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Introduction: Intracranial hemorrhage (ICH) is a potentially life-threatening 
medical event that requires expedited diagnosis with computed tomography 
(CT). Automated medical imaging triaging tools can rapidly bring scans containing 
critical abnormalities, such as ICH, to the attention of radiologists and clinicians. 
Here, we retrospectively investigated the real-world performance of VeriScout™, 
an artificial intelligence-based CT hemorrhage detection and triage tool.

Methods: Ground truth for the presence or absence of ICH was iteratively 
determined by expert consensus in an unselected dataset of 527 consecutively 
acquired non-contrast head CT scans, which were sub-grouped according 
to the presence of artefact, post-operative features and referral source. The 
performance of VeriScout™ was compared with the ground truths for all groups.

Results: VeriScout™ detected hemorrhage with a sensitivity of 0.92 (CI 0.84–
0.96) and a specificity of 0.96 (CI 0.94–0.98) in the global dataset, exceeding 
the sensitivity of general radiologists (0.88) with only a minor relative decrement 
in specificity (0.98). Crucially, the AI tool detected 13/14 cases of subarachnoid 
hemorrhage, a potentially fatal condition that is often missed in emergency 
department settings. There was no decrement in the performance of VeriScout™ 
in scans containing artefact or postoperative change. Using an integrated 
informatics platform, VeriScout™ was deployed into the existing radiology 
workflow. Detected hemorrhage cases were flagged in the hospital radiology 
information system (RIS) and relevant, annotated, preview images made available 
in the picture archiving and communications system (PACS) within 10  min.

Conclusion: AI-based radiology worklist prioritization for critical abnormalities, such 
as ICH, may enhance patient care without adding to radiologist or clinician burden.
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Introduction

Intracranial hemorrhage (ICH) is a potentially life-threatening medical event that may 
occur spontaneously; or in the setting of head trauma or surgical intervention. The etiology of 
non-traumatic ICH, which has an incidence of >25 per 100,000 person years (1), is diverse and 
includes hypertension, stroke, ruptured aneurysm, vasculopathy, dural venous sinus thrombosis, 
arteriovenous fistula, malignancy, anticoagulant use and, rarely, inflammatory disease. Acute 
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ICH is associated with an early mortality of 40%–50% and significant 
neurological disability in surviving patients (1, 2). ICH subtypes, 
defined by extravasation of blood into the subdural, extradural, 
subarachnoid or parenchymal compartments, vary in terms of clinical 
presentation, imaging features and prognosis. Head computed 
tomography (CT), the primary para-clinical tool used to investigate 
patients presenting to emergency departments with headache or focal 
neurological deficits, facilitates expedited diagnosis and early 
intervention that may critically determine clinical outcome in 
ICH (3, 4).

The technical feasibility of artificial intelligence (AI) tools for 
detecting ICH on head CT has been demonstrated in several recent 
studies (5–9). However, limited assessment in real-world clinical 
settings, where patients or scans with characteristics (for example, 
severe artefacts, postoperative changes, foreign bodies, other brain 
pathologies) that were not present in the training dataset occur, has 
shown suboptimal generalizability (10, 11); or performance has been 
primarily determined by comparison with general, rather than 
subspecialty expert, radiologist reports (10). Ultimately, patient 
benefit is also dependent on integration of AI tools with existing 
radiology workflows, as the use of standalone software interfaces or 
other additional burdens on clinical staff is a disincentive to 
their adoption.

We retrospectively investigated the real-world performance of 
VeriScout™, an artificial intelligence (AI) based CT hemorrhage 
detection and triage tool, in a dataset of unselected non-contrast CT 
head scans that were consecutively acquired at a large Australian 
teaching hospital. VeriScout™ is designed to triage head CT scans 
acquired in an outpatient/emergency department setting with a high 
likelihood of hemorrhage, whether acute or chronic, and flag these 
scans for expedited reporting through background integration with 
the Radiology Information System (RIS) and notification in existing 
clinical systems. VeriScout™ is based on a deep learning algorithm 
and was trained on a dataset of 7,000 expertly labelled head CT scans 
acquired in an outpatient/emergency department setting. Curation of 
the training and a separate validation dataset involved the removal of 
scans with severe metallic or motion artefact; and any post-operative 
studies. The tool is silently integrated with the existing radiology 
workflow using an informatics platform (Torana™, Sydney 
Neuroimaging Analysis Centre, Sydney) that provides a binary result 
(hemorrhage likely/hemorrhage not likely) to the RIS and returns a 
low resolution (non-diagnostic) bounding box image to the picture 
archiving and communications system (PACS), providing the 
reporting radiologist with an indication of the region of the scan that 
most informed the algorithm’s prediction.

Methods

The study was approved by the Human Research and Ethics 
Committee, St. Vincent’s Hospital.

Dataset

VeriScout™ was evaluated retrospectively in an independent 
dataset of 527 consecutive, unselected non-contrast head CT scans 
acquired on one of two CT scanners (Philips Ingenuity 2013; 

Canon Aquilion ONE Prism 2020) with pre-configured parameters 
(both with tube voltage of 120kVp, tube current 218 mA, slice 
thickness of 1 mm, reconstructed with soft tissue windows; with 
convolution kernel as FCXX or UB, and filter type as MEDIUM or 
UB), at St. Vincent’s Hospital, Sydney. These scanners service the 
emergency department, outpatients and hospital inpatients. None 
of the scans acquired for this study were used in the training of the 
VeriScout™ algorithm; and neither scanner was used for the 
acquisition of any training data. Ground truth for the presence or 
absence of hemorrhage was iteratively determined by retrospective 
review of existing radiology reports by a radiology trainee (RJ) 
with 2 years of specialty experience, followed by secondary, blind 
review of every scan by a sub-specialty neuroradiologist (YB), who 
also documented the presence and degree of metal or motion 
artefact according to the following scale: 0 = no intracranial 
artefact, 1 = mild artefact with no impact on interpretation, 
2 = moderate artefact with potential minor impact on 
interpretation, 3 = severe artefact with definite impact on 
interpretation. All intracranial hemorrhage subtypes, including 
intra-parenchymal, extra-axial (both acute and chronic), 
subarachnoid and petechial were labelled as positive. Where there 
was a discrepancy between the report and the neuroradiologist 
findings, the scan was reviewed by a third radiologist (TD) and a 
consensus reached by discussion.

Algorithm and model training

The core algorithm of VeriScout™ was developed based on 
convolutional neural network technology and comprised two 
independently trained networks based on ResNeXt (12) that provided 
inference based on the input case as a 3D volume (referred to as the 
case-level model) and, separately, a group of 2D slices (referred to as 
the slice-level model). The purpose of the design was to balance the 
features extracted from the whole case and those from slices. The final 
inference result was positive (for likely hemorrhage) if either of the 
predictions is positive.

Following the network structure and data flow shown in Figure 1, 
input data was firstly pre-processed with multiple pre-defined grey-
level maps (windows) and normalization; output values were then 
rounded to probabilities and binarized based upon a pre-set threshold 
that was determined during validation of the algorithm  (13).

For the purpose of training neural networks, an extensive brain 
CT dataset was assembled, consisting of over 20,000 scans sourced 
from diverse locations throughout Australia. The dataset 
encompassed more than 50 scanners manufactured by various 
vendors. Expert clinician reviews of radiology reports were utilized 
to annotate the dataset, ensuring accurate labeling. To improve the 
robustness of the network models, data augmentation techniques 
were employed during the training phase. This involved the random 
selection of input images from the entire dataset, followed by 
random cropping, rotation, and contrast adjustments. By employing 
these techniques, the intention was to encourage the networks to 
focus on the invariant features present in brain CT images, rather 
than becoming excessively reliant on features specific to particular 
scanners or studies.

The networks were optimized to convergence using cross-
entropy loss and Adam optimizer based on slice-wise gold labels 
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indicating hemorrhage subtype. Annotations for hemorrhage 
subtypes were used for training purposes only and the final output 
was binarized as “hemorrhage likely” or “hemorrhage unlikely.”

Deployment

Head CT images were auto-routed from the scanner to a local 
instance of Torana™, a software-based informatics platform that 
appears as a DICOM node on the local network (Figure 2). On 
receipt of an appropriate image series (non-contrast head CT), 
Torana™ automatically de-identified the images by replacing all 

requisite DICOM headers, before securely (HTTPS protocol) 
routing the scans over the internet to an Amazon Web Services 
analysis server hosting the containerized VeriScout™ analysis 
algorithm. VeriScout™ generated a binary response (hemorrhage/
no hemorrhage) and, for positive cases, non-diagnostic labelled 
DICOM image(s) of the brain slices that most influenced the 
algorithm’s prediction. This data was automatically routed back 
to Torana™, which reidentified the image(s), transferred these to 
the appropriate scan session on the hospital PACS and made the 
result available in the RIS by flagging scans likely to contain 
hemorrhage with a specific symbol displayed adjacent to the scan 
ID in the radiologist’s reporting worklist. Additionally, email 

FIGURE 1

Network structure and data flow. The dataflow and the network structure of VeriScout™, in which different layers (including convolutional layers, 
pooling layers, linear layers and activation layers) are defined and trained based on ResNeXt50 (12). Specifically for the inference step of the device, the 
results of several case-level models and one slice-level model are fused to generate the final output. See text for more details in training and final 
output.

FIGURE 2

Deployment of hospital-cloud infrastructure. Integration of a hospital-based informatics platform (Torana™) with the cloud-based VeriScout™ analysis 
engine. See text for details.
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notifications were sent to the nominated radiologist. All post-
acquisition steps described were fully automated, with no input 
required from end-users or study staff.

Data analysis

The performance of VeriScout™ was assessed by comparison with 
the final expert consensus ground truth and expressed as sensitivity 
and specificity (with 95% confidence intervals) and F1 scores. 
Discrepant results were classed according to the presence or absence 
of artefact. Additionally, all discrepant DICOM images were visually 
re-reviewed to determine other potential reasons for failure of the 
model. The performance of the model was analyzed by referral source; 
and postoperative scans were also analyzed independently. Any 
technical issues (such as processing errors) were analyzed for the 
root cause.

Results

527 unselected, consecutive CT head scans were acquired, 365 
(69.3%) of which were referred from the hospital emergency 
department (Table  1). Expert consensus found evidence of 
hemorrhage in 79/527 scans (15.0%), including chronic subdural 
hematomata and petechial hemorrhage associated with stroke or 
other pathology such as tumor. The average patient age at the time 
of scanning was 65.6 years (16.9–97.2). For patients with 
hemorrhage, the average age was 68.3 years (range 37.7–94.0). There 
were 45 scans (8.54%) that showed evidence of previous (recent or 
old) neurosurgery, of which 20 showed evidence of acute or chronic 
intracranial hemorrhage, predominantly extra-axial in  location. 
When the original report was compared to the multi-radiologist 
expert consensus, the original report result had a sensitivity of 0.88 
and a specificity of 0.98. The sensitivity of the original report was 
impacted by classification of some subdural collections as hygroma 

rather than chronic SDH, subacute stroke or tumor associated with 
petechial hemorrhage as non-hemorrhage and the presence of small 
amounts of subdural blood associated with recent neurosurgery as 
post-operative change.

For all scans, VeriScout™ detected hemorrhage with a sensitivity 
of 0.92 (CI 0.84–0.96) and a specificity of 0.96 (CI 0.94–0.98) using the 
expert consensus as ground truth (Table  2), in keeping with the 
expected performance (namely, sensitivity and specificity of the device 
should exceed 0.90) of the underlying algorithm (13). Precision and 
F1 scores are also shown in Table 1. The inclusion of postoperative 
scans and those with artefacts in our scan cohort did not diminish the 
overall performance of the algorithm despite their exclusion from the 
VeriScout™ training dataset; and analysis of these scan subsets 
showed comparable sensitivity and specificity, albeit in limited scan 
numbers (Table 2). Metallic artefacts primarily affected the posterior 
fossa structures and temporal lobes, related to dental fillings and 
metallic earrings/aural implants respectively; and were severe in 18 
cases. Severe artefacts related to motion or acquisition issues were 
present in an additional 4 cases. The algorithm failed to identify 
hemorrhage (false negative cases) in a small number of cases (n = 6: 
IPH 4, SDH 1, SAH 1, Table 3); examples of these cases are shown in 
Figure 3, top row. Similarly, there were a number of false positive cases 
(n = 16), accounted for primarily by the presence of intracranial 
calcification, tumor, severe atrophy (misidentified as chronic subdural 
hematoma) or, in several cases, no visually identifiable pathology. 
Examples of false positive cases are shown in Figure 3, bottom row.

The detection rate was excellent across all hemorrhage subtypes 
and, importantly, was preserved in scans containing SAH (13/14 
cases), potentially the most critical hemorrhage subtype (Table 3 and 
Figure 4). Intraparenchymal hemorrhage, which included petechial 
hemorrhage, was detected in 31/34 cases (Table 3).

VeriScout™ returned a result to the RIS within 10 min in 100% of 
cases analyzed; and appropriately flagged all positive cases as 
determined by the algorithm. Upload speed from the hospital network 
to the cloud analysis server was the primary determinant, with 
inference completed in less than 1 min in all cases. Integration with 
the PACS was confirmed by the presence of an appropriate 
VeriScout™ image(s) in the relevant scan session; a technical 
misconfiguration prevented initial processing in 11 cases, but this was 
detected in real-time by the informatics platform and all cases were 
subsequently re-triggered successfully.

Discussion

Performance analysis

We demonstrate the performance of an automated AI-based CT 
head triage system in a hospital radiology department, and its 
successful integration with our existing PACS-RIS workflow. The 
sensitivity of VeriScout™ for all intracranial hemorrhage subtypes 
(0.92), including chronic subdural hematomata and petechial 
hemorrhage, exceeded that of general radiologists (0.88), with only a 
minor relative decrement in specificity (0.96 vs. 0.98 respectively). 
Overall discordance between the AI decision and the consensus expert 
decision was low (4.17%) and comparable with the rate of disagreement 
between the general radiologist report and the expert decision in both 
our cohort (3.03%) and previous reports (14–16). Reassuringly, the 

TABLE 1 Clinical features.

Age (range) 65.6y (16.9–97.2)

Gender (M:F) 300:227

Scanner used

Canon Aquilion ONE 346 (65.7%)

Philips Ingenuity 181 (34.3%)

Referral Source

Emergency Dept 365 (69.3%)

Other 162 (30.7%)

Predominant Hemorrhage Subtype*

Intra-parenchymal* 35

Subdural 26

Extradural 0

Subarachnoid 14

Intraventricular 3

Total ICH 78

*Includes chronic subdural hemorrhage and petechial intraparenchymal hemorrhage.
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performance of the AI system was not reduced by the inclusion of 
postoperative scans and those with severe artefact, despite the exclusion 
of such scans from the algorithm’s training dataset.

The AI system’s detection rate for SAH (13/14 cases, 0.93), which 
may require immediate neurosurgical intervention, compared well 
with the general radiologist report (14/14, 1.00); and significantly 
exceeds the reported performance of Emergency physicians, who are 
the first line of defense in many centers with limited radiologist cover 
after hours (17, 18), when some 80% of SAH cases present (19). In a 
recent retrospective multicenter study from Kundisch and colleagues, 
the performance of a commercially available AI algorithm was 
analyzed on 4,946 scans, showing an “estimated miss rate” for ICH of 
12.4%, of which almost 40% were SAH (10). However, only results that 
were discrepant with the primary radiology report (162/4946) were 
reviewed by an expert neuroradiologist, a process that resulted in 
re-classification of >3% of cases in our cohort.

Features of the tool

There is a clear need for automated medical imaging triaging tools 
in settings where the volume of imaging studies exceeds the local 
radiology reporting capacity. A 2015 UK survey indicated that 330,000 
patients were waiting more than 1 month for the results of unreported 
imaging study studies (20), primarily reflecting lack of adequate 
radiology workforce to meet increasing demand, especially for CT and 
MRI (21). Separately, advances in imaging technology, which generate 
increasingly vast amounts of data per acquisition, in the order of 
thousands of images per CT or magnetic resonance imaging (MRI) 
scan, contribute to excessive radiologist workload and high rates of 
burnout in the profession (22). While the emergence of tele-radiology 
or centralized reporting can ameliorate local radiologist shortages, 

geographic dissociation from referring clinicians, especially in 
emergency department settings, increases the risks associated with 
delayed reporting. Although triaging tools do not address underlying 
workforce issues, they can critically inform timely management for 
patients who are potentially most in need of urgent intervention. Due 
to the retrospective nature of our study, we did not assess the utility of 
the real-time clinician notification functionality of VeriScout™/
Torana™, which provides an opportunity to further enhance clinical 
care by expediting appropriate discussion with onsite or offsite 
radiologists, even prior to scan reporting. Furthermore, our study 
design precluded a direct assessment of the impact of VeriScout™ on 
patient outcomes; or the perceived benefits to radiologists and 
referring clinicians.

Explainability, an evolving concept in AI, makes a model’s 
predictions interpretable and traceable for the end-user; and is 
particularly important in medical imaging applications (9). By 
returning non-diagnostic image(s) to the PACS in cases of suspected 
intracranial hemorrhage, VeriScout™ is designed to alert the reporting 
radiologist to the slices and regions (indicated by a bounding box) that 
most informed the algorithm’s prediction, a feature that potentially 
further reduces the time spent reviewing false positive predictions.

Implementation of AI-based triage systems have the capacity to 
expedite clinical care to patients with critical brain abnormalities by 
facilitating early reporting and appropriate discussion with referring 
clinicians. Triage systems, which are not intended to be diagnostic, 
carry minimal if any risk in the context of algorithm failure, in which 
instance the workflow simply defaults to standard clinical care. In this 
study, we retrospectively assessed the performance of VeriScout™; 
however, we also demonstrated near real-time integration with our 
existing RIS-PACS workflow through an associated informatics 
platform, Torana™; and therefore the feasibility of full deployment in 
a clinical setting.

Data privacy concerns are a roadblock to the implementation of 
imaging AI in some jurisdictions and centers (23). Our head CT scans 
were processed by a secure cloud (Amazon Web Services) analysis server 
following on-site, automated deidentification of DICOM headers; 
additionally, image transfer to the server used a secure protocol (HTTPS); 
and off-site data was automatically deleted when processing completed. 
While on-site solutions obviate privacy and other governance concerns, 
these are not scalable and are more difficult to maintain and update. 
Stringent compliance with HIPAA, GDPR or other relevant regulations; 
and use of vendor systems that are compliant with international (such as 

TABLE 2 AI-based intracranial hemorrhage detection: outcomes.

All scans Referred by Emergency 
Department

Contains metal 
artefact (any)

Contains metal 
artefact (mild or mod)

Postoperative

Positive* 78 31 22 21 20

Negative* 449 334 89 72 25

Total 527 365 111 93 45

Sensitivity (CI) 0.92 (0.84–0.96) 0.90 (0.75–0.96) 0.91 (0.72–0.97) 0.90 (0.71–0.97) 1.00 (0.84–1.00)

Specificity (CI) 0.96 (0.94–0.98) 0.96 (0.93–0.97) 0.98 (0.92–0.99) 1.00 (0.95–1.00) 0.96 (0.80–0.99)

Accuracy 0.96 (0.94–0.97) 0.95 (0.93–0.97) 0.96 (0.91–0.99) 0.98 (0.92–0.99) 0.98 (0.88–1.00)

Precision 0.82 (0.72–0.88) 0.67 (0.52–0.79) 0.91 (0.72–0.97) 1.00 (0.83–1.00) 0.95 (0.77–0.99)

F1 Score 0.87 0.78 0.91 0.95 0.98

*Based on final expert consensus.

TABLE 3 AI system detection rate by hemorrhage subtype.

Hemorrhage subtype Detection rate

Intra-parenchymal* 0.89 (31/35)

Subdural 0.96 (25/26)

Subarachnoid 0.93 (13/14)

Intraventricular 1.00 (3/3)

*Includes petechial hemorrhage.
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ISO 13485) and local medical device regulations substantially reduces the 
risk of exposure of protected health information. Additional precautions, 
such as ‘defacing’ software that automatically removes pixels that could 
be feasibly reconstructed and visually identified from 3D datasets (23), 
may become compulsory for applications that require off-site 
data processing.

Future work

VeriScout™ is designed to detect a high likelihood of hemorrhage 
of any type or extent, and triage these cases for expedited clinical 
review. We  recognize that, in some cases, very small amounts of 
subarachnoid or subdural blood, particularly in the setting of trauma, 

FIGURE 3

Examples of false negative (top row) and false positive (bottom row) cases misidentified by VeriScout™. Upper row: false negative cases of thin 
subdural hematoma (A); intraparenchymal hemorrhage (B); and focal subarachnoid hemorrhage (C). Bottom row: false positive cases of meningioma 
(D), choroid plexus calcification adjacent to zone of gliosis from previous stroke (E); and intracranial calcification (F).

FIGURE 4

Cases of subarachnoid hemorrhage correctly identified by VeriScout™. VeriScout™ correctly identified 13/14 cases of subarachnoid hemorrhage 
(SAH). Examples included cases of focal SAH (A,B) and diffuse SAH (C).
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may have little or no clinical significance in terms of patient 
management. Conversely, the detection of small amounts of 
non-traumatic subarachnoid blood may critically impact patient 
management. Referral information is extremely important in 
determining the clinical significance of CT findings, including small 
amounts of ICH. Unfortunately, no referral information was available 
in the current study; however, the AI tool missed only 6 hemorrhages, 
only one of which (focal SAH, see Figure 3C) was deemed likely to 
be of clinical significance by an expert neuroradiologist (YB). As 
VeriScout™ is not designed as a diagnostic tool, and even small 
hemorrhages may influence patient management (for example, the 
administration of antiplatelet or anticoagulant therapy), we believe 
that our algorithm appropriately triages all hemorrhages for 
expedited human interpretation in the appropriate clinical context. 
Future, more general AI algorithms, which are able to access and 
integrate clinical and imaging information, will likely further refine 
worklist prioritization and, potentially, diagnostic use cases.

AI is likely to transform medical imaging over the coming 
decades. Worklist prioritization for critical abnormalities, as 
described here, is one application of medical imaging AI that 
enhances patient care without adding to radiologist/clinician burden. 
Increasing demand for the quantitative monitoring of chronic 
disease, particularly in neurology (24), is a further application that 
value-adds to qualitative reporting and has the potential to facilitate 
precision treatment strategy in individual patients. Informatics tools 
that seamlessly integrate these tools into existing clinical workflows 
will critically determine their adoption. Finally, the rapidity with 
which AI-based imaging tools are being developed mandates the 
implementation of national and local governance frameworks to 
facilitate their safe adoption in clinical practice.
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