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developments of artificial
intelligence in radiomics toward
nervous system diseases

Jiangli Cui, Xingyu Miao*, Xiaoyu Yanghao and Xuqiu Qin

Shaanxi Provincial People’s Hospital, Xi’an, China

Background: The growing interest suggests that the widespread application of

radiomics has facilitated the development of neurological disease diagnosis,

prognosis, and classification. The application of artificial intelligence methods in

radiomics has increasingly achieved outstanding prediction results in recent years.

However, there are few studies that have systematically analyzed this field through

bibliometrics. Our destination is to study the visual relationships of publications

to identify the trends and hotspots in radiomics research and encourage more

researchers to participate in radiomics studies.

Methods: Publications in radiomics in the field of neurological disease research

can be retrieved from the Web of Science Core Collection. Analysis of relevant

countries, institutions, journals, authors, keywords, and references is conducted

using Microsoft Excel 2019, VOSviewer, and CiteSpace V. We analyze the research

status and hot trends through burst detection.

Results: On October 23, 2022, 746 records of studies on the application of

radiomics in the diagnosis of neurological disorders were retrieved and published

from 2011 to 2023. Approximately half of them were written by scholars in

the United States, and most were published in Frontiers in Oncology, European

Radiology, Cancer, and SCIENTIFIC REPORTS. Although China ranks first in the

number of publications, the United States is the driving force in the field and

enjoys a good academic reputation. NORBERT GALLDIKS and JIE TIAN published

the most relevant articles, while GILLIES RJ was cited the most. RADIOLOGY is a

representative and influential journal in the field. “Glioma” is a current attractive

research hotspot. Keywords such as “machine learning,” “brain metastasis,” and

“gene mutations” have recently appeared at the research frontier.

Conclusion: Most of the studies focus on clinical trial outcomes, such as the

diagnosis, prediction, and prognosis of neurological disorders. The radiomics

biomarkers and multi-omics studies of neurological disorders may soon become

a hot topic and should be closely monitored, particularly the relationship

between tumor-related non-invasive imaging biomarkers and the intrinsic micro-

environment of tumors.
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1. Introduction

Radiomics was first proposed by PhilippeLambin, a Dutch

scholar, in 2012 to measure the shape of tumors and analyze

the differences in image texture (1). With the rapid development

of medical imaging and artificial intelligence, there has been an

increasing number of research in the field of medical image

analysis, such as disease prevention, diagnosis, treatment efficacy

evaluation, and prognosis prediction (2–7).

In recent years, digital medical imaging has gradually

transformed into high-dimensional data suitable for data mining

and data science techniques. Aided by powerful computing power

and Quantitative Image Analysis (QIA) technologies, radiomics

has made rapid development (8). Currently, radiomics and deep

learning are themost researched technologies in the field of medical

imaging. Radiomics involves high-throughput extraction of a large

amount of quantifiable information from regions of interest (ROI)

in digital medical images. Deep learning, as a classic artificial

intelligence methods, transforms the extractions into hundreds or

thousands of quantitative imaging features (9). Then, quantitative

extraction and analysis of image features, which roughly include

first-order histograms, shape, texture, and wavelets, is performed

to establish prediction models for clinical decision support. Unlike

traditional computer-aided diagnosis (CAD), radiology focuses

on providing information about human diseases from a deep

and latent perspective, and the recognition of high-dimensional

heterogeneous information in images by radiology is incomparable

to traditional CAD.

As the development of Artificial Intelligence (AI) techniques,

such as deep learning and convolutional neural networks, it has

greatly advanced the performance of computer vision systems

(10). These AI methods have enabled vision systems to achieve

remarkable results in a wide range of applications, including object

detection, video classification, and image segmentation. With the

advancement of deep learning algorithms, AI-based methods such

as convolutional neural networks (CNNs) (11) and recurrent

neural networks (RNNs) (12) have been developed to analyze

imaging data and make predictions with high accuracy. Among

these applications, AI-based approaches have made preliminary

exploration in the field of radiomics. These AI-based radiomics

methods have the potential to improve disease diagnosis (13)

and treatment decision-making (14), as well as facilitate the

development of precision medicine (15).

The workflow of radiomics inspired by AI includes image

acquisition and segmentation, radiomics feature extraction, and

model building. Once the data is collected and organized, ROI

is usually segmented for analysis by qualified professionals such

as doctors, either manually or semi-automatically. Some research

has shown that the results of automatic image segmentation

using deep learning methods are more satisfactory (16, 17). The

feature extraction step is noteworthy as different implementations

produce different radiomics values, and radiomics models are

only applicable to the same feature interpretation. The appearance

of the Image Biomarker Standardization Initiative (IBSI) is

expected to reduce the impact of this problem (18). Once the

image acquisition and radiomics feature extraction are complete,

machine learning algorithms can be used to build radiomics

models. For example, the software provided by Chen et al. (19)

includes the implementation of various modeling algorithms such

as decision trees, logistic regression, complex random forests,

Bayesian networks, and support vector machines (20–23). These

models can also be optimized for specific performance metrics,

and the receiver operating characteristic curve (AUC) (6) is widely

used for optimization. Another tool to evaluate the models is the

calibration plot (24), which describes the relationship between the

true sample class and the model prediction probability. Overall, the

selection of appropriate modeling algorithms is still an active area

of research.

An important reason for the widespread development of

radiomics AI methods is that, as the increases of the incidence

of neurological diseases and the ratio of disability and death,

traditional imaging techniques can only qualitatively describe

the lesions, and provide size, shape, and other characteristics

which can be similarly recognized by the naked eye. For non-

visualized quantitative data such as textures and histograms,

direct visualization is not available (25). Radiomics can overcome

these shortcomings. Zhang et al. (26) developed an algorithm

for fully automatic segmentation of glioblastoma regions in MRI

and compared it with a reference established by manual tumor

segmentation. The results showed that the algorithm was able

to extract most image features with moderate or high accuracy.

Meanwhile, Upadhaya et al. (27) attempted to use radiomics for

grading and prognostic estimation of glioblastoma multiforme

(GBM) and achieved 90% accuracy. Gillies et al. (8) proposed that

quantitative features in radiomics include not only imaging features

but also clinical and genetic information. This article is currently

the most representative review of radiomics research.

In the 2016 World Health Organization Classification of

tumors of the central nervous system (WHOC), the key features

of the phenotype are combined with genotype, providing new

ideas for precise classification, grading, and participation in

treatment decision-making of brain tumors (28). The application

of machine learning combined with radiomics in the classification,

prediction, and prognostic assessment of neurological diseases has

increased explosively (29–31). Researchers have gradually shifted

their focus to improving the reproducibility of radiomics features,

standardizing MRI, and multi-index joint diagnosis, prediction,

and prognosis (32–34).

With the continuous progress of radiomics in the study of

central nervous system diseases, it is crucial to understand the

new trends and key milestones in related knowledge development.

However, few systematic analysis have been carried out on these

publications. Bibliometrics analysis has been widely used to

organize knowledge structures and explore the trends of extensive

research fields, including quantitative analysis of patterns in the

scientific literature (19). Several studies have shown that CiteSpace

focuses on finding the key points in the development of a domain,

especially key turning points. Due to its rich functionality, it has

become an effective method for analyzing big data at present

(35, 36). To the best of our knowledge, there has been no systematic

bibliometric analysis of radiomics in neurological disease research.

Therefore, we will describe the scientific results of radiomics in

the study of central nervous system diseases to identify trends and

hotspots, and guide the future work of researchers.
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2. Methods

2.1. Search strategy

The data was downloaded from the Science Citation Index

Extended database of the Web of Science Core (WoSCC)

on October 26, 2022. The following search terms were used:

(“radiomics”) and (“brain” or “cerebrum” or “encephalon” or

“pericranium” or “cerebral*” or “central nervous system”) in

the Topic field, including title, abstract, author keywords, and

KeyWords Plus following continuing of existing search methods

(37–39). Original articles and reviews written and published in

English between 2011 and 2022 were included. The result of the

survey was 764 records, which were obtained from this study.

2.2. Data collection and analysis

All records retrieved from WoSCC were downloaded

independently by two authors, including the number of

publications published annually; country/region, institution,

journal, and author output; citation frequency; and H-index.

The H-index represents the number of academic journals or

scholars/countries/regions that have published H papers, each

of which has been cited at least H times It is used to evaluate

the scientific impact of authors or countries. Journal Citation

Reports (JCR) 2022 was used to obtain the impact factor (IF) of

journal categories. The data were then transformed into Microsoft

Excel 2019, VOSviewer, and CiteSpace V for the analysis of basic

indicators. Microsoft Excel (v.2019) was used to analyze and

organize the data on the basic characteristics of publications and

citations by plotting the annual publication output, H-index, total

IF, and average IF, citation count per article, and total citation

count for each country/region.

VOSviewer (36) was used to create network visualization maps

to analyze the collaboration among countries/regions, institutions,

and highly cited reference authors. Furthermore, VOSviewer

can categorize keywords with high co-occurrence frequency into

multiple clusters, and color them simultaneously according to the

timeline. Co-occurrence analysis determines the research hotspots

and trends. We choose “author keywords” as the unit of analysis.

We use CiteSpace V for a merged analysis of journals,

references, and clusters, and further constructed amerged reference

timeline view, through which the rise and development periods

of some cluster fields can be better understood. In addition,

CiteSpace can capture keywords with strong reference outbreaks,

and construct a visualization map for all projects. Citation burst is

a key indicator for recognizing emerging trends (19). We set the

“number of years per slice” and “number of years before each slice”

to 1 and 50, respectively. Thus, the network map is extracted from

the top 50 references cited in the first year of each article.

3. Results

3.1. Publication output and temporal trend

According to the citation analysis from the Web of Science,

a total of 764 publications met the inclusion criteria, consisting

FIGURE 1

Number of publications and analysis trends of radiomics countries/regions in neurological disease research. (A) Annual global publication output. (B)

Trends in publication output growth for the top 10 countries. (C) H-index, number of citations per article, and total number of citations in the top 10

countries/regions.
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of 647 articles and 117 reviews (Figure 1A). In the early stage of

research, the average annual citation frequency of published articles

was low due to the lack of research on the application of radiomics

in neurological diseases. From 2011 to 2017, the field was in a low-

heat period with fewer than 30 articles of related research reports.

However, from 2018 to 2022, the number of articles published on

radiomics in the field of neurological diseases has been steadily

increasing, with 61 articles published in 2018 alone, surpassing

the previous total. The situation indicates the increasing attention

in this field. Since 2018, the average annual citation frequency of

published articles has rapidly increased and stabilized at around

300 per year, further indicating that the study of radiomics in

neurological diseases has reached a more mature stage. The reason

may be due to an increase in the number of neurological disease

patients worldwide, as well as the result of interdisciplinary fusion

and continuous innovation. In the past 3 years, the number of

papers published in this field has shown a clear upward trend, with

more than 90 papers published each year appearing in highly active

states. With an average annual increase of 70 papers and an average

annual growth rate of 57.43%, this indicates that research in this

field has received increasing attention. While 197 articles have been

published in 2022 so far, this number does not reflect the total

number of publications throughout the year. To date, these articles

have been cited 10,187 times, averaging 13.3 citations per article.

3.2. Distribution by country/region and
institution

Between 2011 and 2023, all publications were published in 49

countries/regions and 1,291 institutions (Table 1). China has the

most publications (194, 44.503%), followed by the United States

(81, 25.393%), South Korea (51, 6.675%), Italy (50, 6.545%), and

France (46, 6.021%). With the exception of the United States, all

other countries have been published after 2017. Since 2018, China

has ranked first in annual publication volume. However, among the

fivemost productive countries, China has the lowest average IF. The

annual growth rate of publications produced by the United States

and Germany also follows a similar trend. Since 2020, although

Italy’s cumulative publication count from 2011 to 2022 ranked fifth

(50), its annual publication output has grown rapidly exceeding

China’s by 2022. The total trend of the published numbers by these

countries each year shows that since 2017, the number of papers

has rapidly increased (Figure 1B). China has 3,064 citations and

a citation/article ratio of 44.503, ranking first among all selected

countries/regions, but its citations per article (9.01) are far lower

than that of Canada (29.67). However, Canada’s total number of

articles (33) and H-index (11) are relatively weak performance. The

H-index is a new method for evaluating academic achievements,

and a higher H-index indicates that papers are more influential.

Combining these paper evaluation indicators, the United States,

China, and Canada are the three most influential countries in this

research field. From this, we further determined the annual national

output of the 10 most productive countries/regions (Figure 1C).

To investigate international cooperation, we constructed a

network visualization map of publications in radiomics studies

of neurological diseases using VOSviewer. Figure 2A displays
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FIGURE 2

Visualization map of the VOSviewer network of countries/regions and institutions involved in radiomics in neurological diseases. (A) Collaboration

analysis by country/region. (B) Collaboration analysis by agency. (C) Double graph superposition of citations of articles on the application of

radiomics in neurological diseases (the left side is the cited journal, the right side is the cited journal, and the curve path represents the citation

relationship).

the collaboration between countries/regions that published more

than 10 papers (38 out of 76 papers). Countries/regions with

high co-occurrence rates are grouped into the same color.

Countries/regions with similar colors are identified as having

closer collaboration and forming clusters. The width of the lines

represents the scale of cooperation. The United States (220) has the

highest total contact strength, indicating its participation in most

of the world’s collaborations. The countries/regions that cooperate

most with the United States are China, Germany, the United

Kingdom, Canada, France, and the United States. The yellow

cluster is led by China and cooperates most with the United States,

Germany, the United Kingdom, and South Korea. As is shown in

Figure 2B, there is less cooperation between the most influential

countries, and future cooperation should be strengthened to further

promote the development of this field. Table 1 shows the 10 most

effective institutions in related research. The main institutions are

Fudan University (45, 5.89%), the Chinese Academy of Sciences

(41, 5.366%), Capital Medical University (38, 4.974%), General

Electric (35, 4.581%), and Helmholtz Association (34, 4.45%).

3.3. Distribution by journal

A total of 764 publications on brain disease radiomics research

have been published in 257 academic journals. Table 2 lists the 10

most productive and frequently cited journals. FRONTIERS IN

ONCOLOGY (62 articles, 7.984%) with an IF of 5.78 has the most

publishments, followed by EUROPEAN RADIOLOGY (53 articles,

6.937%), CANCERS (34 articles, 6.97%), SCIENTIFIC REPORTS

(33 articles, 4.319%), and FRONTIERS IN NEUROSCIENCE (28,

3.665%). The Journal of MAGNETIC RESONANCE IMAGING

has the highest IF (13.029) among the top 10 most influential

journals in 2019, while EUROPEAN RADIOLOGY has the highest

H-index (19). Among the 10 most productive journals, 4 are
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TABLE 2 Top 10 productive and co-cited journals for radiomics research in neu authors and co-cited authors.

Rank Productive
journal

Articles
(N)

Percentage
(N)

IF
(2022)

H-
index

Quartile
in category

Rank Co-cited journal Articles
(N)

IF (2022) H-index Best
quartile

1 FRONTIERS IN
ONCOLOGY

61 7.984 5.738 10 Q2 1 RADIOLOGY 552 29.146 4 Q1

2 EUROPEAN
RADIOLOGY

53 6.937 7.034 19 Q1 2 EUROPEAN
RADIOLOGY

411 7.034 4 Q1

3 CANCERS 34 4.45 6.575 7 Q1 3 SCIENTIFIC REPORTS 396 4.996 15 Q2

4 SCIENTIFIC
REPORTS

33 4.319 4.996 15 Q2 4 AMERICAN JOURNAL
OF
NEURORADIOLOGY

390 4.966 5 Q2

5 FRONTIERS IN
NEUROSCIENCE

28 3.665 5.152 7 Q2 5 NEURO ONCOLOGY 379 13.029 9 Q1

6 FRONTIERS IN
NEUROLOGY

16 2.094 4.086 4 Q2 6 PLOS ONE 337 3.752 4 Q2

7 MEDICAL PHYSICS 14 1.832 4.506 5 Q2 7 JOURNAL OF
MAGNETIC
RESONANCE
IMAGING

318 5.119 7 Q1

8 NEURO ONCOLOGY 14 1.832 13.029 9 Q1 8 NEUROIMAGE 266 7.4 1 Q1

9 JOURNAL OF
MAGNETIC
RESONANCE
IMAGING

13 1.702 5.119 7 Q1 9 CLINICAL CANCER
RESEARCH

251 13.801 4 Q1

10 NEURORADIOLOGY 13 1.702 2.995 6 Q3 10 MAGNETIC
RESONANCE
IMAGING

240 3.13 3 Q3
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TABLE 3 Top 11 prolific authors and co-cited authors of radiomics studies in neurological diseases.

Rank Author Count (N) Rank Co-cited author Count (N)

1 NORBERT GALLDIKS 166 1 GILLIES RJ 286

2 JIE TIAN 16 2 LAMBIN P 285

3 PHILIPP LOHMANN 13 3 AERTS HJWL 197

4 JI EUN PARK 13 4 LOUIS DN 185

5 HO SUNG KIM 12 5 Van GRIETHUYSEN JJM 174

6 MARTIN KOCHER 12 6 KICKINGEREDER P 153

7 ZHENYU LIU 11 7 OSTROMQT 106

8 PEIPEI PANG 11 8 KUMAR V 104

9 SUNG SOO AHN 10 9 ZWANENBURG A 98

10 DINGGANG SHEN 9 10 HARALICK RM 92

11 KARLJOSEF LANGEN 9 11 STUPP R 86

FIGURE 3

CiteSpace visualization of authors. (A) Co-occurrence of authors. (B) Co-cited authors involved in radiomics neurological disease research. The

circle node represents the author of the paper. Links between nodes represent partnerships.

classified in Q1, 5 in Q2, and one in Q3. The most frequently co-

cited journal is RADIOLOGY (552 cited, Q1), with the highest

IF (29.146) in 2021. The next most frequently cited journals

are EUROPEAN RADIOLOGY (411 cited, Q2), SCIENTIFIC

REPORTS (396 cited, Q1), the AMERICAN JOURNAL OF

NEURORADIOLOGY (390 cited, Q3), and NEURO ONCOLOGY

(379 cited, Q1). The dual map shows three main reference paths.

The left side shows the research frontier, with articles concentrated

in journals in themedical, neurological, and clinical fields, while the

right side shows the cited region, with articles primarily published

in journals in the molecular, biological, genetic, psychological,

health, nursing, and medical fields (Figure 2C).

A total of 5,026 authors participated in the study. Table 3

shows the 11 most productive authors. NORBERT GALLDIKS and

JIE TIAN each published 16 articles, ranking first in the number

of publications, followed by PHILIPP LOHMANN and JI EUN

PARK (13 papers), HO SUNG KIM and MARTIN KOCHER (12

papers), and Zhengyu LIU and ZhengYU LIU (11 papers; Figure 3A

and Table 3). It is worth noting that the concentration of authors

is relatively low (<0.03), indicating that the authors’ impact on

neurological disease radiomics research needs to be increased. In

this figure, each node represents an author, the larger the node,

the more articles are published. The thick lines indicate close

cooperation between authors, as can be clearly seen in Figure 3A,

there is communication and cooperation between authors in

this field. Co-cited authors refer to those commonly cited in

publications, which are critical indicators of author contributions.

Figure 3B and Table 3 show the top 11 co-cited authors, with only

eight authors having more than 100 times citations, where GILLIES

RJ (286) ranked first, followed by LAMBIN P (285), AERTS HJWL

(197), and LOUIS DN (185). Upadhaya is an early researcher in the

field of neurological system radiomics research.

Upadhaya is an early researcher of radiomics research in

the nervous system. In 2017, he first proposed a prognostic

model of glioblastoma multiforme based on multimodal MRI,

marking the beginning of radiomics in the field of the nervous

system. Meanwhile, Galldiks et al. (40) has published the

most articles. In 2020, he summarized the imaging challenges

related to immunotherapy, targeted therapy, and brain metastasis

combined with radiotherapy. This paper also reviewed advanced

imaging techniques that could overcome some of these imaging

challenges. It provides valuable information for the identification
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FIGURE 4

Analysis of references related to radiomics in the study of neurological diseases. (A) Network of co-cited references. (B) Network diagram of

co-reference clusters.

of changes and recurrences caused by treatment in brain metastasis

lesions, and the evaluation of treatment responses. In the same

year, Kim et al. (41) proposed a method using diffusion and

perfusion-weighted MRI radiomics models to predict isocitrate

dehydrogenase (IDH) mutation and tumor aggressiveness in

diffuse low-grade gliomas. In this paper, multiparameter MRI

radiomics models are also utilized to predict tumor grades.

In 2021, PHILIPP LOHMANN reviewed the basics, current

workflows, and methods of radiomics, and focused on the

application of feature-based radiomics in neural tumors with

clinical examples. Additionally, he studied the usage of FET-

PET radiomics in identifying glioma relapse and progression (42,

43). Park et al. (44) is a senior researcher in the neurological

disease radiomics field. By using deep learning to automatically

segment diffusion and perfusion MRI radiomics, he provided a

reproducible and comparable diagnostic model for glioblastoma.

He concluded that the first-level feature extraction based on

automatically segmented MRI has high reproducibility and

comparable diagnostic efficiency with manual segmentation. This

field remains a key focus of radiomics in the research of nervous

system diseases.

3.4. Analysis of co-cited references

Among the top 10 co-cited articles, four were critical articles,

two were on radiomics, and four were on nervous system diseases.

Additionally, these studies are considered reliable references for

future relevant research. It’s worth noting that among the top five

co-cited references, there are no articles about radiomics research

in the nervous system, which indicates that the field still requires

further research (Figure 4A and Table 4). The network diagram of

co-reference clusters is shown in Figure 4B, and the data collection

is shown in Table 5. In 2014, Aerts and HJWL extracted 440

features from computer tomography scan data of 1,019 lung or

head or neck cancer patients, and conducted radiology analysis

on the image intensity, shape, and texture of the tumors. The

results concluded that a large number of radiomics features have

predictive capabilities in an independent dataset of cancer and

head and neck cancer patients. He also proposed the concept

of radiomics genomics and showed that radiomics genomics

features can capture tumor heterogeneity with underlying gene

expression patterns (45). This study is considered a significant

milestone and marks the transition of radiomics genomics from

basic research to clinical application. Kickingereder et al. (46)

demonstrated that compared to established clinical radiomics risk

models, radiomics-based magnetic resonance imaging signals can

improve the accuracy of predicting survival and stratification of

newly diagnosed glioblastoma patients.

In 2017, Bakas et al. (47) collected the segmentation labels

and radiological features of preoperative multimodal magnetic

resonance imaging (MRI) of gliomas from multiple institutions

in the Cancer Genome Atlas (TCGA), and collected stratified

gliomas by preoperative scans. The significant value of the

study lies in the fact that the data is publicly available. The

generated labels and imaging features can be used for repeatable

and comparable quantitative studies, providing guidance for

addressing reproducibility and feature interpretation problems.

Van Griethuysen et al. (48) proposed a theory that the lack

of standardized definitions and image processing severely affects

the reproducibility and comparability of research results. They

developed a flexible open-source platform PyRadiomics and

discussed the workflow and architecture of PyRadiomics. This

study demonstrates its application in the feature analysis of lung

lesions which is expected to address the standardization problem

of algorithms and image processing. In 2020, Zwanenburg et al.

(18) proposed the Image Bio-Marker Standardization Initiative and

standardized 174 radiomics features, providing a foundation for the

validation and calibration of different radiomics software. It also

provided an effective solution to the current common data island

problem. Despite the involvement of a large number of literature in

the feature standardization study, it still lacks a better solution.

3.5. Analysis of keyword
co-occurrenceclusters

Keywords were condensed and extracted from the content

of an article to reflect the topic and content of a representative

article. High-frequency keywords are often used to reflect the
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TABLE 4 10 commonly cited literatures in imageomics research of nervous system diseases.

Rank Co-citations (N) Centrality First author Year Title Journal DOI Cluster

1 218 0.01 Gillies, RJ 2016 Radiomics: images are more than
pictures, they are data (survey)

Radiology 10.1148/radiol.2015151169 #4

2 176 0 Van Griethuysen,
JJM

2017 Computational radiomics system to
decode the radiographic phenotype

Cancer Research 10.1158/0008-5472.CAN-17-0339 #4

3 134 0.02 Lambin, P 2017 Radiomics: the bridge between
medical imaging and
personalized medicine (survey)

Nature Reviews
Clinical Oncology

10.1038/nrclinonc.2017.141 #4

4 114 0.01 Louis, DN 2016 The 2016 World Health Organization
classification of tumors of the central
nervous system: a summary

Acta
Neuropathologica

10.1007/s00401-016-1545-1 #4

5 70 0.13 Aerts, HJWL 2014 Decoding tumor phenotype by
noninvasive imaging using a
quantitative radiomics approach

Nature
Communications

10.1038/ncomms5006 #4

6 66 0 Aerts, HJWL 2020 The image biomarker standardization
initiative: standardized quantitative
Radiomics for high-throughput image-
based phenotyping

Radiology 10.1148/radiol.2020191145 #2

7 56 0.1 Kickingereder, P 2016 Radiomic profiling of glioblastoma:
identifying an imaging predictor of
patient survival with improved
Performance over established clinical
and radiologic risk models

Radiology 10.1148/radiol.2016160845 #3

8 54 0.01 Bakas, S 2017 Data descriptor: advancing the cancer
genome atlas glioma MRI collections
with expert segmentation labels and
radiomic features

Scientific data 10.1038/sdata.2017.117 #4

9 45 0.04 Yip, SSF 2016 Applications and limitations of
radiomics (survey)

Physics in medicine
and biology

10.1088/0031-9155/61/13/R150 #4

10 44 0.27 Zhou, H 2017 MRI features predict survival and
molecular markers in diffuse
lower-grade gliomas

Neuro-oncology 10.1093/neuonc/now256 #3
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TABLE 5 Top 10 co-cited reference clusters for radiomics studies in neurological diseases.

Cluster ID Size Silhouette Mean (Year) Top terms

0 40 0.896 2016 Glioma imaging

1 40 0.915 2017 Radiotherapy

2 34 0.947 2016 Prognostic biomarker

3 32 0.982 2018 Tumor aggressiveness

4 32 0.992 2014 Stereotactic radiosurgery

5 31 0.921 2016 Multiple pathologic biomarkers

6 29 0.958 2014 Risk stratification

7 29 0.975 2019 Glioblastoma

8 29 0.994 2018 Radiomics classification

9 29 0.959 2018 Machine learning applications

hot topics in the research field. Thus, a keyword co-occurrence

network is an analysis method based on text content. The

authors collect 383 keywords (Figure 5A) and find the top 25

most frequently cited keywords through keyword burst analysis

(Figure 5B). The blue line represents the time interval, and the

red line represents the burst period of the keywords. As can be

seen from the figure, the burst keywords are mainly concentrated

on the research of radiomics and brain-related diseases, including

but not limited to disease risk analysis, treatment, and tumor

heterogeneity. Feature selection, patterns, magnetic resonance

spectroscopy analysis, and image segmentation are the pioneering

explorations in the early stage. Since then, positron emission

tomography (PET), imaging biomarkers, radiotherapy, support

vector machines, feature selection, tumor heterogeneity, image

texture features, and disease prognostic evaluation became hot

topics. In recent years, computed tomography (CT), nomograms,

brain metastasis, machine learning, and gene mutations have

become new key keywords for outbreaks.

The results in Figure 5C calculated by the log-likelihood

ratio (LLR) show the keyword radiation. The clustering analysis

shows outstanding homogeneity through 17 cluster centers with a

modularity score of 0.781 and an average silhouette value of 0.8346.

They encompass a wide range of radiomics topics in the field of

neurological diseases, including artificial intelligence and imaging

techniques [# 0 mri (32), # 2 radiomics (32), # 3 nomogram (33),

and # 5 deep learning (33)] and indications [# 1 Alzheimer’s disease

(34), # 4 Meningioma (35), # 6 ruptured aneurysm (36), # 7 brain

metastases (37), # 8 treatment (38), # 9 prognosis (38), # 10 high-

grade glioma (38), # 11 tumor heterogeneity (38), # 12 intracerebral

hemorrhage (39), and # 13 tumor detection (39); Figures 5C, D].

In recent years, the advancement of AI technology has significantly

improved the status of radiomics research, making it a hot topic

in the field of the combination of medicine and engineering.

This has brought new opportunities for clinical diagnosis and

treatment. Moreover, radiomics has also been proven to have

good performance in the diagnosis, prediction, and prognosis

of nervous system diseases. Recent researches are more focused

on the relationship between radiomics markers and the internal

microenvironment of nervous system diseases, particularly the

correlation between tumor heterogeneity, immunity, metabolism,

and imaging markers. The reproducibility and reliability of the

models have always been a focus of research and are expected

to be solved in the future with further development of wireless

technology.

4. Discussion

In recent years, increasing numbers of systematic and narrative

reviews have focused on the application of radiomics in the study of

nervous system diseases (49–52). The use of radiomics techniques

is highlighted in image segmentation, prognosis, and non-invasive

biomarker applications. An advantage of bibliometrics analysis

compared to traditional surveys is that it provides the reader with

an intuitive visualization of the research situation on a particular

topic. Here, we conducted a novel bibliometric analysis to explore

the publications of the past decade and provide a comprehensive

view of research trends.

As the concept of radiomics was first proposed in 2012, we

searched the data from 2012. The sudden rapid growth is related to

the magnetic resonance imaging features proposed by Zhou et al.

(53) that it can be used to predict the survival time and molecular

distribution of low-grade gliomas (LGGs). Texture analysis of MRI

data can accurately predict IDH1 mutation, 1p/19q co-deletion,

histological grading, and tumor progression. This highly cited

study is considered a leap in radiomics from the macroscopic

features of gliomas to the microscopic internal environment,

greatly driving the research in this field. A machine learning

model based on morphological features derived from Pyradiomics

was used to predict aneurysm stability (54), and this marked

the beginning of widespread research on radiomics in the field

of nervous system diseases. Subsequently, Tupe-Waghmare et al.

(55) proposed that compared to traditional risk factors, radiomics

models based on deep learning performed better in predicting the

survival rate of glioblastomamultiforme. To further this work, they

proposed a radiomics nomogram, which proved its good predictive

performance and showed that multi-variable models have statistical

robustness in survival analysis (56–59). In this section, the narrative

logic will unfold from two aspects, traditional explorations and

deep learning processing.
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FIGURE 5

CiteSpace visualization of keywords in radiomics studies of neurological diseases. (A) Key keywords network in radiomics neurological disease

research and related research publications. (B) Time trend plot of emergent keywords. (C) Keyword cluster analysis. (D) Timeline view of

Keywordclusters.

First we analyze the traditional explorations and traditional

imaging techiniques. Since 2018, a large number of radiomics

studies in the field of nervous system diseases have emerged,

including glioma survival analysis and stratified prediction (60),

the differential diagnosis of gliomas (61), and gene mutations

(62). Meanwhile, the research on Alzheimer’s disease is also

growing (63). At the same time, the use of multi-parametric MRI

to predict the IDH mutation status in glioblastoma (GBM) by

employing multi-region radiomics features was also been discussed

(64). The results showed that the multi-region model constructed

by the whole-region features performed better than the single-

region model, and the best performance was achieved when

combined with the age-whole-region. Meanwhile, the research

team made another attempt on predicting the O-6-methylguanine-

DNA methyltransferase (MGMT) promoter methylation status of

GBMbased on amulti-region andmulti-parametricMRI radiomics

model, and the results showed that combining clinical factors with

radiomics features does not improve predictive performance (65).

Another exploratory work provided by Bobholz et al. (66)

investigated the local relationship between MR-derived radiomics

features and histology-derived “tissue” features using a dataset

of 16 brain cancer patients. Radiomics features were collected

from T1, post-contrast T1, FLAIR, and diffusion-weighted imaging

(DWI) acquired before death. Similar tissue features were collected

from autopsy samples and registered via magnetic resonance

imaging. The results showed that a subset of radiomics features

can consistently capture texture information of histological tissue.

Su et al. (56) combined eight imaging features and three

clinical variables (age, sex, and tumor location) to construct an

imaging omic-clinical nomogram. The nomogram presented good

discrimination in predicting the isocitrate dehydrogenase 1 (IDH1)

mutation status of primary GBMs. On the other hand, Sakai et al.

(67) found that the XGBoost model trained on DWI data can

achieve an accuracy of 90% in predicting IDH1 mutation status,

but the model trained based on combined FLAIR-DWI radiomics

features could not improve the accuracy.

Following these ideas, the research became more detailed,

including automatic image segmentation (68), multiple sclerosis

(31), application of PET radiomics (69), and more advanced non-

invasive identification of gene mutations (70). Guo et al. (2)

investigated the role of Dsc-PWI dynamic radiomics features in

the diagnosis and prognosis prediction of ischemic stroke. Cao

et al. (71) used the radiomics features of MRI and 18F-FDG-PET

and the joint application of multiple models to identify gliomas.
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Alongi et al. (72) used AI-based 18F-FDG-PET to improve the

accuracy of AD diagnosis. Yao et al. (73) evaluated the ability of

pH and oxygen-sensitive MRI techniques to differentiate glioma

genotypes and concluded that pH and oxygen-sensitive MRI is a

viable and potentially valuable imaging technology to distinguish

glioma subtypes and provide additional prognostic value in clinical

practice. Dounavi et al. (74) suggested that FLAIR texture analysis

can capture subtle alterations in white matter microstructural.

To analyze the deep learning processing part, one extraordinary

method provided by Calabrese et al. (75) combined radiomics

features and convolutional neural network (CNN) features, and the

collaborative model performed well in predicting IDH1 and TERT

promoter hotspot mutations, ATRX and CDKN2A/B pathogenic

mutations, and chromosome 7 and 10 combined aneuploidy,

but not well in predicting other biomarkers. The hybrid CNN-

Transformer encoder based on multimodal MRI proposed by

Cheng et al. (76) achieved good performance in both glioma

segmentation and IDH gene typing prediction, outperforming

single-task learning and other state-of-the-art methods.

Previous studies have found that the use of radiomics features

as biomarkers of treatment response and outcome may be

correlated with clinical phenotypes, histological features, and

genomic features, but robust and reproducible features are needed

to address this issue. The low replicability potential of the current

study is still the reason why radiomics-based strategies have not

yet been translated into routine practice. Tixier et al. (77) found

that the robustness of radiomics features varied by category and

features calculated based on Gray-level Size-zoneMatrix (GLSZM),

edge maps, and shape were less robust compared to histograms and

co-occurrence matrics. Ma et al. (78) showed that first-order and

GLCM features extracted from LoG and wavelet-filtered images

were the most crucial factors for glioma recognition. Additionally,

some eigenvalues were considered strongly correlated between

low-grade glioma (LGG) and high-grade glioma (HGG).

Since plenty of scholars have been involved in studying

the robust performance of deep learning feature models, the

results are satisfactory compared to traditional machine learning

models. However, the results of scientific research are still

questionable because the performance of deep learning methods

depends on high-level data processing capability and high-quality

data requirements. On the other hand, the internal algorithm

feature vectors in unsupervised deep learning may not always

be transparent (black box) (79). It is worth illustrating that

the research of feature reproducibility involves multiple aspects,

including support from multi-center data and further research

on image segmentation. Moreover, the optimal feature selection

methods and the non-uniformity and standardization of features

are also urgent problems to be solved.

4.1. Limitations

To the best of our knowledge, this bibliometric analysis is

the first exploration of the development and trends of radiomics

research in the field of neurological diseases. However, this study

has some limitations. Firstly, the data used in this study was

extracted only from the WoSCC database, as we believe this

database is a reliable software for searching publications and

citations, although it may contain fewer documents and journals

than other databases such as Google Scholar or Scopus. Secondly,

non-English articles were excluded from the database and analysis,

which may have led to a source bias. Additionally, we selectively

analyzed the characteristics of information, so some key points and

details may have been missed.

5. Conclusion

Bibliometrics analysis indicates a good prospect and a

significant increase in related publications for radiomics in the field

of neurological diseases. The main contributors to this research

area have been identified, and the related studies are clustered and

mainly focused on the application of radiomics in glioma, brain

metastasis, and white matter diseases. Differences between regions

and countries still exist, and cooperation between countries needs

to be strengthened. In the process of applying deep learning for

handling radiomics data, there exists such a problem that the data

is in a poorly interpreted form of image features, but this problem

will be gradually solved with the advancement of technology. By

using these methods, it helps better understand the prospects of

radiomics in neurological diseases, and facilitates clinical diagnosis

and treatment decisions, simplifies the diagnostic and therapeutic

process, and ultimately benefits patients.
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