
Frontiers in Neurology 01 frontiersin.org

Chaudhuri’s Dashboard of Vitals in 
Parkinson’s syndrome: an unmet 
need underpinned by real life 
clinical tests
Mubasher A. Qamar 1,2*†, Silvia Rota 1,2*†, Lucia Batzu 1,2, 
Indu Subramanian 3,4, Cristian Falup-Pecurariu 5,6, 
Nataliya Titova 7,8, Vinod Metta 1,2, Iulia Murasan 5,6, Per Odin 9, 
Chandrasekhara Padmakumar 10, Prashanth L. Kukkle 11,12, 
Rupam Borgohain 3, Rukmini Mridula Kandadai 13, Vinay Goyal 14 
and Kallol Ray Chaudhuri 1,2

1 Institute of Psychiatry, Psychology and Neuroscience, Department of Basic and Clinical Neuroscience, 
Division of Neuroscience, King’s College London, London, United Kingdom, 2 King’s College Hospital 
NHS Foundation Trust, London, United Kingdom, 3 Department of Neurology, David Geffen School of 
Medicine, University of California, Los Angeles, Los Angeles, CA, United States, 4 Parkinson’s Disease 
Research, Education and Clinical Centers, Greater Los Angeles Veterans Affairs Medical Center, Los 
Angeles, CA, United States, 5 Faculty of Medicine, Transilvania University of Braşov, Brașov, Romania, 
6 Department of Neurology, County Clinic Hospital, Brașov, Romania, 7 Department of Neurology, 
Neurosurgery and Medical Genetics, Federal State Autonomous Educational Institution of Higher 
Education “N.I. Pirogov Russian National Research Medical University” of the Ministry of Health of the 
Russian Federation, Moscow, Russia, 8 Department of Neurodegenerative Diseases, Federal State 
Budgetary Institution “Federal Center of Brain Research and Neurotechnologies” of the Federal Medical 
Biological Agency, Moscow, Russia, 9 Department of Neurology, University Hospital, Lund, Sweden, 
10 Older Person’s Medical Clinic, Broadmeadow, NSW, Australia, 11 Center for Parkinson’s Disease and 
Movement Disorders, Manipal Hospital, Karnataka, India, Bangalore, 12 Parkinson’s Disease and 
Movement Disorders Clinic, Bangalore, Karnataka, India, 13 Department of Neurology, Nizam’s Institute 
of Medical Sciences, Autonomous University, Hyderabad, India, 14 Neurology Department, Medanta, 
Gurugram, India

We have recently published the notion of the “vitals” of Parkinson’s, a 
conglomeration of signs and symptoms, largely nonmotor, that must not 
be  missed and yet often not considered in neurological consultations, with 
considerable societal and personal detrimental consequences. This “dashboard,” 
termed the Chaudhuri’s vitals of Parkinson’s, are summarized as 5 key vital 
symptoms or signs and comprise of (a) motor, (b) nonmotor, (c) visual, gut, and 
oral health, (d) bone health and falls, and finally (e) comorbidities, comedication, 
and dopamine agonist side effects, such as impulse control disorders. Additionally, 
not addressing the vitals also may reflect inadequate management strategies, 
leading to worsening quality of life and diminished wellness, a new concept for 
people with Parkinson’s. In this paper, we  discuss possible, simple to use, and 
clinically relevant tests that can be  used to monitor the status of these vitals, 
so that these can be  incorporated into clinical practice. We  also use the term 
Parkinson’s syndrome to describe Parkinson’s disease, as the term “disease” is 
now abandoned in many countries, such as the U.K., reflecting the heterogeneity 
of Parkinson’s, which is now considered by many as a syndrome.
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Introduction

First described by James Parkinson’s in 1817 (1), Parkinson’s 
disease (PD), which should be regarded as a syndrome, is a progressive 
neurodegenerative condition, whose incidence has risen sharply 
worldwide, leading some authors to suggest we  may be  facing a 
Parkinson’s pandemic (2). Modern concepts of PD (3) extend beyond 
the well characterized motor symptoms to address nonmotor 
symptoms (NMS) (4), as well as to include the concept of wellness (5), 
the latter a marriage of motor, nonmotor, socio-cultural and socio-
economic issues. Taking these into account, we recently proposed the 
concept of the “vitals” of Parkinson’s (6), which are comprised of the 
crucially important comorbid or related symptoms of PD. Vitals consist 
of well-established essential motor and nonmotor features of PD, but 
also include other health factors that are crucial to providing holistic 
care, encompassing patients’ safety and quality of life (QoL). Often 
motor and NMS can occupy an entire consultation, however we bring 
to attention and stress on the importance of three other vitals 
(Figure 1), which are often omitted by healthcare professionals and 
rarely reported by people with Parkinson’s (PwP). When these vitals 
are missed in clinical practice, it can lead to marked deterioration of 
patients’ wellness. According to our and our collaborators’ clinical 
experience across sites in the U.K., U.A.E., and Romania, we have seen 
limited usage of these vitals even in well-established PD clinics, with 
consequences such as poor absorption of levodopa (7), or fractures 
secondary to falls due to non-detection of osteoporosis (8), or 
potentially dangerous daytime sleepiness and sudden onset of sleep (9).

Adopting the new “Chaudhuri’s Dashboard of Vitals in 
Parkinson’s” as a blueprint (Figure 1), in this review we discuss the 
tests that can be either be used or have the potential to be used once 
properly validated, in everyday clinical practice to assess these vitals. 
Some of clinical tools discussed are already in use for other conditions 
or clinical purposes, while others are more investigational at present. 
Figure 2 summarize the clinical tools we discuss in this review, divided 
into three categories according to the current applicability. It also 
includes useful clinical scales and questionnaires, which are beyond 
the scope of this review.

Dashboard vital: motor

The cardinal motor features of PD include bradykinesia, resting 
tremor, rigidity, and postural instability. Our understanding of PD has 

evolved to appreciate there are different motor subtypes, such as 
tremor-dominant (TD), postural instability and gait-disturbance 
(PIGD), akinetic-rigid (AR) subtypes, allowing for a more 
personalized approach in the clinical practice (10). These motor 
phenotypes can be differentiated through algorithms developed from 
the Unified Parkinson’s Disease Rating Scale (UPDRS) (11) or the 
revised Movement Disorder Society (MDS-UPDRS) (12), or with the 
use of specific motor symptoms scales such as the Modified 
Bradykinesia Rating Scale (13), alongside with the application of 
wearable technology (14). The motor subtypes are in fact characterized 
by a different progression, different NMS burden and different 
response to treatment, which might reflect a variable involvement of 
non-dopamine neurotransmitters (15–19).

Clinical tests for motor

Imaging-based clinical tools
Presynaptic dopamine transporter (DaT) single-photon emission 

computerized tomography (DaTScan) reflects the loss of 
dopaminergic neurons in the substantia nigra (SN), measured as 
caudate, putamen and striatum binding ratios (20). DaTScan is a 
validated tool used to support the diagnosis of Parkinson’s and 
parkinsonism and in PD, it shows dopamine depletion starting 
posteriorly from the putamen (21). In PD, DaTScan can also correlates 
with the laterality of symptoms (22), and some studies suggest that the 
striatal binding ratio has a negative correlation with motor scores 
(23–25). Additionally, the tracer uptake is more reduced in the AR and 
PIGD subtypes compared to TD one, supporting the hypothesis that 
dopamine depletion in the basal ganglia is the main mechanism for 
this specific subtypes and providing the evidence for a better levodopa 
response compared to TD one (26–28). Disease progression models 
also support its role in predicting motor disease progression (24, 29, 
30). However, application of the DaTScan in real clinical practice is 
more difficult, given its cost and availability limitations, and more 
evidence needs to be  provided on its role in predicting disease 
trajectory or its utility in management of dopamine-
replacing treatments.

A promising tool to investigate the motor vital, despite still under 
investigation, is brain magnetic resonance imaging (MRI) scan 
paradigms. It has been shown in fact that specific sequences, such as 
neuromelanin or susceptibility-weighted imaging and diffusion 
imaging of the SN, represent a good biomarker of disease progression 

FIGURE 1

A summary of the Chaudhuri’s Dashboard of Vitals in Parkinson’s, adapted from Chaudhuri et al. (6).
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and correlate with motor symptom burden (31–35). However, this 
remains investigational and not widely available for clinical application.

Finally, given its practicality, transcranial sonography of the SN, 
should be  taken into consideration for future possible clinical 
applications, being its usefulness not only confined to the differential 
diagnosis among PD and controls. It has in fact being demonstrated 
that the SN hyperechogenecity correlates to motor disability and gait 
impairment in PD (36). However, evidence in its role in monitoring 
the motor vital are still poor, it is operator dependent, and not widely 
available for clinical application.

Blood and tissue-based clinical tools
Neurofilament light chain (NfL) levels, a marker of neuronal 

injury, can be found increased in cerebrospinal fluid (CSF), serum, 
and plasma of PwP compared with controls, and correlate to motor 
phenotypes in PD (37–39). Specifically, plasma NfL levels are found 

to be higher in PIGD subtype than in TD subtype (40, 41), whilst 
serum NfL levels have shown to correlate with motor severity (42). 
CSF, serum, and plasma alpha-synuclein levels have been investigated 
in several studies for its mapping of motor features in PD, confirming 
its role as a potential clinical tool for assessing motor severity (43–46). 
We  feel therefore these may be  important markers to consider in 
future, once its validity is widely established, with focus on plasma and 
serum-based tests over CSF for clinician’s ease of application.

Other clinical tools
Wearable technology (WT) is widely used in research settings for 

motor monitoring, especially in the more advanced stages of PD, 
characterized by the presence of motor fluctuations and more severe 
sleep disturbances (47, 48). Given the ability of WT to provide 
objective and continuous monitoring, it has the potential to assist 
clinicians in their assessments of PwP. In fact, studies have provided 

FIGURE 2

Chaudhuri’s Dashboard of Vitals clinical tools. This figure summarizes discussed clinical tools when applied to the Dashboard of Vitals in Parkinson’s 
disease. The figure splits the tools into four categories; (1) clinical tools available for clinicians, these are currently available tools with good evidence to 
application to real-clinical practice; (2) clinical tools potentially available, these are tools which may limited due to resources and should be considered 
with careful consideration depending on the clinical indications; (3) clinical tools for future consideration, these are tools which may be available or 
currently being developed but are not solely able to be applied without further evidence for their application in clinical practice; and (4) clinical 
questionnaires and scales, these are tools which allow for screening and progression monitoring in clinical practice. ABPM, ambulatory blood pressure 
monitor; ADS, anticholinergic drug scale; BMI, body mass index; CCM, corneal confocal microscopy; CPS, co-morbidities polypharmacy scale; CT, 
computerized tomography; DaTScan, presynaptic dopamine transporter single-photon emission computerized tomography; DBI-Ach, burden index 
anticholinergic component; DEXA, dual-energy X-ray absorptiometry; EEG, electroencephalogram; ERG, electroretinography; FEES, fibreoptic 
endoscopic evaluation of swallowing; FRAX, fracture risk assessment tool; GIDS, gastrointestinal dysfunction scale; H&Y, Hoehn and Yahr; HBA1C, 
glycated hemoglobin; HP, helicobacter pylori; ICD, impulsive control disorder; MDS, movement disorder society; MIBG, 123I-metaiodobenzylguandine; 
MRI, magnetic resonance imaging; MSLT, multiple sleep latency tests; NM, neuromelanin; NMS, nonmotor symptoms; OCT, optical coherence 
tomography; P gingivalis, porphyromonas gingivalis; PD, Parkinson’s disease; PSG, polysomnography; QUEST, questionnaire; SIBO, small intestinal 
bacterial overgrowth; SN, substantia nigra; SWI, susceptibility weighted imaging; TCS, transcranial sonography; UPDRS, unified Parkinson’s disease 
rating scale; VEMP, vestibular-evoked myogenic potential; VEP, visual evoked potential; VFSS, videofluoroscopic swallowing study; Vit, vitamin; XR, 
x-ray.
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supporting evidence over WTs ability to collect reliable daily 
measurements of motor features (49), together with information on 
the effectiveness of levodopa treatment (50). However, its clinical 
application is limited at present, given lack of standardization across 
the several possible WT available and in development (47). Therefore, 
clinicians may choose to use WT in addition to their clinical-based 
management strategies.

Dashboard vital: nonmotor

NMS in PD are ubiquitous, from prodromal to palliative stage 
(51). Based on data-driven analysis as well as observational case 
series-based data, a recent description of nonmotor subtypes or 
endophenotypes, such as Park-Cognitive and Park-Pain, has been 
suggested. These subtypes may be underpinned by specific dominant 
neurotransmitter dysfunctions, largely cholinergic, noradrenergic, and 
serotonergic, apart from the well-known dopaminergic one (3, 52, 53). 
A subtype-specific management has been proposed (53) and the 
nonmotor dashboard of vitals aims to reflect tests that can identify the 
different subtypes, to aid a dashboard-triggered personalized medicine.

Clinical tests for nonmotor

Imaging-based clinical tools
DaTScans abnormalities have been associated with multiple NMS 

(54), but it is unclear whether this measurement could be used to 
assess the overall burden of NMS in PD. This might be due to the 
predominantly non-dopaminergic nature of many NMS, therefore 
would not be captured by dopaminergic imaging alone (55).

123I-metaiodobenzylguandine (MIBG) scintigraphy can be used 
to evaluate the postganglionic cardiac autonomic denervation, typical 
of PD (56). Recent evidence has supported the use of MIBG 
scintigraphy for the evaluation of the burden of autonomic 
dysfunction, as measured by the wash-out rate which seems to 
correlate with severity of orthostatic hypotension (57). However, the 
results have not been replicated in other studies (58). MIBG use in 
NMS remains investigational at present and requires 
careful consideration.

Blood and tissue-based clinical tools
Serum uric acid (UA, urate) has been explored in several studies, 

given its potential neuroprotective effect in PD and its inverse 
association with the risk of developing PD (59–61). Lower UA levels 
have been correlated with experiencing higher NMS burden, whilst 
higher UA levels seem to be  more protective (62–64). However, 
conflicting data exists for UA application as a measure of NMS, and as 
such, it’s use clinically is currently not appropriate without further 
large-scale studies (65–67).

Serum homocysteine (Hcy) has been posed as a gender-specific 
biomarker for males developing PD dementia (PDD) and for disease 
progression (68, 69). In a recent data-driven study, using ‘severe’ 
subtype (motor, non-motor and cognitive domains) had higher levels 
of serum Hcy and C-reactive protein (CRP) compared to other, less 
severe, subtypes (70). However, levodopa, the gold standard of therapy 
in PD, has been shown to increase Hcy levels (71–73) and so the real 
validity of Hcy measurement remains questionable.

Among CSF biomarkers, those associated with the overall 
burden of NMS include β-amyloid 1–42 (Aβ1–42) and α-synuclein 
(74, 75). In particular, CSF Aβ1–42 has been found to be  a 
significant predictor of longitudinal increase in NMS severity 
over 2 years in a cohort of over 400 patients from the Parkinson’s 
Progression Marker Initiative (PPMI) (74). On the other hand, in 
a study involving 46 PwP, CSF α-synuclein was inversely 
correlated with the total score of the NMS Scale (NMSS) (75). 
However studies of CSF and plasma Aβ1–42 and α-synuclein 
remain inconsistent (76–80). Among other suggested markers, 
CSF and plasma NfL increase can also be  associated with 
cognitive symptoms of PD (81, 82).

Other clinical tools
WT has been shown to be useful in the evaluation of NMS, 

specifically daytime somnolence, the presence of RBD (83) and 
nocturnal movements (84). Additionally, measures of 
bradykinesia and dyskinesia as collected through the Parkinson’s 
KinetiGraph (PKG), have showed to be  associated with 
gastrointestinal problems (85).

Additionally, modern technologies can also help in the assessment 
of cognition in PD. Several computerized cognitive batteries are in fact 
available to screen and investigate cognitive impairment, which can 
be also useful for patients’ remote assessment and digital intervention 
such as cognitive training (65, 66).

Dashboard vital: visual, gut and oral health

Visual health
Visual abnormalities are particularly frequent in PwP, with an 

overall prevalence ranging from 78 to 82% (67, 86). Nevertheless, 
they are surprisingly often neglected in both clinical and research 
settings, leading to functional consequences, such as falls at 
night-time related to reduced night vision, road traffic accidents 
in PwP who drive, dry eyes causing ocular irritation and overall 
reduced QoL for patients (67, 87).

PwP suffer from a wide range of visual defects, from contrast 
insensitivity and reduced color discrimination, symptoms usually 
present since the early stages, to oculomotor disturbances, in 
particular convergence insufficiency and diplopia (88–90). The 
pathophysiology of visual abnormalities in PD is complex, and is 
in part due to the retinal dopamine depletion (91), the presence 
of a PD-related retinopathy (92, 93), alongside neuronal 
dysfunction in the visual cortex (94), and cortical or basal ganglia 
circuits dysfunction (95). Dry eyes can be caused by decreased 
blinking rate and decreased tear production due to autonomic 
dysfunction (96), while other symptoms can be related to the use 
of PD medication, such as the rare levodopa-induced ocular 
dyskinesia, iatrogenic hallucinations, or blurred vision induced 
by monoamine oxidase inhibitors and amantadine (97–99). 
Prolonged use of amantadine might also cause changes in corneal 
endothelium and oedema (100, 101).

Gut health
Gut health is strictly intertwined with the control of motor symptoms, 

NMS, and pathophysiology burden of the disease (102). Dysphagia, a 
crucial NMS in advanced PD, has significant impact on nutrition, 
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hydration, and general health in PwP (7, 103) and is often not considered 
in earlier stages of PD. Constipation impacts the QoL and levodopa 
absorption in PwP (104). Additionally, intestinal pseudo-obstruction 
(paralytic ileus) can be one of the presentations of severe constipation in 
advanced PD, representing a medical emergency (105).

Another gut health-related factor impacting symptom control in 
PD is Helicobacter pylori (HP)-induced gastritis, which has an 
increased prevalence in PwP (104). Eradication of HP in PwP has 
been shown by several studies to improve levodopa response and 
motor performances (106), although a randomized placebo-controlled 
trial refutes these findings (107).

HP infection, coupled with decreased intestinal transit time, 
diminish the gastric acid production too, facilitating gut dysbiosis, 
including small intestinal bacterial overgrowth (SIBO) (108). SIBO is 
associated with poor motor function and could be a potential future 
target for disease modifying treatment (109). Other possible targets 
associated with gut dysbiosis, are the PD specific microbiome profiles 
(110, 111), whereby bacteria belonging to the Lachnospiraeceae family 
and faecalibactrium genus, are emerging as the most consistently 
altered gut microbiome in PwP (112).

Oral health
Due to the impairments caused by motor and NMS, PwP may 

have poor oral health and hygiene, with consequent increase of oral 
disease such as periodontitis and cavities (113), which, in turn, can 
increase the burden of some of the NMS (e.g., swallowing issues, pain, 
anxiety) and worsen QoL (114). Oral health may also play a role in the 
pathogenesis of PD, contributing via oral-dysbiosis, to induce systemic 
inflammation measurable, amongst others, with CRP (115–120).

Among oral bacteria, Porphyromonas gingivalis is associated with 
the presence of chronic periodontitis, and its toxic proteases, 
gingipains, and lipopolysaccharide, have been found in the blood of 
patients with PD (119), suggesting a possible pathological role in 
neurodegeneration (121, 122).

Sialorrhea, affecting up to 80% of PwP, often is the by-product of 
reduced swallowing, sealed lips from hypomimia, and poor awareness 
of drooling due to changes in sensation and posture (123, 124).

Clinical tests for visual, gut, and oral health

Visual health
Numerous studies have shown significant retinal nerve fiber layer 

thinning and macular volume reduction at optical coherence 
tomography (OCT) in PwP compared to controls (125–127), yet there 
remains no agreement on which retinal segments are the most affected 
(125). These findings explain symptoms such as decreased visual 
acuity and impaired contrast sensitivity, altered color perception, and 
seem to be associated with disease stage and severity (125–127).

An earlier biomarker, even with normal OCT findings, is the 
bioelectrical retinal dysfunction shown with the electroretinography 
(ERG) and measured via several parameters, such as alpha-wave, beta-
wave, or oscillatory potentials amplitude (128–130). Similarly, visual 
evoked potentials (VEP), can be used to discriminate PD patients 
from controls in early disease stages, being a higher P100 latency the 
most consistent biomarker (131).

Corneal confocal microscopy (CCM), measuring parameters like 
corneal nerve branch density, corneal nerve fiber length, corneal total 

branch density, and corneal nerve fiber area, is a non-invasive tool to 
evaluate small nerve and autonomic fibers damage (132). Several 
studies have demonstrated the presence of corneal nerve fiber 
pathology in PwP than controls (133–135), whose extension have 
been shown to be associated with disease severity, and specifically 
motor, autonomic and cognitive dysfunction (135–137).

Tear film tests, such as Schirmer’s test or tear film breakup time 
associated with dry eyes, together with blink rate evaluated with 
specific cameras, have been demonstrated to be abnormal in PwP and 
to correlate with disease severity (96, 138, 139). Furthermore, initial 
findings on tears protein composition, have shown a significant 
increase of oligomeric alpha synuclein in both basal and, more largely, 
reflex tears in PwP compared to healthy controls, paving the way for 
a new potential approach to alpha synuclein-based biomarkers (140), 
which need further exploration for clinical application.

Since nyctalopia (night-blindness) is the earliest and most 
common symptom of hypovitaminosis A (141), and PD might 
be associated to low levels of specific vitamins such as vitamin D and 
B12 (142, 143), the possibility of reduced blood and/or CSF 
concentrations of vitamin A (retinol) should be  investigated. This 
deficit could contribute to worsen PD-related visual symptoms at the 
most challenging time of the day for a PwP, and therefore we believe 
it should be  taken into consideration, as potentially reversible. 
However, studies have failed to show a systemic reduction of vitamin 
A levels in PwP, being its concentration controlled by a rigorous 
homeostatic process, or of retinoic acid, retinol’s active metabolite, 
because of its high biochemical instability (144).

Gut health
Upper gastrointestinal symptoms screening has been proposed for 

evaluating swallowing and oropharyngeal dysfunction (145). 
Diagnostic tools for swallowing abnormalities can be extensive, and 
include videofluoroscopic swallow study (VFSS) for the oropharyngeal 
phase of swallowing, or the fiberoptic endoscopic evaluation of 
swallowing (FEES) for the pharyngeal phase of swallowing, with both 
VFSS and FEES having a role in the identification of aspiration, 
particularly significant in the advance stages (146). From a practical 
and pragmatic point of view a VFSS seems to be the most relevant.

Constipation is a clinical diagnosis although imaging such as 
abdominal XR and CT scans can be used to demonstrate its severity. 
Radiological findings of constipation can include evidence of fecal loading 
throughout the colon, luminal faecalomas, with or without reduction of 
luminal gas (147). Furthermore, abdominal XR or CT helps in the 
diagnosis of pseudo-obstruction showing dilation of the colon, with or 
without other associated radiological features such as a volvulus-sign and 
is strongly recommended in advanced PD cases, particularly when 
screening for intrajejunal levodopa infusion therapies (105).

HP diagnostic testing are numerous, including the urea breath 
test, the stool antigen test, serology, and polymerase chain reaction, 
and should also be used to confirm the absence of HP post-eradication 
therapy (148). Gut dysbiosis and local proinflammatory status can 
be measured through sampling using stool microbiota (112), while the 
hydrogen breath test specifically applies to the identification of 
SIBO (149).

Oral health
For the effective evaluation of oral health in PwP, current 

recommendations advise for regular review by a dentist, with 
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particular attention to the presence of local inflammatory conditions 
such as periodontitis (150).

Systemic inflammatory markers, such as CRP, might have a role 
in early detection of inflammatory oral conditions in PD, together 
with other systemic inflammatory markers, e.g., WBC, IL-1alpha, 
IL-1beta, IL-17A and TNF-alpha (118–120).

To identify Porphyromonas gingivalis, the possibility of detecting 
gingipains in the bloodstream, particularly gingipain R1, and the 
analysis of the oral microbiota through a saliva sample, should 
be explored further (116, 117, 119).

A simple salivatory test consisting in an Enzyme-linked 
immunosorbent assay (ELISA)-based multi-marker test of proteins 
including matrix metalloproteinases (MMP8, MMP9, MMP2, 
MMP3), has shown promising results in early diagnosis of gingivitis 
and periodontitis (125), but this remains under investigation.

Objective measurement of sialorrhea is often difficult, however 
methodologies exist, including salivation collection (151), suctioning 
(152), swallowing counts (153), Lashley cup over the parotid duct 
(153), and dental cotton buds in the mouth (154). However, these 
objective tests are often time consuming, costly, and poorly practicable 
in clinical practice.

Dashboard vitals: bone health and falls

PwP are at increasing risk of developing osteoporosis, with 
women having a significantly higher risk than men with PD (155). In 
fact, the prevalence of osteoporosis has been observed in 91% of 
women and 61% of men with PD (155).

Osteoporosis is a reduction of bone mineral density (BMD) 
subsequently increasing the risk of fragility fractures (156). Several 
pathophysiological mechanisms seem to be  implicated in the 
association between PD and osteoporosis and reduced BMD, and 
these include: female gender, vitamin D deficiency, reduced exposure 
to sunlight, low body weight, nutritional status, vitamin B12, folate 
deficiency and hyperhomocysteinemia, PD duration and severity, 
immobility, decreased muscle strength and other neuroendocrinal 
status (e.g., increased serum concentration of under-carboxylated 
osteocalcin) (155, 157).

Recent evidence has suggested that osteoporosis associated with 
PD might be caused by the dopaminergic degeneration itself, as well 
as by the treatment with levodopa, which could promote 
osteoclastogenesis and suppress bone formation, in association with 
elevated prolactin and following both gonadal steroid hormone-
dependent and-independent metabolic pathways (158).

Considering the higher risk of falls due to postural and gait 
impairment in PwP (159–161), the presence of osteoporosis further 
increases the risk of fractures and subsequent hospitalization 
compared to age-matched individuals (8, 162).

Clinical tests for bone health and falls

Imaging-based clinical tools
To confirm the diagnosis of osteoporosis, a dual-energy X-ray 

absorptiometry (DEXA) at the hip is required: according to the World 
Health Organization classification, a BMD of 2.5 standard deviations 
(SD) below that of a young adult defines osteoporosis, while value on 

DEXA between 1 and 2.5 SD is considered as osteopenia (157). In our 
opinion, DEXA should be obligatory in PD patients over the age of 50.

Recently, other imaging techniques have been investigated in PD, 
such as distal radius DEXA, which could potentially optimize the 
detection of osteoporosis, especially in female PD patients (163), and the 
less invasive calcaneal quantitative ultrasound to assess bone quality, 
which has demonstrated good correlation with DEXA measurements and 
has been recently evaluated in a cohort of PwP (164).

Blood-based clinical tools
To promptly address and, when possible, prevent osteoporosis in 

PwP, several simple blood tests can be undertaken to get an overview 
of the calcium metabolism and other potential risk factors for 
osteoporosis. First and foremost, serum levels of 25-OH-vitamin D 
have been shown to directly correlate with BMD of the hip and lumbar 
spine in PD (155, 165, 166). Additionally, serum ionized calcium has 
also been found to correlate with BMD and to be significantly different 
between PwP and healthy controls (166).

Other clinical tools
The Fracture Risk Assessment Tool (FRAX) (167) helps predict 

the 10-year probability of hip fractures and major osteoporosis-related 
fractures, and has been used in several large studies exploring 
osteoporosis and fracture risks in the population (156). FRAX tool 
may require adjustment to have PD as an independent risk factor for 
fractures and as such, requires a modern adaptation to PwP (168, 169).

Wearable sensors have been shown to be  reliable in PwP for 
detecting balance issues and predict risk of falls. WT can analyze gait 
and balance in real-time whilst providing feedback (e.g., visual, and 
auditory cues) for features of postural instability, such as freezing of 
gait. This feedback provided by WT can then reduce the risk of fall 
events from occurring, as such, WT can be  a promising tool for 
rehabilitation and falls prevention (170, 171).

Dashboard vital: co-morbidities, 
co-medications, and dopamine 
agonists side effects

Several global epidemiological studies confirmed the present of 
several comorbidities in PwP, which can be grouped as cardiovascular 
(e.g., hypertension, heart failure), neuropsychiatric (e.g., depression, 
dementia), and others including diabetes mellitus, arthritis, and 
urinary symptoms (172–177). Advanced stages of PD are associated 
with balance issues and postural instability (178). Despite no evidence 
of direct involvement of the vestibular system in PD, a possible 
vestibular hypofunction could be considered in patients with dizziness 
but not orthostatic hypotension (179). The importance of appreciating 
PwP co-morbidities in their management has been highlighted by 
Schrag and colleagues (2022) in a case–control study, observing how 
certain co-morbidities and risk factors may reflect potential early 
extra-striatal and extracerebral pathophysiology in PwP (180).

Given the progressive nature of PD, co-medications, particularly 
in the advanced stages, represent a clinical challenge and expose 
patients to increased risk for drug interaction and hospitalization 
(181, 182). Additionally, the required increased dopaminergic 
stimulation in PD, in particularly when using dopamine agonists 
alone or in combination, might give emergence to significant side 
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effects, such as severe daytime sleepiness (183) or impulse control 
disorders (ICDs) (184). ICDs and impulse control behaviors 
encompass a range of presentations including hypersexuality, 
gambling, binge eating, and dopamine dysregulation syndrome (185).

Clinical tests for co-morbidities, 
co-medications, and dopamine agonists 
side effects

Co-morbidities
Studies report that there is an association between diabetes and 

PD progression, with a greater motor burden and motor decline been 
demonstrated in PwP who have diabetes (186, 187). Non-diabetic 
hyperglycaemia, with recorded glycosylated hemoglobin (HBA1c) 
levels above 45 mmol/mol, is an independent predictor of quicker 
motor progression (188–190).

The MARK-PD Study evaluated the relationship between diabetes, 
HBA1c and serum NfL levels as markers of neuroaxonal damage in 
PwP, concluding that those with diabetes and PD had higher serum 
NfL and more cognitive impairment, with diabetes also associated 
with having a higher H&Y score (191, 192).

Weight variability is a common clinical finding in PwP and yet 
remains poorly understood (193). Unexplained weight loss has been 
reported across all stages of PD (193) and it has also been proposed as 
a prodromal feature (194). Monitoring the patient’s body mass index 
(BMI) can be  a simple and effective way to prevent pathological 
weight loss leading to poorer prognosis and higher mortality (195, 
196). Weight loss in PD has also been associated with faster cognitive 
decline, while presynaptic dopaminergic depletion in the right 
striatum may serve as a predictor of future weight changes (197).

Blood pressure fluctuations have been recognized in PD, due to 
the concomitant involvement of the autonomic system (198), which 
can present as postprandial hypotensive episodes during the day, as 
well as nocturnal hypotension, causing great limitation of QoL. These 
fluctuations can be measured using a 24-h ambulatory blood pressure 
monitoring device (199). Further assessment through the head-up tilt-
test gives clinicians insight into the activation of the autonomic 
systemic compensatory mechanism in PwP (200).

Dizziness, in the absence of orthostatic hypotension, can 
be examined using the Vestibular Evoked Myogenic Potentials, to 
consider vestibular hypofunction as a cause (179). However, the 
clinical application of this remains under investigation.

Co-medications
Co-morbidities Polypharmacy Score (CPS) is a simple clinical tool 

providing a surrogate measure of co-morbidities burden, correlating 
with poor outcomes and mortality rates (201, 202). When assessing 
co-medications, particular attention should be  given to the 
anticholinergic burden, especially in the older adults, considering the 
numerous medications that have anticholinergic properties, such as 
analgesics, antispasmodics, antiarrhythmics and anti-Parkinson’s 
(203). Anticholinergic burden has been linked to functional and 
cognitive decline in PwP, with possible contribution to overt dementia, 
and potential side effects including constipation, agitation, urinary 
retention, and delirium (203, 204). The use of anticholinergic indexes, 
such as Anticholinergic Drug Scale (ADS) and the Drug Burden 
Index - Anticholinergic Component (DBI-ACh), are useful clinical 

tool for such assessments, with ADS being shown to correlate with 
serum anticholinergic activity (203, 205, 206).

Dopamine agonist side effects
For ICDs, the use of electroencephalography to measure feedback-

related negativity has been suggested to reflect the reward-processing of 
individuals, thus potentially representing a predictive clinical tool 
(207, 208).

Excessive daytime sleepiness (EDS) is a known side effect of 
dopamine agonists, with higher D2/D3 receptor agonism, such as 
Ropinirole and Pramipexole (183, 209, 210), and can be assessed with 
Multiple Sleep Latency Tests (MSLT) (211, 212). If EDS presents in the 
absence or withdrawal of dopamine agonists intake, then obstructive 
sleep apnoea should be  suspected and polysomnography should 
be considered as further investigation (213, 214).

Conclusion

We suggest the use of ‘The Chaudhuri’s Dashboard of Vitals for 
Parkinson’s’ for the care of PwP. This tool can incorporate several 
clinical tests that might help clinicians with the screening, diagnosis, 
treatment, and monitoring of key and potentially health threatening 
factors. Until now, only two of the five vitals have been widely 
investigated in clinical practice, namely motor and nonmotor 
assessments. In this paper, we  have worked to highlight the 
importance of three other vitals (Vital 3–5, Figure 1), which have 
an impact on not only the QoL for PwP, but also the disease 
progression and prognosis. Some clinical tests discussed in this 
paper are already available in either general or PD-related clinical 
practice, whilst others have the potential of future implementation, 
providing they are validated and are cost-effective for healthcare 
systems across the globe.
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