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Background: The World Health Organization (WHO) CNS5 classification system 
highlights the significance of molecular biomarkers in providing meaningful 
prognostic and therapeutic information for gliomas. However, predicting 
individual patient survival remains challenging due to the lack of integrated 
quantitative assessment tools. In this study, we aimed to design a WHO CNS5-
related risk signature to predict the overall survival (OS) rate of glioma patients 
using machine learning algorithms.

Methods: We extracted data from patients who underwent an operation for 
histopathologically confirmed glioma from our hospital database (2011–2022) 
and split them into a training and hold-out test set in a 7/3 ratio. We  used 
biological markers related to WHO CNS5, clinical data (age, sex, and WHO grade), 
and prognosis follow-up information to identify prognostic factors and construct 
a predictive dynamic nomograph to predict the survival rate of glioma patients 
using 4 kinds machine learning algorithms (RF, SVM, XGB, and GLM).

Results: A total of 198 patients with complete WHO5 molecular data and follow-
up information were included in the study. The median OS time of all patients 
was 29.77 [95% confidence interval (CI): 21.19–38.34] months. Age, FGFR2, 
IDH1, CDK4, CDK6, KIT, and CDKN2A were considered vital indicators related 
to the prognosis and OS time of glioma. To better predict the prognosis of 
glioma patients, we constructed a WHO5-related risk signature and nomogram. 
The AUC values of the ROC curves of the nomogram for predicting the 1, 3, 
and 5-year OS were 0.849, 0.835, and 0.821  in training set, and, 0.844, 0.943, 
and 0.959  in validation set. The calibration plot confirmed the reliability of the 
nomogram, and the c-index was 0.742 in training set and 0.775 in validation set. 
Additionally, our nomogram showed a superior net benefit across a broader scale 
of threshold probabilities in decision curve analysis. Therefore, we selected it as 
the backend for the online survival prediction tool (Glioma Survival Calculator, 
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https://who5pumch.shinyapps.io/DynNomapp/), which can calculate the survival 
probability for a specific time of the patients.

Conclusion: An online prognosis predictor based on WHO5-related biomarkers 
was constructed. This therapeutically promising tool may increase the precision 
of forecast therapy outcomes and assess prognosis.
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Introduction

Gliomas are the most common primary intracranial tumors, 
accounting for approximately 81% of all malignant brain tumors 
(1). Although gliomas have a low incidence rate of approximately 
3–8 per 100,000, their mortality rate is extremely high. Among 
glioma patients, adult-type diffuse gliomas are the predominant 
pathological type (2). Gliomas are known to be  genetically 
heterogeneous and complex (3), making it difficult to predict the 
outcome of gliomas due to their rapid progression and high level 
of heterogeneity, even with the same pathological diagnosis and 
World Health Organization (WHO) grade of the tumor. Prior to 
the 2016 WHO classification of central nervous system (CNS) 
tumors, pathologists primarily relied on the under-microscope 
histologic features of the tumor to classify and grade the lesions. 
The 2016 version of the CNS tumor classification introduced the 
classification of gliomas based on the coexistence of histologic and 
molecular features of the tumor, and incorporated molecular 
information such as IDH, 1p19q, among others, to grade and 
diagnose gliomas (4). This assists neurosurgeons and oncologists 
in predicting outcomes and developing individualized treatment 
strategies for different patients. However, this classification is still 
limited to specific molecules, such as IDH, and predicting the 
patient’s prognosis remains challenging. Currently, the WHO 
CNS5 (2021) has emphasized the importance of molecular 
biomarkers in providing accurate diagnostic and therapeutic 
information for gliomas (5). Enrichment strategies using precise 
biomarkers will help improve the current glioma treatment 
dilemma. With the development of molecular sequencing 
technology and increasing research progress on the correlation 
between different molecules and the classification of gliomas, the 
identification of molecular information, such as CDKN2A/B 
co-deletion, EGFR amplification, TERT promoter mutations, and 
1p/19q co-deletion, has allowed physicians to make a more 
accurate individual diagnosis and assessment of prognosis for 
patients (6). Despite an increasing number of molecules being 
detected in tumor tissues, many potential prognostic markers 

remain to be explored. It is urgent to identify prognosis-related 
molecules in gliomas and integrate these molecular markers into 
a quantitative, specific risk score.

Machine learning broadly refers to the process of fitting a 
predictive model to the data or identifying groupings of information 
within the data, which can replace the investigator’s process of 
mechanistically repeated data analysis and is not influenced by the 
investigator’s subjective judgment. Machine learning algorithms can 
be objectively and more accurately applied in predicting tumor patient 
outcomes. Prognostic models based on machine learning have been 
widely used in predicting prognosis in some solid cancers (7–9) and 
diseases (10–13). However, a prognostic signature for predicting the 
OS of patients with glioma based on the newest WHO CNS5 
biomarkers has not yet been reported.

In this study, we examined the profiles of around 60 WHO CNS5-
related molecules in 198 glioma patients from our hospital. Multiple 
machine learning models were applied to identify the most important 
prognostic indicators among glioma patients. Additionally, we aimed 
to design a risk signature for predicting the OS rate using machine 
learning algorithms. Finally, we deployed the best performing model 
as an online calculator to provide an interactive, online and graphical 
representation of personalized survival assessment, promoting the 
reproducibility of the current research and external verification and 
implementation of the development model.

Methods

Study population and data collection

This retrospective study analyzed collected data from individuals 
who were hospitalized in our hospital from January 2011 to April 
2022. A total of 204 hospitalized glioma patients were collected and 
randomly divided into a test set and a validation set in a ratio of 7/3. 
The Transparent Reporting of a Multivariable Prediction Model for 
Individual Prognosis or Diagnosis (TRIPOD) statement was used to 
report this study (14). The study included patients who underwent 
surgery for a histopathologically confirmed diagnosis of primary 
glioma. The surgery was performed by the same neurosurgeon with 
over 10 years of professional experience who formulated the operation 
plan, performed preoperative positioning, and assisted with 
intraoperative maximum safe range resection. All patients received 
standard glioma treatment, including concurrent radiotherapy and 
chemotherapy, adjuvant chemotherapy, and tumor treating fields 

Abbreviations: WHO, World Health Organization; CNS, Central nervous system; 

TRIPOD, The transparent reporting of a multivariable prediction model for Individual 

Prognosis or Diagnosis; WHO CNS5, The fifth edition of the WHO classification 

of Central Nervous System; SVM, Support vector machine; RF, Random forest; 

XGB, Extreme gradient boosting; GLM, Generalized linear model; OS, Overall 

survival; Lasso, The least absolute shrinkage and selection operator.
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technology (TTFields), based on the postoperative pathological 
diagnosis. Patients who died during the direct postoperative period 
(≤15 days after surgery) were excluded from the analysis. The study 
obtained ethics approval from the ethics committee at Peking Union 
Medical College Hospital.

Input features and outcome

In accordance with the WHO classification of Central Nervous 
System tumors in its fifth edition (WHO CNS5) published in 2021 
(5), we have collected molecular information on up to 60 types of 
markers, including mutation and copy number variation, as well as 
important clinical data such as sex, age, WHO grade, and WHO 
CNS5 pathological diagnosis, to emphasize the significance of 
molecular biomarkers in providing prognosis information for glioma. 
Prognosis information, including survival time and survival status, 
was also collected for patient samples. The raw data used for the 
analysis is available in Supplementary Table S1. The outcome 
variables of the prognostic model were defined as survival time and 
survival status, with continuous variables including the number of 
overall survival years from diagnosis to death, and dichotomous 
variables indicating survival status, with survival denoted as 0 and 
death denoted as 1. The dependent variables included age at diagnosis 
in years, sex, WHO grade, WHO CNS5 pathological diagnosis, and 
WHO CNS5-related molecular information, with “alteration” noted 
as 1 and “no alteration” noted as 0. Independent, trained data 
collectors collected data on input characteristics and 
survival outcomes.

Statistical analysis

In this study, cases with incomplete information were removed 
and the remaining cohort was randomly split into a training and test 
set in a 70/30 ratio. Pearson correlation analysis was conducted to 
assess the correlation between input features (15). Univariate Cox 
regression analysis was performed to identify prognostic factors, and 
multivariate Cox regression analysis was performed to identify 
independent prognostic factors. The statistical analyses were 
performed using R version 3.6.1 software with the “survival” and 
“survminer” packages. The purpose of these analyses was to determine 
the independent association between covariates and survival, and all 
covariates that were statistically significantly associated with survival 
were included in the predictive analysis. Kaplan-Meir (K-M) method 
(16) was used to generate survival curves for patients with different 
covariates, and log-rank test was performed to assess the significance 
of the survival analysis.

Machine learning-based algorithm

In this study, we employed four machine learning algorithms, 
namely support vector machine (SVM) (17), random forest (RF) 
(18), extreme gradient boosting (XGB) (19), and generalized linear 
model (GLM) (20), to perform feature selection and classification. 
To begin, we divided the samples into two groups based on the 
median value of survival time for patients who had already 

experienced a death outcome. The variables related to survival time 
were then screened out by the four machine learning algorithms. 
All machine learning modeling was performed using the R “caret” 
package (21). Next, the Delong test (22) was used to compare the 
performance of the four different machine learning models. The 
optimal machine learning model and its predicted signature 
variables significantly associated with survival time were 
then selected.

Construction of Who CNS5 (WHO5) related 
risk signature

Lasso regression was employed to prevent overfitting. Using the 
survival time, survival status, and WHO5-related biomarker data of 
glioma patients, a risk signature was formulated through the Lasso 
regression algorithm, with the penalty parameter λ chosen based on 
10-fold cross-validation. The alteration status of genes and their 
regression coefficients were obtained based on the most suitable λ 
value. The risk score was calculated using the formula: Risk 
score = factorval (1)×coefficient-factor (1) + factorval (2)×coefficient-
factor (2) + ⋯ + factorval(n) × coefficient-factor(n), where n 
represented the number of prognostic factors, factorval represented 
the assigned value of the factor, and “coefficient-factor” represented 
the factor’s coefficient in the risk signature.

Nomogram construction and validation

To enhance the practical utility of the WHO5-related risk 
signature in predicting patient OS rates, we  integrated common 
clinical features (age, sex, WHO5 grade, WHO5 pathological 
diagnosis) with the WHO5 risk score to create and validate a 
prognostic nomogram in accordance with nomogram guidelines (23). 
We used the RMS package in R software version 3.6.1 to develop the 
nomogram prediction. Moreover, we utilized the “shiny” package and 
server to build and deploy an online, interactive, graphical tool based 
on the overall best-performing model (24).

The model’s performance was evaluated using ROC analysis, 
discrimination, and calibration in the training and test sets. ROC 
analysis assesses the model’s ability to classify observations by 
plotting sensitivity versus 1-specificity (25). The area under the curve 
(AUC) values were categorized as follows: high accuracy 
(0.9 < AUC-ROC ≤1), moderate accuracy (0.7 < AUC-ROC ≤0.9), 
and low accuracy (0.5 < AUC-ROC ≤0.7) (26). Calibration plots were 
used to assess the relationship between predicted survival probability 
and observed survival (27). The c-index was used to quantify 
discrimination, ranging from 0.5–1.0, with 0.5 indicating completely 
non-discriminatory results and 1.0 indicating perfect discrimination 
(28). Decision curve analysis was utilized to assess potential decision 
thresholds and clinical usefulness (29).

Results

The flow diagram in Figure 1 illustrates the study inclusion process.
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Patient demographics and clinical 
characteristics

This study included a total of 198 patients who had complete 
WHO5 molecular information and follow-up data. The median 
overall survival time for all patients was 29.77 months, with a 95% 
confidence interval of 21.19–38.34 months. The patient cohort was 
randomly split into a training set of 139 patients and a hold-out test 
set of 59 patients, and their molecular and clinical information related 
to WHO5 was summarized in Table 1. Among the two sets, only the 
sex composition ratio was significantly different 
(Supplementary Table S1). After removing variables with relatively 
small variance changes and negligible effects using the “sklearn” 
Library of Python 3.7, a total of 32 independent variables, including 
pathological diagnosis, were eligible for subsequent analysis.

Identification of prognostic factors

We conducted correlation analysis on 32 variables in the cohort 
of 198 participants and presented the results of Pearson’s correlation 
analysis in Figure  2A. Age and alterations in CDK6, CDKN2A, 
CDKN2B, EGFR, FGFR2, FGFR3, MET, MYBL1, PDGFRA, and RB1 
were positively correlated with WHO grade (p < 0.05), while the 
alterations of IDH1 had a significant negative correlation with the 
patient’s grade. To investigate the prognosis-related factors in glioma, 
we performed univariate and multivariate Cox prognostic analyses on 
the molecular and clinical information. The forest plot of univariate 
Cox analysis indicated that 14 factors were significantly correlated 
with prognosis (Figure  2B). Multivariate Cox prognostic analysis 
revealed that age, sex, TERT, IDH1, TP53, CDKN2A, FGFR2, CDK4, 
and CDKN2B were independent prognostic factors in glioma patients 
(Figure 2C). Additionally, we performed univariate and multivariate 
Cox analyses on these factors in low-grade glioma (LGG) and high-
grade glioma (HGG), respectively (Supplementary Table S2). 
Interestingly, although sex was independently associated with the 
overall prognosis of glioma (p < 0.05), we found that it was not an 
independent prognostic factor in the LGG and HGG subgroups. To 
validate the independent prognostic relevance of sex in the entire 
glioma sample (which may differ from the results of other studies), 
we investigated the differences in the proportion of males between 

high- and low-grade samples. However, we  found no significant 
differences (Figure 2D). Therefore, this result excluded the prognostic 
relevance caused by the potential correlation between sex and 
WHO grade.

Machine learning analysis for feature 
selecting

To conduct a more rigorous analysis, we utilized machine learning 
techniques to identify key variables associated with OS time. In order 
to improve the model’s performance, we employed various algorithms 
such as RF, SVM, XGB, and GLM as detailed in the methods section. 
We then evaluated the interpretability of each model on our dataset 
by analyzing the residual values, which are presented in Figure 3A, 
and the reverse cumulative distribution of residual values in 
Figure  3B. XGB and GLM models exhibited the smallest residual 
values. In Figure 3C, we demonstrated the top 10 features and their 
respective importance for each machine learning model. Age, FGFR2, 
IDH1, CDK4, CDK6, and CDKN2A were consistently identified as 
the most important variables. Among the models, RF and XGB had 
the highest ROC AUC scores in the test set, with XGB outperforming 
the other models (AUC 0.812 vs. AUC 0.823) as shown in 
Figure 3D. Finally, we combined the results of the XGB model and 
univariate Cox regression analysis to identify age, FGFR2, IDH1, 
CDK4, CDK6, KIT, and CDKN2A as crucial predictors of prognosis 
and OS time for glioma patients (Figure 3E). These variables were 
selected for further modeling of the risk signature.

Kaplan Meier survival analysis

In addition, to validate the predictive capability of these seven 
factors, we generated survival curves using K-M survival analysis in 
the entire glioma cohort, as well as LGG and HGG subgroups. The 
results showed that patients in different groups defined by age, FGFR2, 
IDH1, CDK4, CDK6, KIT, and CDKN2A had significantly different 
OS in all glioma grades (Figure 4). However, in LGG samples, the 
alteration of KIT may not substantially distinguish the patient’s OS 
(Figure 5, p = 0.773). On the other hand, in HGG, age and KIT were 
found to be significantly related to the patient’s OS (Figure 6, p < 0.05).

FIGURE 1

Workflow of the study.
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TABLE 1 Clinical feature and WHO5 related information of patients with gliomas in train and test sets.

Covariates Type Total Train Test Pvalue

Sex F 73 (36.87%) 42 (30.22%) 31 (52.54%) 0.0048

M 125 (63.13%) 97 (69.78%) 28 (47.46%)

Age <=47 174 (87.88%) 125 (89.93%) 49 (83.05%) 0.2635

>47 24 (12.12%) 14 (10.07%) 10 (16.95%)

WHO5_pathologic_diagnosis Astrocytoma 34 (17.17%) 30 (21.58%) 4 (6.78%) NA

Circumscribed astrocytic 

gliomas 4 (2.02%) 2 (1.44%) 2 (3.39%)

Glioblastoma 88 (44.44%) 53 (38.13%) 35 (59.32%)

Glioneuronal and neuronal 

tumors 14 (7.07%) 7 (5.04%) 7 (11.86%)

Oligodendroglioma 42 (21.21%) 31 (22.3%) 11 (18.64%)

Pediatric-type diffuse gliomas 16 (8.08%) 16 (11.51%) 0 (0%)

Grade HGG 138 (69.7%) 92 (66.19%) 46 (77.97%) 0.1387

LGG 60 (30.3%) 47 (33.81%) 13 (22.03%)

ACVR1 Alt 1 (0.51%) 1 (0.72%) 0 (0%) 1

No 197 (99.49%) 138 (99.28%) 59 (100%)

ATRX Alt 37 (18.69%) 25 (17.99%) 12 (20.34%) 0.8499

No 161 (81.31%) 114 (82.01%) 47 (79.66%)

BCOR Alt 6 (3.03%) 4 (2.88%) 2 (3.39%) 1

No 192 (96.97%) 135 (97.12%) 57 (96.61%)

BRAF Alt 114 (57.58%) 81 (58.27%) 33 (55.93%) 0.8826

No 84 (42.42%) 58 (41.73%) 26 (44.07%)

CDK4 Alt 98 (49.49%) 70 (50.36%) 28 (47.46%) 0.8273

No 100 (50.51%) 69 (49.64%) 31 (52.54%)

CDK6 Alt 119 (60.1%) 82 (58.99%) 37 (62.71%) 0.7413

No 79 (39.9%) 57 (41.01%) 22 (37.29%)

CDKN2A Alt 112 (56.57%) 78 (56.12%) 34 (57.63%) 0.9684

No 86 (43.43%) 61 (43.88%) 25 (42.37%)

CDKN2B Alt 128 (64.65%) 90 (64.75%) 38 (64.41%) 1

No 70 (35.35%) 49 (35.25%) 21 (35.59%)

CIC Alt 31 (15.66%) 22 (15.83%) 9 (15.25%) 1

No 167 (84.34%) 117 (84.17%) 50 (84.75%)

EGFR Alt 120 (60.61%) 84 (60.43%) 36 (61.02%) 1

No 78 (39.39%) 55 (39.57%) 23 (38.98%)

FBXW7 Alt 7 (3.54%) 4 (2.88%) 3 (5.08%) 0.7275

No 191 (96.46%) 135 (97.12%) 56 (94.92%)

FGFR1 Alt 76 (38.38%) 53 (38.13%) 23 (38.98%) 1

No 122 (61.62%) 86 (61.87%) 36 (61.02%)

FGFR2 Alt 90 (45.45%) 60 (43.17%) 30 (50.85%) 0.4027

No 108 (54.55%) 79 (56.83%) 29 (49.15%)

FGFR3 Alt 59 (29.8%) 40 (28.78%) 19 (32.2%) 0.7548

No 139 (70.2%) 99 (71.22%) 40 (67.8%)

FGFR4 Alt 57 (28.79%) 39 (28.06%) 18 (30.51%) 0.8597

No 141 (71.21%) 100 (71.94%) 41 (69.49%)

(Continued)
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TABLE 1 (Continued)

Covariates Type Total Train Test Pvalue

FUBP1 Alt 13 (6.57%) 10 (7.19%) 3 (5.08%) 0.8146

No 185 (93.43%) 129 (92.81%) 56 (94.92%)

H3F3A Alt 1 (0.51%) 1 (0.72%) 0 (0%) 1

No 197 (99.49%) 138 (99.28%) 59 (100%)

HIST1H3B Alt 1 (0.51%) 1 (0.72%) 0 (0%) 1

No 197 (99.49%) 138 (99.28%) 59 (100%)

HIST1H3C No 198 (100%) 139 (100%) 59 (100%) NA

IDH1 Alt 78 (39.39%) 59 (42.45%) 19 (32.2%) 0.234

No 120 (60.61%) 80 (57.55%) 40 (67.8%)

IDH2 Alt 2 (1.01%) 1 (0.72%) 1 (1.69%) 1

No 196 (98.99%) 138 (99.28%) 58 (98.31%)

KIT Alt 67 (33.84%) 47 (33.81%) 20 (33.9%) 1

No 131 (66.16%) 92 (66.19%) 39 (66.1%)

KMT5B Alt 26 (13.13%) 19 (13.67%) 7 (11.86%) 0.9094

No 172 (86.87%) 120 (86.33%) 52 (88.14%)

KRAS Alt 86 (43.43%) 62 (44.6%) 24 (40.68%) 0.724

No 112 (56.57%) 77 (55.4%) 35 (59.32%)

MAP2K1 No 198 (100%) 139 (100%) 59 (100%) NA

MET Alt 78 (39.39%) 54 (38.85%) 24 (40.68%) 0.9347

No 120 (60.61%) 85 (61.15%) 35 (59.32%)

MYB Alt 82 (41.41%) 58 (41.73%) 24 (40.68%) 1

No 116 (58.59%) 81 (58.27%) 35 (59.32%)

MYBL1 Alt 54 (27.27%) 38 (27.34%) 16 (27.12%) 1

No 144 (72.73%) 101 (72.66%) 43 (72.88%)

MYC Alt 63 (31.82%) 46 (33.09%) 17 (28.81%) 0.6711

No 135 (68.18%) 93 (66.91%) 42 (71.19%)

MYCN Alt 39 (19.7%) 28 (20.14%) 11 (18.64%) 0.9622

No 159 (80.3%) 111 (79.86%) 48 (81.36%)

NF1 Alt 16 (8.08%) 11 (7.91%) 5 (8.47%) 1

No 182 (91.92%) 128 (92.09%) 54 (91.53%)

NOTCH1 Alt 69 (34.85%) 51 (36.69%) 18 (30.51%) 0.5016

No 129 (65.15%) 88 (63.31%) 41 (69.49%)

NRAS Alt 3 (1.52%) 2 (1.44%) 1 (1.69%) 1

No 195 (98.48%) 137 (98.56%) 58 (98.31%)

NTRK2 Alt 85 (42.93%) 60 (43.17%) 25 (42.37%) 1

No 113 (57.07%) 79 (56.83%) 34 (57.63%)

NTRK3 Alt 61 (30.81%) 43 (30.94%) 18 (30.51%) 1

No 137 (69.19%) 96 (69.06%) 41 (69.49%)

PDGFRA Alt 88 (44.44%) 63 (45.32%) 25 (42.37%) 0.8213

No 110 (55.56%) 76 (54.68%) 34 (57.63%)

PEG3 Alt 102 (51.52%) 72 (51.8%) 30 (50.85%) 1

No 96 (48.48%) 67 (48.2%) 29 (49.15%)

PIK3CA Alt 125 (63.13%) 89 (64.03%) 36 (61.02%) 0.8098

No 73 (36.87%) 50 (35.97%) 23 (38.98%)

(Continued)
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TABLE 1 (Continued)

Covariates Type Total Train Test Pvalue

PIK3CB Alt 6 (3.03%) 4 (2.88%) 2 (3.39%) 1

No 192 (96.97%) 135 (97.12%) 57 (96.61%)

PIK3R1 Alt 12 (6.06%) 9 (6.47%) 3 (5.08%) 0.9607

No 186 (93.94%) 130 (93.53%) 56 (94.92%)

PPM1D Alt 188 (94.95%) 132 (94.96%) 56 (94.92%) 1

No 10 (5.05%) 7 (5.04%) 3 (5.08%)

PTEN Alt 127 (64.14%) 86 (61.87%) 41 (69.49%) 0.3894

No 71 (35.86%) 53 (38.13%) 18 (30.51%)

PTPN11 Alt 46 (23.23%) 32 (23.02%) 14 (23.73%) 1

No 152 (76.77%) 107 (76.98%) 45 (76.27%)

RB1 Alt 87 (43.94%) 61 (43.88%) 26 (44.07%) 1

No 111 (56.06%) 78 (56.12%) 33 (55.93%)

SMARCA4 Alt 8 (4.04%) 6 (4.32%) 2 (3.39%) 1

No 190 (95.96%) 133 (95.68%) 57 (96.61%)

SMARCB1 Alt 1 (0.51%) 1 (0.72%) 0 (0%) 1

No 197 (99.49%) 138 (99.28%) 59 (100%)

TERT Alt 114 (57.58%) 79 (56.83%) 35 (59.32%) 0.8676

No 84 (42.42%) 60 (43.17%) 24 (40.68%)

TOP3A Alt 75 (37.88%) 53 (38.13%) 22 (37.29%) 1

No 123 (62.12%) 86 (61.87%) 37 (62.71%)

TP53 Alt 60 (30.3%) 44 (31.65%) 16 (27.12%) 0.6411

No 138 (69.7%) 95 (68.35%) 43 (72.88%)

TSC1 Alt 1 (0.51%) 1 (0.72%) 0 (0%) 1

No 197 (99.49%) 138 (99.28%) 59 (100%)

TSC2 Alt 13 (6.57%) 9 (6.47%) 4 (6.78%) 1

No 185 (93.43%) 130 (93.53%) 55 (93.22%)

YAP1 Alt 2 (1.01%) 2 (1.44%) 0 (0%) 0.8815

No 196 (98.99%) 137 (98.56%) 59 (100%)

chr1p Alt 193 (97.47%) 135 (97.12%) 58 (98.31%) 1

No 5 (2.53%) 4 (2.88%) 1 (1.69%)

chr7p Alt 193 (97.47%) 135 (97.12%) 58 (98.31%) 1

No 5 (2.53%) 4 (2.88%) 1 (1.69%)

chr7q Alt 183 (92.42%) 127 (91.37%) 56 (94.92%) 0.5691

No 15 (7.58%) 12 (8.63%) 3 (5.08%)

chr9p Alt 195 (98.48%) 136 (97.84%) 59 (100%) 0.6163

No 3 (1.52%) 3 (2.16%) 0 (0%)

chr10p Alt 192 (96.97%) 133 (95.68%) 59 (100%) 0.2431

No 6 (3.03%) 6 (4.32%) 0 (0%)

chr10q Alt 195 (98.48%) 136 (97.84%) 59 (100%) 0.6163

No 3 (1.52%) 3 (2.16%) 0 (0%)

chr17 Alt 184 (92.93%) 128 (92.09%) 56 (94.92%) 0.6839

No 14 (7.07%) 11 (7.91%) 3 (5.08%)

chr19q Alt 173 (87.37%) 121 (87.05%) 52 (88.14%) 1

No 25 (12.63%) 18 (12.95%) 7 (11.86%)
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Construction of WHO5-related risk 
signature

Based on their prognostic relevance in glioma samples, the seven 
variables age, FGFR2, IDH1, CDK4, CDK6, KIT, and CDKN2A were 
selected for the construction of the WHO5 risk signature. The LASSO 
Cox regression method was used to select the most important 
variables and construct the signature. When log(λ) = −3.3, the seven 

variables were selected and used to generate risk scores for each 
patient, based on their alteration status (mutation or CNV is recorded 
as 1, and no alteration is recorded as 0) and the risk coefficient of each 
factor. The risk score and coefficient for each factor are shown in 
Supplementary Table S3, and the calculation formula is described in 
the methods section (Figures 7A,B).

Survival analysis showed a strong correlation between risk score 
and OS of patients with glioma in the training set (Figure 7C). The 

FIGURE 2

Identification of prognostic factors in glioma. (A) Correlation diagram of all independent variables is presented in the figure. The Pearson correlations 
between the independent variables used in the analysis are displayed using colors, where yellow indicates a positive correlation and blue indicates a 
negative correlation. The deeper the color, the stronger the correlation. An asterisk is used to denote statistical significance with a value of p of less 
than 0.05. (B) Forest plot of hazard ratios from univariate Cox regression analysis of the risk factors in glioma. Red forest plots represent risky factors, 
and green forest plots represent protective factors. (C) Forest plot of hazard ratios from multivariable Cox regression analysis of the risk factors in 
glioma. (D) Boxplot of the proportion of “Male” among LGG and HGG groups.
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distributions of risk score and survival status were also plotted 
(Figure 7D). Additionally, a control risk model based on age and grade 
was constructed and had a good prognosis prediction effect in glioma 
patients (Figures 7E–H).

To evaluate the performance of different models, receiver 
operating characteristic (ROC) curves were drawn in both the training 
and testing sets. The AUC values of the ROC curves reflect the 
sensitivity and specificity for predicting OS of the risk score and other 
clinical factors. As shown in Figure  8, the WHO5 risk signature 
consistently outperformed the control risk model, age, and grade in 
terms of AUC for predicting 1–6 years OS. The better prognostic 
prediction ability of the WHO5 risk signature was further validated in 
the testing set (Supplementary Figure S1).

Construction and validation of the OS 
nomogram

To improve the prognostic prediction of glioma patients, we 
constructed a nomogram combining the riskScore with other 
clinical characteristics (Figure 9A). The efficiency of the nomogram 
was evaluated using ROC curves, and the AUC values were 0.849, 
0.835, and 0.821 for predicting 1, 3, and 5-year OS (Figure 9B). The 
calibration plot confirmed the reliability of the nomogram 

(Figure  9C). Interestingly, while the riskScore had a significant 
classification of OS, the c-index was lower than the nomogram 
(WHO5 riskScore, 0.714; age combined grade, 0.678; nomogram, 
0.742) (Figure 9D). In the test set, the nomogram also outperformed 
other scoring systems in ROC curves, calibration plots, and c-index 
(Supplementary Figures S2A–D). Furthermore, in the decision 
curve analysis, the nomogram showed a superior net benefit across 
a broader scale of threshold probabilities for predicting 1-, 3-, and 
5-year OS than other risk factors in both training and test sets 
(Figure 9E; Supplementary Figure S2E). The authors concluded that 
by integrating the prognostic WHO5-related molecular factors into 
the riskScore and then combining it with other clinical-associated 
features, the nomogram outperformed the control risk signature 
and common clinical factors in terms of interpretability, predictive 
applicability, and computational efficiency (Figure 9F). Therefore, 
the authors selected it as the backend for the online survival 
prediction tool (Glioma Survival Calculator),1 which collects 
information on WHO5 riskScore, sex, grade, and WHO5 
pathological diagnosis and calculates the survival probability for a 
specific time (year) and draws the survival curves of glioma patients.

1 https://who5pumch.shinyapps.io/DynNomapp/

FIGURE 3

Performance comparison of prediction models based on different machine learning methods. (A,B) showed different residual comparisons of the four 
algorithms. (A) Each boxplot describes the residuals within an algorithm. The red dot stands for the root mean square of residuals. (B) Reverse 
cumulative distribution curves for each algorithm. (C) Feature importance bar charts for several machine learning algorithms. The top 10 features of 
each group are shown. The abscissa represents RMSE loss after permutations. RMSE, Root mean square error. (D) Receiver operating characteristic 
(ROC) curves of the four machine learning methods. (E) Venn diagram showing the overlapping genes of XGB and univariate cox regression analysis. 
The top 10 features of each group are included.
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Discussion

As molecular testing advances, the integration of molecular 
and histological features into diagnosis and prognosis indicators 
in the WHO CNS5 classification has improved our understanding 
of the molecular categorization of gliomas (5, 6). However, the 

growing volumes of genomic and epigenomic data generated by 
high-throughput technologies present significant computational 
limitations for traditional statistical techniques. To overcome 
these constraints, modern techniques such as machine learning 
and data mining have been employed (30, 31). Machine learning 
is a subfield of artificial intelligence research that develops and 

FIGURE 4

Kaplan-Meier survival plots in all glioma patients. (A) Age >47 vs. <=47, p<0.001. (B) CDK4 altered vs. unaltered, p=0.001. (C) CDK6 altered vs. unaltered, 
p<0.001. (D) CDKN2A altered vs. unaltered, p<0.001. (E) FGFR2 altered vs. unaltered, p<0.001. (F) IDH1 altered vs. unaltered, p=0.014. (G) KIT altered vs. 
unaltered, p=0.013.

FIGURE 5

Kaplan–Meier plots of overall survival probability in patients with high-grade gliomas. (A) Age >47 vs. <=47, p<0.001. (B) CDK4 altered vs. unaltered, 
p<0.01. (C) CDK6 altered vs. unaltered, p=0.002. (D) CDKN2A altered vs. unaltered, p=0.01. (E) FGFR2 altered vs. unaltered, p=0.004. (F) IDH1 altered 
vs. unaltered, p=0.038. (G) KIT altered vs. unaltered, p=0.773.
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evaluates algorithms to enhance pattern recognition, classification, 
and prediction (32). It employs various statistical, probability, and 
optimization methods to “learn” patterns from large, complex, or 
noisy data sets, and then applies this learning to categorize new 
data, uncover fresh patterns, or foresee future trends (33). In this 
study, we utilized four machine learning models, including RF, 
SVM, XGB, and GLM, to investigate the relationship between 
overall survival and the parameters of clinical presentations, 
pathological characteristics, and molecular alterations of gliomas, 
and evaluated their accuracies and performances. Our goal was to 
establish a superior machine learning model that comprehensively 
integrates the parameters of the clinical and molecular 
characteristics of glioma, particularly incorporating novel 
molecules referred to in the fifth edition of the WHO Classification 
of Tumors of the Central Nervous System.

In our study, we enrolled 198 patients who had undergone surgical 
treatment and received postoperative adjuvant radiotherapy and 
chemotherapy, based on their pathological diagnosis. We randomly 
divided the patient samples into test and verification groups using a 
7:3 ratio. Our prognosis analysis revealed that age, grade, CDK4, 
CDK6, CDKN2A, and FGFR2 were significantly associated with 
overall survival. Among these factors, sex was a significant 
independent prognostic factor. We  also excluded any potential 
relevance between sex and other factors in our study. The observed 
gender differences may be  attributed to the protective effects of 
estrogen, the detrimental effects of testosterone, and the upregulation 
of androgen receptors on glioma. Additionally, host variables such as 
a less effective immune system may also contribute to gender 
differences (34–37).

We utilized machine learning techniques to evaluate markers 
and parameters related to patient overall survival. We applied all 
machine learning models to filter glioma-specific factors and 

chose the XGB model as the best-established one, which we used 
to intersect with multivariate analysis from COX. In our cohort, 
we  discovered that age and alteration of IDH1, CDK4/6, KIT, 
CDKN2A, and FGFR2 were the characteristic variables associated 
with OS in patients. Among these genes, IDH-mutant gliomas 
differed fundamentally from IDH-wildtype gliomas in terms of 
metabolism, epigenetics, biological behavior, aggressive invasion, 
susceptible population, and responsiveness to therapy (38–41). 
CDK4 and CDK6, which regulate the cell cycle, played an 
important role in glioma pathogenesis (42). KIT, a class III 
receptor tyrosine kinase (RTK), was frequently involved in 
tumorigenic processes (43). CDKN2A homozygous deletion was 
a robust adverse prognosis factor in diffuse malignant IDH-mutant 
gliomas (44). And a decrease or loss of FGFR2  in high-grade 
gliomas was correlated with poor prognosis (45). We investigated 
the correlations between these seven variables and OS in different 
grade gliomas and found that elderly age was linked to poor 
prognosis in both high-grade gliomas (HGG) and low-grade 
gliomas (LGG). Moreover, alteration of CDK4/6, CDKN2A, 
FGFR2, and IDH1 were substantially related to inferior OS in 
HGG, while only KIT variation was associated with poor 
prognosis in LGG.

Subsequently, in order to develop a more accurate prognostic 
signature, we used the characteristic variables selected by machine 
learning to establish a LASSO regression model and generate risk 
scores. Our results showed significant improvements in accuracy 
and sensitivity compared to previous models. To further enhance 
the clinical utility of our findings, we  integrated the WHO5 
riskScore with other relevant clinical data to create an online 
nomogram that allows for the calculation of survival probability 
over a specific time frame (year). This innovative tool has practical 
significance in quantitatively evaluating the prognosis of glioma 

FIGURE 6

Kaplan–Meier plots of overall survival probability in patients with low-grade gliomas. Kaplan-Meier survival plots in glioma patients. (A) Age >47 vs. 
<=47, p=0.009. (B) CDK4 altered vs. unaltered, p=0.386. (C) CDK6 altered vs. unaltered, p=0.709. (D) CDKN2A altered vs. unaltered, p=0.18. (E) FGFR2 
altered vs. unaltered, p=0.123. (F) IDH1 altered vs. unaltered, p=0.44. (G) KIT altered vs. unaltered, p<0.0001.
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FIGURE 7

Predictor selection using the least absolute shrinkage and selection operator (LASSO) logistic regression model. (A–D) Construction of WHO5 risk 
signature scores using the LASSO regression model. (A) LASSO coefficient profiles of the 7 candidates. (B) Selection of the optimal parameter (lambda) 
in the LASSO model using the tenfold cross-validation. (C) Kaplan–Meier survival analysis for the overall survival curves of gliomas with a low or high 
risk of death, according the model based classifier risk score level. (D) The signature risk score distribution and the scatter plot of the sample survival 
overview in the training set. The blue and red dots, respectively, represent survival and death. (E–H) Construction of age and grade risk signature scores 
using the LASSO regression model.
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patients in clinical practice, as it provides more precise and 
individualized prognostic information. Traditional prognostic 
indicators and clinical experience may not always provide 
surgeons with accurate advice or enable patients to fully 
understand their conditions. To our knowledge, this is the first 
study to combine WHO5-related markers and other clinical data 
using machine learning to construct an online calculator (see text 
footnote 1) for glioma prognosis prediction.

Nevertheless, it is important to acknowledge that this study 
has some limitations associated with its retrospective design and 
data collection. The generalizability of the findings may be limited 
as the hospital is a tertiary referral center with inherent selection 
and referral bias. There is the potential bias in the final prediction 
results due to the limited age structure and population distribution 
in our study. Furthermore, it is worth noting that developing 
nations may have solid socio-economic disparities in terms of 
standard of care and healthcare access. Another limitation is the 
small sample size in the test cohort. Therefore, future studies 
should be conducted in a prospective, multi-central manner with 
larger sample sizes to validate our results. We will also consider 
incorporating data (external datasets or real-world cases) from 
other databases and pathogenic factors to enhance the prediction  
model.

Conclusion

We have thoroughly reviewed the online prognosis predictor 
generated and validated in our study, and it represents a promising 
tool for guiding therapy decisions and improving the accuracy of 
prognosis assessment.
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FIGURE 9

Nomogram construction and validation. (A) Prediction nomogram integrated the predictors selected, including grade, sex, and WHO5 diagnosis. 
(B) ROC curve of the nomogram. (C) Calibration curves of the nomogram. (D) The c-index of the control model, WHO5 risk model, and nomogram. 
(E) Decision curve analysis for different models. (F) ROC curves of different models.
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