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Objective: Early recognition of autoimmune encephalitis (AIE) is often di�cult and

time-consuming. Understanding how the micro-level (antibodies) and macro-

level (EEG) couple with each other may help rapidly diagnose and appropriately

treat AIE. However, limited studies focused on brain oscillations involving micro-

and macro-interactions in AIE from a neuro-electrophysiological perspective.

Here, we investigated brain network oscillations in AIE using Graph theoretical

analysis of resting state EEG.

Methods: AIE Patients (n = 67) were enrolled from June 2018 to June 2022. Each

participant underwent a ca.2-hour 19-channel EEG examination. Five 10-second

resting state EEG epochs with eyes closed were extracted for each participant.

The functional networks based on the channels and Graph theory analysis were

carried out.

Results: Compared with the HC group, significantly decreased FC across whole

brain regions at alpha and beta bands were found in AIE patients. In addition,

the local e�ciency and clustering coe�cient of the delta band was higher in

AIE patients than in the HC group (P < 0.05). AIE patients had a smaller world

index (P < 0.05) and higher shortest path length (P < 0.001) in the alpha band

than those of the control group. Also, the AIE patients’ global e�ciency, local

e�ciency, and clustering coe�cients decreased in the alpha band (P < 0.001).

Di�erent types of antibodies (antibodies against ion channels, antibodies against

synaptic excitatory receptors, antibodies against synaptic inhibitory receptors, and

multiple antibodies positive) showed distinct graph parameters. Moreover, the

graph parameters di�ered in the subgroups by intracranial pressure. Correlation

analysis revealed that magnetic resonance imaging abnormalities were related to

global e�ciency, local e�ciency, and clustering coe�cients in the theta, alpha,

and beta bands, but negatively related to the shortest path length.

Conclusion: These findings add to our understanding of how brain FC and

graph parameters change and how themicro- (antibodies) scales interact with the

macro- (scalp EEG) scale in acute AIE. The clinical traits and subtypes of AIE may

be suggested by graph properties. Further longitudinal cohort studies are needed

to explore the associations between these graph parameters and recovery status,

and their possible applications in AIE rehabilitation.
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1. Introduction

Autoimmune encephalitis (AIE), a class of inflammatory

encephalopathies, is commonly caused by an immune response

against neuronal autoantibodies (1). In addition to behavioral

and mental symptoms, autonomic problems, motor disorders,

and seizures, AIE can also present with various other clinical

presentations (2). Research on AIE has advanced quickly since

the discovery of the anti-N-methyl-D-aspartate receptor (anti-

NMDAR) antibody (3). A variety of autoantibodies have also been

discovered. One of the most frequent forms of encephalitis (AIE) is

anti-NMDAR encephalitis, which is followed by anti-Leucine-rich

glioma inactivated 1 (anti-LGI-1) and anti-Gamma-amino butyric

acid receptor (anti-GABAR) encephalitis. Following the location

of the antigen they are targeting, AIEs are commonly divided

into three categories: antibodies against synaptic receptors (SyAab),

antibodies against intracellular antigens (IncAab), antibodies

against ion channels and other cell-surface proteins (CSAab) (4).

Targeting molecules involved in neurotransmission that result in

dysfunctional neurons is the pathological mechanism that causes

AIE. Neurotransmitter release changes are thought to be influenced

by SyAab. In contrast, IncAab (anti-HU, anti-Yo, anti-MA) is most

likely not directly causative, but rather an epiphenomenon of the

T-cell-mediated immune response (5). Since the cause of AIE is

not yet known, the majority of diagnostic procedures, including

cranial MRI, Scalp electroencephalogram(EEG), and cerebrospinal

fluid (CSF) routine, rely on the presence of positive serum

autoantibodies or CSF for a definitive diagnosis (6). However,

not all hospitals have access to the same antibody tests, which

are expensive and time-consuming. As a result, patients may

experience delays in diagnosis or develop new symptoms while

waiting for results. For a better clinical outcome and fewer

neurological recurrences, early immunotherapy and diagnosis are

essential (7). To better understand AIE, it may be useful to

investigate objective alterations in the electroencephalogram (EEG)

network of AIE patients.

The sensitivity of MRI is only 25–50% (8, 9). With common

abnormalities showing up as diffuse or focal slow wave changes,

EEG has a higher sensitivity than other tests for the diagnosis of

AIE. More recently, extreme delta brushing has been discovered

to be a relatively specific EEG change in anti-NMDA receptor

encephalitis (10) aiding in the diagnosis of AIE. FunctionalMRI has

been used in some prior studies to examine the changes in brain

network connectivity in patients with anti-NMDAR encephalitis.

Although no significant abnormalities were discovered in their

structural MRIs, their fMRIs revealed damage to the hippocampal

functional connectivity (FC), medial temporal lobe brain default

network (DMN) separation, and frontotemporal lobe contact

damage, among other patterns (11). According to functional

MRI studies, anti-LGI-1 encephalitis was linked to significant

functional network changes. With altered default patterns, large

networks with altered functional connections are also present (12).

Furthermore, poor temporal resolution fMRI cannot show the

sub-second temporal precision needed for the coordination and

integration of processing of neural mechanisms between various

regions, such as the communication between regulatory neurons

and the interchange of regulatory information (13, 14). However,

the majority of studies for AIE patients now use fMRI and have

small sample sizes; fewer studies have used EEG data from AIE

patients for analysis.

EEG’s millisecond time scale may be better suited to

capturing the rapidly evolving dynamics of brain networks.

Electrophysiological methods, allow for investigating oscillatory

activity in specific frequency bands (15). A growing number of

researchers have investigated cortical functional networks based

on graph theory in recent years (16, 17). Graph theory analysis

methods have been used to investigate the properties of brain

networks in patients suffering from mental disorders (13, 14,

18, 19). However, only a few studies (20, 21) have used graph

theory methods to detect resting-state cortical functional networks

in NMDAR encephalitis patients. No studies, in particular, have

investigated the brain networks of AIE patients using EEG, nor

have the networks of patients with AIE encephalitis treated with

different antibodies been compared. “Graph theory” is a technique

for characterizing complex networks. A graph is a network that is

made up of nodes (“vertices”) and connections (“edges”); it can be

described by several parameters, including the clustering coefficient

(C) and the characteristic path length (L). Phase-locked values

(PLV) are commonly used as a phase interaction measure, and

PLV is now widely used in brain network connectivity analysis to

investigate potential disease abnormalities (22, 23). As a result, we

decided to investigate brain network changes in AIE patients using

EEG-based graph theory analysis.

Therefore, the purpose of this study is to use PLV construction

matrices to select resting-state EEG data from AIE patients for PLV

construction of brain network matrices, analyze brain networks,

and perform network property analysis. We hypothesized that

acute AIE changes brain networks. As a result, our goal was to

investigate whether and how EEG brain networks change.

2. Material and methods

2.1. Participants

AIE patients who were detected between June 2018 and

June 2022 were collected in the department of neurology at the

affiliated hospital of Southwest Medical University. The inclusion

criteria were developed using previously reported AIE diagnostic

standards (4). Clinical characteristics and immunoglobulin G (IgG)

anti-neuronal antibodies identified in serum and/or cerebrospinal

fluid were used to diagnose all cases. The patient’s demographic

information as well as their clinical, laboratory, and neuroimaging

findings were acquired. The cerebrospinal fluid (CSF) autoantibody

screening included anti-neuronal surface antigens (NMDAR,

LGI1, contactin-associated protein-like 2 (CASPR2), alpha-amino-

3-hydroxyl-5-methyl-4-isoxazole-propionate receptor (AMPAR),

and -aminobutyric acid receptor (GABABR) antibodies as well as

anti-onconeural antibodies (Abs anti-Hu, Yo, Ri, Amphiphysin,

CV2, Ma2) For 2 h, we recorded video EEG data. Exclusion criteria

include prior history of other severe neuropsychiatric diseases,

and considerable EEG data interference. A standard physical

examination was also conducted on healthy controls were included

based on their age and sex matching and no neurological or

mental disorders were reported in the HC group. Finally, this study

involved a total of 67 patients with AIE (aged 37.12 ± 17.01 years)
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TABLE 1 Sex and age of participants in this study.

AIE HC χ2/t P

Sex (male/female) # 29/38 32/46 0.075 0.784

Age (years, mean±

SD) ##

37.12± 17.01 35.58±

17.42

0.533 0.595

MMSE (score,

mean± SD)

21.93± 6.01 \ \ \

# Chi-square test, ## two sample t-test; MMSE, Mini-mental State Examination. AIE,

autoimmune encephalitis; HC, healthy control.

and 78 healthy volunteers (aged 35.59± 17.42 years) who were age

and sex-matched. The mean score of MMSE is 21.93± 6.01 in AIE

group (Table 1).

This study was conducted following the 2008 Helsinki

Declaration. And the study was approved by the Ethics Committee

of the Affiliated Hospital of Southwest Medical University

(KY2019233). Written informed consent was obtained from

all participants.

2.2. EEG data acquisition

The video-EEG data were collected in a semi-isolated room.

All participants continuously recorded the video-EEG for 2 h using

a 19-channel analog recorder (Galileo EB Neuro with a camera).

The electrodes (FP1, FP2, F3, F4, F7, F8, T3, T4, T5, T6, C3, C4,

P3, P4, O1, O2, Fz, Cz, and Pz) were placed using a quantified

ruler according to the International 10-20 system. The impedance

of each electrode was kept at less than 10 kΩ . The sampling rate is

500Hz. A time-locked pattern was used to record video and EEG

data. The same settings were used to record two-hour video EEG

data for age and sex-matched HCs. Following data collection, two

experienced clinicians independently checked the entire dataset

and wrote the EEG reports.

2.3. EEG data preprocessing

The original EEG data was exported in European Data Format

(EDF). The removals of muscle and electromyogram artifacts

were automated done using an EEGlab plugin-in AAR (http://

germangh.com). Then, the EEG was band-pass filtered at 1-30Hz

using a Hamming window FIR filter. After that, the EEG was

recomputed to the common average reference. We obtained five

10-second-epochs of EEG in the resting state with eyes closed for

each participant. Finally, the preprocessed EEG data was cut out

and saved for subsequent analysis. This pipeline was performed

using the MATLAB (R2014a, MathWorks, Inc.) toolbox EEGlab

(v13.6.5, http://sccn.ucsd.edu).

2.4. PLV-based brain network analysis

PLV is the absolute value of the average phase difference

between signals, and it can be used to measure the degree of

synchronization of EEG signals in a specific frequency band. Graph

theory suggests that effective information exchange can occur

between signals in a phase-locked relationship.

PLV (t) =
1

N

∣

∣

∣

∣

∣

N
∑

n=1

exp
(

j (1ϕn (t))
)

∣

∣

∣

∣

∣

(1)

Where N represents the total number of sampling points, and

1ϕ(t) represents the instantaneous difference between signals x

and y at time t. PLV has a value ranging from 0 to 1, with 0

indicating that there is no phase synchronization and the two

signals are independent with no obvious synchronization. If, on

the other hand, the PLV tends to 1, it indicates that the phase

coupling between the two signals is stronger and the degree of

synchronization is greater. The PLV between each channel was

calculated to construct a 19 × 19 PLV network matrix, and the

subsequent network property analysis was performed using 19

EEG electrode channels as nodes for each subject. In this study,

we constructed the PLV matrices in four frequency bands: delta

(1–4Hz), theta (4–8Hz), alpha (8–13Hz), beta band (13–30 Hz).

2.5. Graph theory analysis

The 19 EEG channels were utilized in this investigation as nodes

for each person in each frequency band. Additionally, graph theory

analysis was performed using the previously created 19 by 19 PLV

matrix. For describing the topology of the brain network, we used

the Small World Index, Clustering Coefficient, Global Efficiency,

shortest path length, and Local Efficiency of the PLV network

characteristic. The clustering coefficient and local efficiency

gauge the brain’s capacity for functional differentiation, while

characteristic path length and global efficiency assess the network’s

overall information processing and transfer capacity and degree

of network integration. These graph-based indices were calculated

using MATLAB functions embedded in the Brain Connectivity

Toolbox (http://www.brain-connectivity-toolbox.net).

2.6. Sub-group analysis

The mini-mental state examination (MMSE) scale test, with a

maximum score of 30 and a score of 27 considered cognitively

impaired, was administered to AIE patients during their hospital

stay. The AIE group was divided into two groups based on MMSE

results: non-cognitive impairment (NCI) (MMSE score ≥27) and

cognitive impairment (CI) (MMSE score <27). Due to shallow

comas, two individuals were omitted who had not finished the

MMSE scale. There were 46 patients in the CI group (aged 38.85

± 16.87 years) and 19 patients in the NCI group (aged 30.42 ±

14.25 years).

In addition, the groups were divided based on EEG patterns

and intracranial pressure (IP) as measured by lumbar puncture.

Two qualified doctors examined the scalp EEG (Ruan and Liu). The

subgroup with a normal EEG included AIE patients with a regular

heartbeat and no epileptiform discharges. Patients with AIE who

had an accelerated slow rhythm, epileptiform discharges, or other

abnormal forms were included in the abnormal EEG subgroups.

Based on the IP of each patient, we divided AIE patients into two
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groups: normal IP (IP less than or equal to 180 mmH2O but larger

than 80 mmH2O) and high IP (IP larger than 180 mmH2O).

Furthermore, several subtypes of AIE patients were classified

based on the type of antibodies found in their CSF fluid (antibodies

against ion channels, antibodies against synaptic excitatory

receptors, antibodies against synaptic inhibitory receptors, and

multiple antibodies positive).

2.7. Correlation analysis

Spearman’s correlation analysis was done between classified

variables (cerebrospinal fluid antibodies, serum antibodies, normal

EEG and abnormal EEG, normal MRI and abnormal MRI) and

Network attribute parameters. Age and sex were employed as

covariates to avoid their possible influences on the Network

attribute parameters. The significance threshold was at a P < 0.05.

2.8. Statistical analysis

Demographic data were expressed as mean ± standard

deviation (SD) for measurement data, two-sample t-test for

comparisons between two groups was used. The Chi-square test

was used to compare the composition ratio for count data. P < 0.05

was considered statistically significant.

For the comparisons of PLV FC and network properties

between groups or subgroups, a generalized linear model (GLM)

with age and sex as covariates were used to eliminate the possible

interferences of age and gender. To compare the PLV FC and

network properties between AIE and HC groups or two subgroups,

within AIE, two-sample t-tests with FDR correction were used.

FDR-corrected P < 0.05 was thought of as a significant difference.

The effect size was calculated using Cohen’s d. One-way ANOVA

tests were conducted for multiple subgroup comparisons divided

by subtypes of antibodies. Then, Post-hoc Tukey-Kramer tests

were performed for pairwise comparisons. Spearman correlation

analysis between clinical traits and network attribute parameters

after using GLM regressing covariates out was calculated. FDR

correction was used for multiple comparisons for all correlations.

The statistical significance threshold was set to P < 0.05.

All the tests were conducted using MATLAB (R2014a, The

MathWorks Inc.).

3. Results

3.1. Antibody detection and clinical
information of the included AIE patients

The AIE patient group included 26 anti-NMDAR IgG patients,

ten anti-LGI1 patients, four anti-GABAR patients, four anti-Caspr2

patients, four anti-Hu patients, 11 positive multiple antibodies

patients, and 12 negative cerebrospinal fluid antibodies patients.

Five and two AIE patients with unilateral or bilateral medial

temporal lobe hyperintense signals. 15 AIE patients with multi-

focal gray matter or white matter abnormal signals. EEG results

showed that five AIE patients had epileptic-form discharges, 32

TABLE 2 Clinical information of the included AIE patients∗.

AIE patients (n = 67)

Clinical traits Cases Clinical traits Cases

Cerebrospinal fluid Abs EEG pattern

Anti-NMDAR Abs 26 Epileptic discharges 5

Anti-GABAR Abs 4 Slowing rhythm 32

Anti-LGI1 Abs 10 Delta rhythm 12

Anti-Hu Abs 4 Normal EEG 23

Multi-Abs 11 MRI pattern

Neg 12 Unilateral mTL

hyperintense

5

IP Bilateral mTL

hyperintense

2

IP (70–180

mmH2O)

33 Multi-focal

GM/WM

hyperintense

15

IP (>180 mmH2O) 20 Normal MRI 45

∗Abs, Antibodies; NMDAR, N-methyl-D-aspartate receptor; LGI1, Leucine-

rich glioma inactivated 1; GABAR, Gamma-amino butyric acid receptor; Neg, negative; CSF,

Cerebrospinal fluid; mTL, medial temporal lobe; IP, Intracranial pressure.

patients had slow alpha rhythm, 12 patients had slow theta-delta

rhythm, and the remaining 23 patients had normal EEG patterns

(Table 2).

3.2. Comparisons of brain functional
connectivity between AIE and HC

Compared with healthy individuals, AIE patients had a small

number of edges with enhanced connectivity between the left and

right temporal regions and between the left and right temporal

regions in the delta frequency band; in the theta frequency

band, AIE patients had a small number of edges with enhanced

connectivity between the bilateral temporal regions; while in the

alpha frequency band, AIE patients had a large number of edges

with reduced connectivity between the left frontal region and the

right occipital region, and between the right frontal region and

the left posterior temporal and occipital regions. In the beta band,

there are a small number of edges with diminished connectivity

between the bilateral frontal and left occipital regions in AIE

patients between the two groups (Figure 1).

3.3. Comparisons of graph theory
parameters between AIE group and HC
group

Compared to the HC group, the local efficiency and clustering

coefficient of AIE patients increased in the delta band (P < 0.05);

The small world and shortest path length of alpha band AIE

patients were higher than the control group (P < 0.05); On the

contrary, the parameters of alpha band involving global efficiency,
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FIGURE 1

Comparisons of PLV network between AIE and HC patients.* PLV network connectivity in delta(1–4Hz) (A), theta(4–8Hz) (B), alpha(8–13Hz) (C),

beta band (13–30Hz) (D). The red line in the figure indicates the increased connectivity between the temporal regions bilaterally in AIE patients

compared to HC in the delta and theta bands. The blue line in the figure indicates that the connections between the left frontal area and the right

occipital area and between the right frontal area and the left posterior temporal and occipital areas are reduced in patients with AIE compared to the

HC of the alpha band after FDR corrections between the two groups. AIE, autoimmune encephalitis; HC, healthy control.

FIGURE 2

Comparisons of network properties between AIE group and HC group#. #(A, B) Network Properties of delta band (1–4Hz) between AIE and HC.

(C–G) Network Properties of alpha band (8–13Hz) between AIE and HC. Generalized linear models (GLM) with age and sex as covariates were used

to assess AIE group and HC group di�erences. The detailed comparison results of all parameters has been shown in Supplementary Table 1. AIE,

autoimmune encephalitis; HC, healthy control; d, the e�ect size Cohen’s d. *P < 0.05, **P < 0.01, ***P < 0.001. The legends were shown below the

figure.

local efficiency, and clustering coefficients in AIE group decreased

significantly (P < 0.001) (Figure 2, Supplementary Table 1).

Strong Pearson’s correlations between these parameters were

obtained in both AIE and HC (Supplementary Figures 1 and

2), which may suggest that these Graph parameters detect an

important aspect of brain activity. These strong correlations could

not be obtained in stimulated EEG (Supplementary Figure 3).

3.4. Correlation analysis between graph
properties and clinical traits

MRI abnormalities were found to be positively related to

global efficiency, local efficiency, and clustering coefficients in theta,

alpha, and beta bands, but negatively related to the characteristic

path length, MRI patterns were positively correlated with global

efficiency in theta band (r = 0.286, P < 0.05), alpha band (r =

0.323, P < 0.01), and beta band (r = 0.308, P < 0.05). Local

efficiency in the theta band (r = 0.286, P < 0.05), alpha band

(r = 0.322, P < 0.01), and beta band (r = 0.295, P < 0.05) was

positively correlated with the MRI performances. Theta (r= 0.289,

P < 0.05), alpha (r = 0.322, P < 0.01), and beta (r = 0.295,

P < 0.05) clustering coefficients were positively correlated with

MRI abnormalities.

3.5. Comparisons of graph theory
parameters of sub-groups divided by
antibodies

When we divided the groups by antibodies and antibody

characteristics in cerebrospinal fluid, we found statistical

differences. We observed the anti-NMDAR AIE showed a

significantly decreased small world index in delta band than

those of the other three subgroups including anti-GABAR,

anti-ion channel and anti-multi-antibody positive AIE (P <

0.05). However, compared to anti-GABAR AIE, significantly

raised small-world index of theta band (P < 0.01) and

beta band (P < 0.05) in anti-NMDAR AIE group (Figure 3,

Supplementary Tables 2, 3).

In the alpha frequency band, there were statistically significant

differences in the global efficiency (P < 0.01), local efficiency
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FIGURE 3

(A–J) Comparisons of network properties between subgroups divided by cerebrospinal fluid antibody types in AIE patients#. #post-hoc

Tukey-Kramer tests for pairwise comparisons of sub-groups separated by cerebrospinal fluid antibodies. Antibody types in cerebrospinal fluid such as

antibodies against synaptic excitatory receptors, antibodies against synaptic inhibitory receptors, antibodies against ion channels, and

multi-antibodies were used to divide AIE patients into sub-groups. As a result, the antibody sub-groups were NMDAR (n = 26), GABA (n = 4), LG1 (n

= 10), and Multi-abs (n = 11). The line connecting the bars in each panel represented the corresponding pairwise parameter comparison in post-hoc

Tukey-Kramer tests following one way ANOVA. The results of one-way ANOVA and detailed post-hoc tests were shown in Supplementary Tables 2, 3.

NMDAR, N-methyl-D-aspartate receptor; GABA, Gamma-amino butyric acid receptor; LGI1, Leucine-rich glioma inactivated 1; Multi-abs,

multi-antibody positive; *P < 0.05, **P < 0.01 The legends were shown below the figure.

(P < 0.05), clustering coefficient (P < 0.05), and characteristic

path length (P < 0.01) of anti-NMDAR encephalitis and anti-

GABAR encephalitis. On the beta band, there was a difference

in global efficiency and shortest path length between Anti-

NMDAR encephalitis and anti-GABAR encephalitis (P < 0.05)

(Figure 3, Supplementary Tables 2, 3). On the delta band, there was

no statistically significant difference in global efficiency between

Anti-NMDAR, anti-GABAR, anti-ion channel, and multi-antibody

positive AIE.

3.6. Comparisons of graph theory
parameters of sub-groups divided by IP,
EEG, MRI or CI

When AIE patients were classified according to clinical EEG

reports, AIE patients with abnormal EEG patterns had higher

clustering coefficients(P < 0.05, t = 2.624, d = 0.603), global

efficiency (P < 0.05, t = 2.464, d = 0.578), local efficiency (P <

0.05, t = 2.623, d = 0.601) on the delta band than AIE patients

with normal EEG patterns (P < 0.05), while the characteristic path

length was instead lower (P < 0.05, t = –2.529, d = −0.584)

(Figure 4, Supplementary Table 4).

In the delta band, compared to AIE patients with normal IP,

those AIE patients with high IP (>180 mmH2O) had significantly

lower local efficiency (P < 0.05, t = –2.556, d = –0.607) and

clustering coefficients (P < 0.05, t = –2.554, d = –0.607) in theta

band (Figure 4). Other parameters, we not mentioned, did not

differ between these subgroups. No significant differences between

AIE patients with abnormal MRI and AIE patients with normal

MRI, and between AIE patients with CI and AIE patients without

CI depicted by MMSE (Supplementary Table 4).

4. Discussion

PLV was utilized for phase synchronization, and graph

theory has been extensively used in EEG studies. The study

showed enhanced FC in the low-frequency band(delta and theta

bands)and weakened FC in the high-frequency band (alpha and

beta bands), reducing information transfer. Graph theory analysis

showed that AIE patients with different types of antibodies had

different information transfer efficiency, with significant differences

between anti-NMDAR encephalitis and anti-GABAR encephalitis.

Subgroups by IP or EEG pattern differed in terms of neural

oscillations. These discoveries deepen our comprehension of AIE

from a brain electrophysiological perspective.

Studies on FC have identified AIE-related alterations, in which

FC is often poorer in AIE (11, 24). Synchronization decline

of brain activity in anti-NMDAR encephalitis (25). By gating

sensory processing to shield information held online from sensory

interference, alpha band oscillations play a significant role in

attention and working memory (26). The decreased alpha band

connectivity of frontal and parietal areas in AIE could be due

to changes in attention and arousal levels (27). The apparent

increase in delta and decrease in alpha in psychosis indicates

an inappropriate arousal state, which leads to a decreased ability

to attend to relevant information (28, 29). Desynchronization of

alpha activity is thought to be a reflection of various changes in
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FIGURE 4

Comparisons of network properties of sub-groups divided by IP and EEG pattern#. #Comparison of network properties in the delta band (1–4Hz)

(A–D) and theta band (4–8Hz) (EF). (A–D) The AIE sub-groups divided by EEG pattern showed significant di�erences in network properties of the

delta band. (E, F).The AIE sub-groups divided by intracranial pressure showed significant di�erences in network properties of the theta band. AbEEG,

abnormal EEG pattern; NorEEG, normal EEG pattern; IP, intracranial pressure; d, the e�ect size Cohen’s d. *P < 0.05.

thalamocortical and cortical network communication (30). The

EEG of patients with AIE often presents as a slow wave (7, 31, 32).

In anti-NMDAR encephalitis, a significant increase in δ relative

band power and a significant decrease in β relative band power and

β absolute band power in the posterior region have been reported

(33). A higher peak frequency within the delta range was associated

with poorer clinical outcomes in anti-NMDAR encephalitis (34). It

is widely known that almost all recorded neurons spontaneously

oscillate slowly in the delta range when they are anatomically

or functionally disconnected from other cortical regions (35).

Therefore, an increase in delta connectivity can indicate that AIE

is gradually disconnecting.

The neural activity network and information processing

in the brain can be explained from this perspective using

network property analysis based on graph theory. In the current

investigation, we found that in the alpha band, AIE patients

had decreased global and local efficiency, increased shortest path

length, and decreased clustering coefficients, which is in good

agreement with earlier FDG PET and multimodal MRI Studies

(36, 37). Given that the thalamus is assumed to be the source

of alpha activity, we proposed that the network topology changes

in AIE patients that are specific to the alpha band may be

connected to changes in thalamic activity (38, 39). These findings

are comparable with those of earlier investigations by Bacchi

et al. (40) in those individuals with MRI anomalies also had

abnormal thalamic signal changes. Many psychiatric symptoms can

be caused by injury to the thalamus, which plays an integrative

function in cognition. The thalamic-cortical-limbic network is

disrupted when the dorsomedial thalamic nucleus, particularly the

right one, is damaged. The thalamus loses control over certain

portions of the cortex, causing hyperexcitable cortical networks,

and the patient’s cognitive function is related to the thalamic

volume and thalamocortical connections (41, 42). The increased

effectiveness of network information transmission in the delta band

may be explained by the hypothesis that dysfunction of thalamic

oscillations causes hyper synchronization in the band (43, 44).

The normal functioning of GABABR is essential for cognitive

function (45). Nearly all patients with anti-GABABR antibody-

associated encephalitis have memory loss and other cognitive

domain impairment in the acute phase of the disease (46, 47).

Cognitive impairment is one of the main manifestations of

anti-NMDAR encephalitis, and more than 90% of patients will

have cognitive impairment in the acute or subacute phase of the

disease, and some patients can have cognitive impairment as the

first symptom (48) anti-LGI1 encephalitis cognitive impairment is

more frequent, and almost all patients with anti-LGI l antibody-

associated encephalitis have comorbid cognitive impairment in

the acute or subacute phase (49, 50). The degree of cognitive

impairment in VGKC encephalitis is greater than that of GAD65

(51). A few studies have reported varying degrees of cognitive

impairment in anti-NMDAR encephalitis, anti-GABA receptor

encephalitis, and anti-LGI1 encephalitis (52). It has been shown

that a person’s functional brain topological features will have a

longer shortest path length when they have a lower cognitive

capacity (53). Studies have reported a decrease in the local

efficiency of themorphological and structural networks of NMDAR

encephalitis, which largely accounts for accounts for the patients’

cognitive abnormalities (37). The differences in graph theory

parameters largely reflect the differences in the cognitive function

of different types of antibodies.

The difference in network transmission efficiency could

be explained by NMDA-mediated excitatory transmission vs.

GABA-mediated inhibitory transmission. NMDA receptors

(NMDARs) are glutamate-gated ion channels (the major excitatory

neurotransmitter in the CNS). In patients with anti-NMDAR

encephalitis, Huang et al. (20) used graph theory analysis to

examine the functional connectivity of FDG PET, and they found

that most brain regions had considerably reduced global efficiency

(20). Wang et al. (37) used multimodal MRI in conjunction with

a graph-based network approach to reduce the local efficiency

of both morphological and structural networks in anti-NMDAR

encephalitis (37). NMDAR-Abs influence glutamate transmission

primarily through reversible NMDAR loss, and antibodies cause

receptor potency-dependent reductions via cross-linking, capping,

and receptor internalization mechanisms. Anti-NMDA antibodies

acting on rat hippocampal neurons have also been shown in

electrophysiological experiments to reduce NMDA-mediated

postsynaptic currents (54, 55). According to retrospective research,

Frontiers inNeurology 07 frontiersin.org

https://doi.org/10.3389/fneur.2023.1181629
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org


Luo et al. 10.3389/fneur.2023.1181629

70%−80% of cases involved patients who were initially treated

by psychiatrists, and 80–100% of patients reported having

psychiatric symptoms at the time of their first presentation (48, 56).

Furthermore, psychiatrists have been particularly interested in

the central role of NMDAR hypofunction in the emergence of

psychotic symptoms. Lebon et al. simulated psychosis based on

anti-NMDAR encephalitis (57). Studies have shown that there

is a decrease in global and local efficiency in the brain networks

of schizophrenic patients compared to normal individuals, and

this trend is more pronounced during cognitive load (58). Thus,

Network parameter change may be associated with psychiatric

symptoms. However, GABAA autoantibodies selectively reduce

GABAA receptor surface density and synaptic localization, whereas

ionophobic GABAA receptors regulate the majority of rapidly

inhibited synaptic transmission in the brain (59–61). Menke et al.

found a decrease in the number and amplitude of spontaneous

inhibitory postsynaptic currents (sIPSCs) in the hippocampal

CA3 network, which resulted in decreased gabaergic synaptic

transmission (62). By directly inhibiting GABAA function, these

antibodies cause severe encephalitis, resulting in neurological

hyperexcitability (63). GABA’s nervous system is hyperexcitable,

which improves the effectiveness of network messaging. It is well

known that seizures are more closely associated with anti-GABAR

than with anti-NMDAR encephalitis (64, 65). Anti-GABAR

encephalitis starts with seizures in 84% and is characterized by

refractory epilepsy and persistent epilepsy (66). Ponten et al. (67)

found by studying EEG data from epileptic patients that epileptic

activity alters the functional brain network and that an increase

in high clustering coefficients can alert for seizures (67). We

speculate that differences in clustering coefficients are associated

with different antibody seizures in AIE, and further large-scale

experiments are needed to verify this.

Topological parameters of the brain network can reflect the

patient’s intracranial pressure level to some extent. Excessive

intracranial pressure impairs the normal function of the cerebral

cortex and subcortical tissues, resulting in a reduction in the overall

efficiency of the brain network, as well as a decrease in the clustering

coefficient and global efficiency. Previous studies of anti-NMDAR

encephalitis with MRI abnormalities found a higher severity of

disease and worse cognitive function (68) and NMDAR and VGKC

encephalitis were found to have a worse prognosis than those

with normal MRI (69, 70). AIE patients with abnormal MRIs may

have a more severe disease state, resulting in less efficient network

information transmission. Autoantibodies in AIE encephalitis

cause functional damage to the nervous system (71) but this

damage may not change the morphological structure of the brain.

Finke C et al. discovered that anti-NMDAR encephalitis manifested

as impaired functional connectivity while having normal results on

a standard clinical MRI (72). The brain’s activity can be sensitively

reflected by an EEG. It’s also possible that MRIs in AIE patients are

normal because the blood-brain barrier disruption and neuronal

disruption are both relatively low, and cell-derived edema and

vasogenic edema are both mild. Since the normal and abnormal

EEGs in this investigation had different network properties, we

expected that the AIE patients’ EEG network property metrics

would be more sensitive or would show abnormalities before the

MRI would alter.

When compared to other types of antibody samples,

anti-NMDAR encephalitis made up most of our samples.

Further longitudinal studies are required to evaluate network

variability in AIE patients because our data is cross-sectional. To

uncover proof that such EEG recordings could reveal significant

disparities, we merely employed 21 EEG electrodes. The results

could vary, though, depending on how many electrodes (nodes)

are used. To overcome these constraints and develop a more

thorough knowledge of AIE in terms of EEG activity, we will keep

accumulating cases for future studies.

5. Conclusions

In this study, we proved that the brain FC and Graph

parameters in resting-state EEG of AIE changed, which

were characterized by increased FC in low frequency band,

decreased FC in high frequency band and decreased information

transmission. Importantly, the micro- (antibodies) scales

interacted with macro- (scalp EEG) scale in acute AIE. And

the other subgroups divided by IP or EEG pattern also differed

in neural oscillations depicted by Graph theory analysis. These

observations add to our understanding of how brain functional

connectivity and graph parameters change and how the micro-

(antibodies) scales interact with macro- (scalp EEG) scale in

acute AIE.
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