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Introduction

Neurological disorders come in many forms which include infections, trauma, stroke,

seizures, tumors, autoimmune and neurodegenerative conditions. All these diseases have

temporary or permanent impacts on different districts of the entire organism. Most of the

research in the field of brain diseases has focused on neurocognitive and neuropathological

changes, while little is known about the long-term consequences on peripheral tissues

including skeletal system.

The bidirectional connections between brain and bone or brain and joint have been

widely described in terms of soluble factors and molecular mechanisms that participate

both in the maintenance of physiological homeostasis and in the onset of various diseases

affecting these tissues (1–4). It is possible to try to answer the many open questions in

this field through the development of new basic research methods rigorously guided by

clinical approaches.

Here we would like to express our opinion on the importance of designing adequate

experimental models to understand the effects that traumatic brain injury (TBI) may have

on skeletal system whose state of health is fundamental for the recovery of ambulation and

mobility. TBI occurs as a result of an external force, typically caused by falls, accidents, sport

activities, and military conflicts (5, 6). TBI with varying degrees of severity affects annually

millions of individuals worldwide, across all ages (7). TBI patients continue to suffer for a

long time from neurological and physical impairments that have a major catabolic effect on

different parts of the body, known as polytrauma (8, 9).

Traumatic brain injury and bone health

After TBI, bone health is impaired with rapid imbalance between bone formation and

resorption which is supported by inflammation, endocrinologic stress-related response and

pharmacologic side effects (10, 11). Moreover, an abnormal bone formation, the so called

neurological heterotopic ossification, may affect the soft tissues around articular joints

inducing pain, nerve compression, and movement restrictions (12, 13).
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Unfortunately, post-TBI bone metabolism abnormalities may

not be detected until considerable skeletal damage has already

occurred, making neuro-orthopedic interventions to restore

flexibility and range of motion more difficult. It is critical to

identify targeted strategies that can reduce the rate of TBI-mediated

secondary conditions to improve the individual’s quality of life and

lower costs associated with long-term health care and disability

(6, 13).

It is known that bone homeostasis and remodeling are under

the control of neuroendocrine and neuronal signals originating

from the brain (3, 14, 15). Therefore, it is not surprising that

this control is compromised following the hypothalamus–pituitary

axis is disrupted, and blood brain barrier integrity is lost (16, 17).

Despite numerous preclinical and clinical studies, the evidence

and mechanistic data supporting bone and cartilage changes after

TBI remain unclear and, in some cases, difficult to interpret

(13, 18). Post-TBI, both osteopenia and osteoporosis may occur

due to decreased bone mineral density (11, 19–21), but also

accelerated fracture healing and enhanced callus formation, or

even ectopic ossification (18, 22, 23). These opposing conditions

can be explained by various factors and phenomena which, to a

different extent for each patient, can cause long-term consequences

of TBI on remote organs such as bone. Among these it is worth

mentioning: extent of brain damage, age, gender, humoral factors,

neuropeptides, molecules triggering specific signaling pathways

(e.g., IGF-1, IL-6, IL-11, IL-18, GH, PTH, Wnt), cells (e.g., resident

immune cells, neurons, osteoblasts, osteoclasts), stress-mediated

activation of hypothalamus–pituitary–adrenal axis, lifestyle (e.g.,

falls, malnutrition, physical inactivity, vitamin D deficiency) (1).

Unfortunately, due to the heterogeneity of the brain injuries, most

of the current clinical studies are only partially informative on the

impact of the numerous parameters mentioned, and furthermore it

must also be emphasized that it is complicated to recapitulate the

human condition in preclinical TBI animal models. In any case, the

evidence collected so far has begun to shed light on the patient-

dependent activation of those injury cascades (neuroendocrine

humoral outflow and inflammatory mediator release) that may

mediate secondary effects at bone level, partly explaining the

broad spectrum of post-TBI skeletal deterioration reported in the

literature (1).

A 3D “bone-like” experimental model
for TBI patients

To develop a more comprehensive clinical treatment including

improvement of bone health in TBI patients, it will be necessary to

strengthen the concept of patient-oriented therapeutic strategies.

With this perspective it must be taken into account that animal

models help us to understand the key mechanisms of TBI-induced

bone alterations only partially, as they have a different anatomy

and posture from the human one and consequently are not exactly

appropriate for obtaining informative data on pathophysiological

aspects of human bone and joint tissue (24, 25). In our opinion

it is useful to try to develop ex vivo culture models based on

TBI patient bone cells which, suitably combined, mimic the bone

microenvironment as closely as possible. Although a “bone-like”

complete model has not yet been produced, the evidence from

several examples of three dimensional (3D) in vitro bone models is

encouraging (26, 27) both for disease modeling and drug screening.

Regarding TBI, this perspective may be relevant to obtain new

evidence both to better understand the characteristics of bone cells

of TBI patients, and to develop reparative/regenerative therapies

aimed at preventing or slowing down adverse skeletal changes.

Here we propose to evaluate the possibility of setting up a 3D

“bone-like” model with the patient’s own cells to create an in vitro

bone microenvironment to cover methodological gap mentioned

above. The TBI patients, depending on the severity of the damage

and the affected areas, can undergo various surgical procedures

involving the axial skeleton (bones of the skull, ossicles of the

middle ear, nose, hyoid bone of the throat, vertebral column,

and the thoracic cage) and the appendicular skeleton. Therefore,

the surgical fragments obtainable from each of these districts

(some of which—ear or nose—particularly easily accessible) can

be good sources for isolating bone-forming cells, osteoblasts,

and cartilage-forming cells, chondrocytes. The cell population

resulting from these fragments may also contain progenitor cells

at different stages of maturation and mesenchymal stem cells,

optimal therapeutic targets for functional recovery. As previously

demonstrated, this cell population may be co-cultured with the

monocytes which are the progenitors of bone-resorbing cells, the

osteoclasts, easily obtainable from a small amount of peripheral

blood (28–30). When grown in a scaffold-free culture medium,

osteoblasts and osteoclasts tend to form a 3D aggregate which

remains viable for at least 14 days, the sufficient time to conduct

the necessary experiments. Obviously, this co-culture system does

not achieve the complexity of the bone microenvironment and

many aspects need to be improved, however it represents a valuable

tool to better understand the biology of bone cells for developing

tailored therapeutics (31–33). Since the culture period is short,

it is reasonable that the cells feel the conditioning of the source

from which they were obtained in terms of epigenomic profile

and secretome, generating a patient-specific response to certain

stimuli/treatments (34–36). This issue is involving several scientists

who are studying how soluble and insoluble extracellular cues

are integrated and stored during the life of a cell. Among the

large variety of protein and lipid factors released by the brain

after TBI are those that have a significant impact on bone tissue

(37–39) and may therefore continue to affect primary bone cells

in culture. Another aspect that should not be underestimated is

the role of genetic factors that could drive the interindividual

variability of outcome following TBI (40, 41) and consequently

the behavior of bone cells in vitro. Therefore, bone cells from

a TBI patient can generate a “diseased” co-culture system with

different behaviors not only compared to those of a “normal”

system generated by healthy donor cells (obtainable following

surgery for a fracture), but also compared to that of other

TBI and non-TBI patients. The behavior of the cells in the

3D co-culture after exposure to a specific chemical or physical

treatment (different oxygen percentage or mechanical stimuli)

can be evaluated monitoring the secretome, the expression of

specific genes, and specific functionalities such as the ability to

differentiate, resistance to apoptosis, and cell-cell and cell-matrix

interactions. This is certainly a challenge considering the low

number of cells that can be obtained from biopsy of TBI patients.

However, the advancement of technology allows the co-culture
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system to be translated to more sophisticated and miniaturized

culture conditions with the employment of organ-on-a chip

and integrated microfluidic culture platforms or bioreactors for

dynamic culture conditions (27, 28, 42–46). Interestingly, the

co-culture system we proposed can be subjected to external

mechanical stimulation (tension, shear stress, compression, and

hydrostatic pressure) similar to that experienced by the human

skeleton by using various methods, including acoustic waves and

magnetic field (47, 48). The responsiveness of the patient’s cells

to these stimuli can be evaluated at molecular level giving an

indication of the probability of success of a specific rehabilitation

treatment or physical exercise. It is known that physical activity

and exercise can improve bone healing by inducing favorable

vascular, hormonal and neural adaptations through mechanical,

physical and biochemical perturbations. Therefore, it is interesting

to be able to combine in vitro cellular and molecular observations

with the clinical study of the effects on bone status of progressive

loading phases, structured microdoses of exercise or periods of

physical activity, depending on the severe, moderate or mild stage

of TBI. Indeed, this could offer new perspectives in the study of

bone reparative or remodeling processes mediated by rehabilitation

and in the development of personalized mobilization loads or

well-dosed exercise.

Discussion

With this contribution we wanted to express our opinion on

the need to develop new experimental in vitro models to try

to shed light on apparently contradictory aspects concerning the

effects that TBI can have on skeletal health. We think that the

3D co-culture system based on patient’s bone cells may represent

an opportunity not only to better understand the bone biology,

but also to test the activity of catabolic or anabolic drugs on

osteoblasts or osteoclasts in a personalized manner taking into

account of the pathophysiological characteristics of the patient’s

cells. Therefore, such an osteoblasts/osteoclasts platform can help

to develop patient-tailored therapeutic strategies aimed at reducing

the osteoporosis or the ectopic ossification in different TBI patients.

Importantly, this approach can also provide useful insights into

fracture healing process and various diseases affecting bone and

joint in non-TBI patients, reducing costs and time consumption.

It is clear that each experimental model has advantages and

limitations and, as far as bone and cartilage tissue are concerned,

there are interesting reviews in the literature describing the pros

and cons about of different experimental model systems (26, 44,

49, 50). We believe that the clinically-driven design of both ex

vivo culture systems, as the “bone-like” experimental model here

described, and in vivo animal models allow exploiting the unique

advantages of each leading to the best outcomes for treating skeletal

complications even in TBI patients.
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