, though even 
experts in microsurgery require a certain amount of practice to attain 
a level clinically comparable to maneuvering under an OM (19). Since 
an exoscope, as with OM, utilizes illumination from the outside, a 
sufficiently large opening is necessitated; nevertheless, blind spots are 
still likely to occur in the deep areas (18). On the other hand, an 
endoscopic procedure with superior ergonomics can be performed 
through a narrow opening and corridor and reduce blind spots in 
deep areas (20). However, its maneuverability is limited by space, and 
in comparison to other devices, some time is required to acquire a 
sufficient level of skill. In addition, the current technology of 
endoscope provides inferior images of the operative field compared to 
other devices.

Introducing endoscopic surgery through a small opening for 
glioblastoma removal might benefit patients by virtue of limiting the 
invasiveness of the procedure, reducing the burden on patients, 
simplifying wound healing, decreasing the chance of infection, and 
contributing to the smooth transition to adjuvant treatment. In fact, 
some reports have described the utilization of an endoscope for 
glioblastoma surgery through a narrow transparent sheath, and it has 
been confirmed that endoscopic procedures could be performed as 
efficaciously as with an OM (21, 22). However, the same reports 
recommended that the procedure be essentially limited to deep-seated 
lesions. Moreover, the procedure necessitates initially entering the 
middle of a lesion, which can sometimes be vascular-rich, creating 

difficulty in achieving hemostasis through a limited corridor. 
Therefore, in this study, we  attempted to develop an optimal and 
minimally invasive surgery for glioblastoma, which could be applied 
even to hypervascular or superficial lesions, by utilizing endovascular 
tumor embolization and endoscopic removal through an outside-in 
procedure following inside-out decompression (Figure 1).

Methods

All procedures performed in this study were in accordance with 
the 1964 Declaration of Helsinki and its later amendments and were 
reviewed and approved by the Institutional Review Board (IRB) at 
Nagoya City University (IRB number: 60-20-0187). Additionally, 
written informed consent was obtained from all the participants or 
appropriate surrogate decision-makers. Between September and 
November 2020, 6 consecutive glioblastoma patients, who were set to 
undergo surgical resection, were enrolled in this study. Data regarding 
clinical manifestation, neuroimaging, intraoperative videos, and 
surgical outcomes were analyzed.

Surgical procedure

Endovascular tumor embolization

Tumor embolization was performed if there was a marked tumor 
stain and prominent feeding arteries with abnormal shapes, for 
instance, tortuous or dilated, without passing through branches to the 
normal brain (Figure 2A). A cone-beam computed tomography (CT) 
was effective for confirming these findings. Under general anesthesia, 
a 5Fr guiding catheter was inserted into the main trunk, and a flow-
guide microcatheter (Marathon; ev3 Neurovascular, Irvine, CA, 
United States) was advanced into the feeder vessel as close to the 
tumor as possible. The tumor was embolized with approximately 20% 
NBCA (Figure 2B). Platinum coils were also used for feeder vessel 
occlusion to prevent migration of NBCA. After this procedure, tumor 
removal proceeded continuously, or if time was required until tumor 
excision, general anesthesia was maintained in the intensive care unit 
to avoid brain swelling.

Endoscopic tumor removal

Surgical procedures of endoscopic tumor removal were performed 
with the aid of 4-mm rigid endoscopes with 0 or 30-degree angled 
lenses fixed with an exclusive holder (HD-EndoArm, Olympus, 
Tokyo, Japan), a high-speed drill, an ultrasonic surgical aspirator, and 
a series of endoscopic surgical instruments with a slender or single 
shaft. Under general anesthesia, patients were placed with their head 
positioned so that the location of a key-hole craniotomy was highest 
in the operative field and the axis from there to the center of the tumor 
was slightly tilted forward, allowing both hands of the surgeon to 
assume an ergonomically advantageous position. A key-hole 
craniotomy, which was simulated preoperatively to determine the 
proper size and location using an image workstation, was set precisely 
and performed using an image guidance system (SealthStation S8; 
Medtronic, Minneapolis, MN, United States) (Figure 3A). The lateral 
edge of the craniotomy was conically widened to allow, to the extent 
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possible, manipulation over a wide range (Figure 1). After insertion of 
a transparent sheath with a diameter of 10 mm (NeuroPort; Olympus, 
Tokyo, Japan) into the center of the tumor, guided by the image 
guidance system (Figure 3B), an endoscope was introduced. Initially, 
internal decompression of the tumor was conducted using suction or 
an ultrasonic surgical aspirator in an inside-out fashion while attaining 
hemostasis rigorously through cauterization by bipolar forceps with a 
slender or single shaft, or hemostatic material such as fibrin glue. If a 
lesion had only a deep-seated portion, it could be entirely removed 
through repetition of these procedures. For a lesion that also had 
shallow portions, after obtaining substantial subsidence of the brain 
surface and sufficient working space by internal decompression, the 
transparent sheath was taken out (Figure 3C), and the remaining part 

was resected in an outside-in fashion through a sufficient cortical 
incision (Figure 3D). Finally, after confirming hemostasis, BCNU 
wafers were placed over the extent of the tumor bed. The highlights of 
the procedure can be seen in Supplementary Video S1.

Results

Endoscopic removal was successfully performed in six 
glioblastoma cases as an initial treatment through a key-hole 
craniotomy approximately 20 mm in diameter. Clinical features and 
surgical outcomes of six cases were shown in Table  1. Prior to 
resection, endovascular tumor embolization was performed in four 

A B

FIGURE 1

Schematic representation demonstrating surgical procedures. (A) As the first step, the tumor was removed in an inside-out fashion through a 
transparent sheath inserted into the tumor’s center under the guidance of a neuronavigation system. (B) For tumors having a shallow portion, the 
residual part was removed in an outside-in fashion after obtaining enough space by subsidence of the brain surface through substantial tumor volume 
reduction.

FIGURE 2

Case 4: lateral view of pre-embolization (A) and post-embolization (B) in digital subtraction angiograms of the right internal carotid artery. Marked 
tumor stain and prominent feeding arteries with abnormal shapes (arrowheads) disappeared through tumor embolization with 20% NBCA, and normal 
arteries were preserved.
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cases, in which marked tumor stain and proper feeding arteries were 
detected by preoperative angiography. In all four cases, there were no 
complications related to tumor embolization such as ischemia or brain 
swelling. In three cases, where tumor developed only in a deep-seated 
area, the portion identified on gadolinium-enhanced T1-weighted 
MRI was removed entirely in one and near-totally in two cases, in an 
inside-out fashion (Figures 4A–C). In the remaining three cases, the 
procedure was supplemented with outside-in excision, and gross-total 
resection in two patients (Figures 4D,E) and near-total resection in 
one patient was achieved (Figure  4F). In two patients where a 
premotor area was involved, tumor removal could be performed with 
minimal deterioration of hemiparesis (one grade on MMT) by 
identifying and preserving the motor strip and pathway through 
motor-evoked potential mapping, after creating space by initially 
removing the forward portion of the lesion, a maneuver which was 
considered to be relatively safe. One other patient had transient upper 
extremity motor weakness postoperatively. Intraoperative blood loss 
exceeded 1,000 ml in only one case, where the patient did not receive 
preoperative tumor embolization due to the lack of a proper feeder for 
embolization, despite having a prominent tumor stain. In all patients, 
a smooth transition to adjuvant therapy was possible with no surgical 
site infection.

Discussion

This study successfully demonstrated the feasibility and 
effectiveness of an endoscopic excision for glioblastoma not only for 
the deep-seated portion via the inside-out procedure through a 
narrow transparent sheath, but in addition even for the shallow 
portion via the outside-in procedure. Since the goals of surgical 

resection of glioblastoma are to provide ample tissue for an accurate 
histological and genomic diagnosis and continued study of the disease, 
to relieve symptoms, and to extend patient survival by achieving 
maximal cytoreduction without morbidity, it was thought that this 
procedure could realize these aims to nearly the same extent as the 
ordinary microscopic procedure. Predicted difficulty in manipulation 
capability through narrow opening and corridor produced virtually 
no stress even during the inside-out phase through a 10 mm 
transparent sheath. Furthermore, in the subsequent process preceded 
by thorough internal decompression, the space through the key-hole 
craniotomy could be  sufficient for adequate removal via the 
outside-in procedure.

Bleeding is one of the most likely complications during the 
removal of glioblastoma because glioblastoma is often highly 
vascularized by neoformed vessels, as microvascular proliferation is 
one of its diagnostic hallmarks (23). Therefore, endovascular tumor 
embolization was considered indispensable for the smooth and safe 
progression of an endoscopic glioblastoma excision procedure if the 
target lesion was vascular-rich. In fact, blood loss relatively increased 
in the case of hypervascular lesion, which could not be embolized due 
to a lack of a suitable feeder artery. In such cases, thorough 
preparation of hemostatic devices and transfusion blood will 
be  required. On the other hand, because glioblastoma is an 
intraparenchymal tumor, proper selection of intratumoral vessels to 
be embolized, which were characteristically tortuous and dilated in 
shape (24), and which ended in the tumor without passing through 
branches to the normal brain, was considered very important. A 
cone-beam CT, which does not require particularly exceptional 
equipment (25), was useful for identifying those findings in this 
study. In either case, endovascular tumor embolization has not been 
standard treatment for glioblastoma, and even in this study, it was 

FIGURE 3

Case 2: intraoperative photographs of right cerebellar glioblastoma. (A) Key-hole craniotomy approximately 20 mm in diameter. (B) Insertion of 10 mm 
transparent sheath into center of tumor through guidance of neuronavigation system. The tumor was subsequently removed in an inside-out fashion. 
(C) After obtaining sufficient space by subsidence of brain surface through substantial tumor volume reduction, transparent sheath was removed. 
(D) Residual portion of tumor resected in an outside-in fashion through sufficient cortical incision.
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only performed in four cases. Therefore, a future study including a 
more significant number of cases will be necessary to establish the 
efficacy and safety of this technique.

Surgical intervention is confirmed to cause a neurophysiological 
reflex response involving hypothalamic–pituitary–adrenal axis 
activation, and results in complex neuroendocrine, inflammatory, 
metabolic cascade, and immunological responses (26–29). 
Experimentally, inflammatory mediators, such as CINC1, IL-8, 
TNF-α, and NO, have also been found to increase proportionately 
depending on the length of the skin incision experimentally (29). In 
addition, the reduction of the inflammatory response has been proven 
with the laparoscopic procedure compared to open surgery (30–32). 
Therefore, surgical intervention, including skin incision, muscle 
dissection, and craniotomy, should be minimized not just for the sake 
of reducing pain and better cosmetic results but also from the 
standpoint of mitigating the surgical stress response, and the 
endoscopic procedure was considered to be suitable for its realization 
even in surgery of glioblastoma.

Surgical site infections (SSI) after cranial surgery, which are an 
inevitable complication and have been reported to occur in 1–16% of 
patients (33–42), especially in glioblastoma surgery, would not only 
lead to the discontinuation of postoperative treatment but would also 
affect patient survival (33). While various risk factors for SSI have 
been assumed, e.g., number of operations (34–38, 41), duration of 
operation (35, 37, 39, 40), emergency operation (37), cerebrospinal 
fluid leakage (34, 35, 37, 39, 42), CSF drainage (35, 39), and American 
Society of Anesthesiologists score (>2) including body mass index and 
diabetes mellitus (34–36, 38, 42), there have also been reports that 
craniotomy itself could constitute a risk factor (40, 41). Therefore, by 
using endoscopic resection for glioblastoma through key-hole 
craniotomy as in this study, it may be possible to reduce SSI to a level 
similar to that of other organs (43, 44), and facilitate a smooth 
transition to postoperative therapy.

The largeness of a lesion would not be a contraindicating factor 
for this procedure since, in principle, the larger the lesion, the larger 
the space that can hypothetically be  secured through an internal 
decompression. On the other hand, it can be inherently difficult in this 
procedure, which employs endoscopic surgery through a narrow 
opening, to remove a lesion which extends widely in a shallow area. 
Even for such lesions, however, successful removal could be achieved 
in this study by making space through internal decompression, 
provided there was the appropriate volume and depth. This study was 
not able to establish the relationship between the extent of the surface 
and volume in the deep portion, where this procedure can 
be successfully utilized. A lesion close to eloquent areas, for which the 
use of brain mapping would be  essential for removal, could 
be assumed to be another limitation of this procedure. Brain mapping 
may also be possible if a lesion involving the eloquent area has a 
significant amount of lesion in the adjacent non-eloquent area, as was 
the situation in two cases in this study, whose premotor lesions were 
successfully resected by using motor evoked potential mapping. 
Moreover, this procedure, performed through small skin incision and 
craniotomy, may be suitable for awake surgery because of the reduced 
burden on the patient. Notwithstanding, since the present study is 
only a preliminary report, including a small number of patients and 
only a few types of lesions, further studies with more cases are needed 
to clarify the efficacy and safety of this endoscopic procedure for 
glioblastoma and to eliminate such limitations.T
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Conclusion

Endoscopic removal of glioblastoma using an inside-out 
style excision for a deep-seated lesion was considered to be a 
promising procedure, with the addition of an outside-in style 
extirpation for a shallow portion if needed. This procedure could 
be performed via small skin incision and key-hole craniotomy 
less invasively and had a positive effect on patients’ prognosis, 
facilitating a smooth transition to postoperative adjuvant 
therapy. In addition, endovascular tumor embolization, when it 
was needed before resection, was also considered beneficial. 
However, a more extensive number of patients will need to 
be evaluated in future studies to confirm the efficacy and safety 
of this procedure.
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FIGURE 4

Preoperative (three columns on the left) and postoperative (three columns on the right) gadolinium-enhanced magnetic resonance images of all cases. 
Cases 1, 2, 3 (A–C) were treated through tumor removal only in an inside-out fashion. Cases 4, 5, 6 (D–F) combined excision in an outside-in fashion. 
As a result, gross-total resection in cases 1, 4, and 5 (A,D,E) and near-total resection in cases 2, 3, and 6 (B,C,F) was achieved.
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