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Outcome prognostication in comatose patients after cardiac arrest (CA)

remains to date a challenge. The major determinant of clinical outcome is

the post-hypoxic/ischemic encephalopathy. Electroencephalography (EEG) is

routinely used to assess neural functions in comatose patients. Currently, EEG-

based outcome prognosis relies on visual evaluation by medical experts, which

is time consuming, prone to subjectivity, and oblivious to complex patterns.

The field of deep learning has given rise to powerful algorithms for detecting

patterns in large amounts of data. Analyzing EEG signals of coma patients

with deep neural networks with the goal of assisting in outcome prognosis

is therefore a natural application of these algorithms. Here, we provide the

first narrative literature review on the use of deep learning for prognostication

after CA. Existing studies show overall high performance in predicting outcome,

relying either on spontaneous or on auditory evoked EEG signals. Moreover, the

literature is concernedwith algorithmic interpretability, and has shown that largely,

deep neural networks base their decisions on clinically or neurophysiologically

meaningful features. We conclude this review by discussing considerations that

the fields of artificial intelligence and neurology will need to jointly address in the

future, in order for deep learning algorithms to break the publication barrier, and

to be integrated in clinical practice.
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1. Introduction

Cardiac arrest (CA) is one of the leading causes of coma worldwide, with around 19

million cases per year. The majority of patients who survive a cardiac arrest are initially

comatose, as a result of global ischemia. Patients who would have died from a cardiac

arrest are nowadays receiving advanced treatments and are more likely to survive (1, 2).

As the brain is more susceptible to ischemia than other organs (2–4) the most determinant

outcome of coma after cardiac arrest is the ischemic hypoxic encephalopathy (HIE). In the

recent years, it has become increasingly important to have early and accurate predictions of

patients’ outcome to avoid futile treatment, better allocate resources and to inform patients’

families. Currently, outcome prediction relies on a multi-modal approach comprising

clinical and paraclinical tests (4). Because it directly assesses the neural activity of the brain,

electroencephalography (EEG) is one of the most widely used and accurate methods for

prognostication in HIE after CA (5, 6).
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Currently, EEG is analyzed visually by a Neurologist or

Neurophysiologist. This procedure requires a specific expertise, is

time consuming, and is prone to subjective assessments (7, 8).

Moreover, even though several EEG patterns are associated with

favorable or unfavorable outcome, there is a relatively large amount

of patients that remain in a “gray-zone”. These are patients for

whom EEG is not able to make an accurate prognostication, or

might be discordant to other modalities. This case may occur

for example when the EEG is indicative of favorable outcome

according to current visual criteria (e.g., a continuous reactive

background without periodic pattern) but the patient still fails

to awaken after several days, and/or other modalities such as

neuroimaging or biological markers (e.g., neuron-specific-enolase)

are suggestive of poor outcome.

Finally, visual EEG analysis is by definition limited by

the capability of the Neurophysiologist for interpreting a

multidimensional time series (9). Potential crucial features of the

signal, for instance statistical properties or fine-grained patterns of

activity might be oblivious to the human eye, and therefore do not

contribute to the prognostication. There is a clear need for novel

diagnostic and prognostic methods. Computational techniques aim

at analyzing EEG signals in a fast, automated, and objective way,

possibly also increasing the yield of EEG by detecting new clinically

relevant features. Due to its tremendous success in various fields

such as visual object recognition or automatic translation, deep

learning is a natural candidate computer-based EEG analysis.While

deep learning has been applied to EEG in various clinical and non-

clinical settings (10, 11), in this review, presented in a narrative

review format, we will focus on its use for prognostication after CA.

2. What is deep learning and why use it
for EEG analysis

2.1. General principles of classification

To understand the potential advantages of deep learning

compared to other computer-based approaches, it is useful to think

about what it means to classify an input, whether an image, a

sound, or a biological time series such as an EEG. First, one has

to recognize relevant features, namely properties of the data that

will help perform the classification (Figure 1A). If confronted with

a photo of an animal, one might recognize a large animal with

four legs, with stripes, or with a long neck. Then, based on our

previous zoological knowledge, we use this information to classify

the animal, that is, to recognize it as belonging to the class of

zebras or the class of giraffes. Errors can occur at several points

along this process: the quality of the photo might be too low, one

might falsely interpret stripes as shadow from branches, or correctly

recognize stripes on the animal but ignore the existence of zebras.

Of note, sometimes the absence of a certain feature is important for

classification (e.g., the absence of stripes can help in identifying a

horse in a group of zebras).

The same principles apply to the visual analysis of EEG

in comatose patients. Using for instance the item listed in the

American Clinical Neurophysiology Society (ACNS) terminology

(12), one can describe the background continuity, frequency,

amplitude, or the presence of periodic or rhythmic elements or

epileptic seizures. Then, based on the list of identified elements,

one applies a classification system. For instance, it has been

shown (5) that a continuous (feature 1) and reactive (feature 2)

EEG background with posterior to anterior gradient (feature 3)

and in absence of periodic rhythmic element (absence of feature

4) was associated with a favorable outcome. Other classification

systems can be applied to the same set of features. For instance,

tolerating the absence of feature 1 or 3 increases the sensitivity

for favorable outcome (13). As was the case with animal pictures,

errors can apply at different points also in the case of EEG

evaluations. For example, a technical issue during an EEG

recording might artificially reduce its amplitude; EEG elements

can be misidentified (for instance electrocardiogram artifacts

mimicking periodic discharges); or a clinician might ignore that

sedation can alter the continuity of EEG traces.

Computational analysis methods have been used in the field

of EEG to help either with feature recognition, classification,

or both. For instance, simple signal processing techniques can

automate frequency analysis, or, in other words, the decomposition

of an EEG signal into components with different frequencies.

The relative importance of the different frequency components

at different time steps can be displayed in a condensed matter

called a spectrogram. This type of representation is very useful

for long-term monitoring, so that a human observer can rapidly

identify time points where an EEG signal might change, for

instance due to awakening, sedation, or epileptiform activity

(14). However, the interpretation of these features (the “real”

classification), lies by the human expert. The advantage of

computing and displaying features for a long EEG recording

is to save time, which might be of the essence to start a

treatment, but does not necessarily increase the yield of EEG

(15, 16).

Alternatively, feature recognition can be performed by humans

while classification is done by a computational algorithm.

Features described in the ACNS terminology are numerous,

and their possible combinations even more so (12). In a

prognostication study on critically-ill patients with impaired

consciousness, the presence of different features was scored visually

by EEG experts. In a second step, classification was performed

based on these features with a random forest algorithm, a

machine learning technique whereby 500 decision trees were

generated based on the data and voted to predict the clinical

outcome (17).

Last, both approaches can also be combined. EEG

quantitative features (mainly based on frequency analysis)

and random forest were used to predict outcome after

cardiac arrest (18) or traumatic brain injury (19). The same

group also hand crafted quantitative features mimicking the

ones recognized by humans (such as continuity, irregularity

etc.) which were automatically used for classification, as

an attempt to emulate a neurologist or electrophysiologist

(20). By contrast, other groups deliberately used features

properties of the EEG signal that are not easily quantifiable

without computational techniques such as synchronization

measures applied on resting state (21) or auditory evoked EEG

signals (22).

In all the studies mentioned above, EEG features were

specified ahead of time by humans: even when computational
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FIGURE 1

(A) General principles of classification of EEG signals. Almost every classification task is a two-step process: first, extraction of features, and second,

actual classification based on these features. (B) Classification with a deep learning (DL) network. In a DL network, both steps are performed by the

same hierarchical network, which takes as input a numerical representation of the data and outputs the probability associated with each class.

FIGURE 2

(A) An artificial neuron. Neurons are the computational units of a deep neural network. Inputs are multiplied by a weight, added, and passed through

a function to produce the output. (B) For EEG analysis, the voltage recorded at each time step serves as numerical input for the network.

techniques were used to analyze the EEG signals, the nature of

the features that were computed (e.g., which frequency bands,

or which synchronization measures) was specified a priori by a

human expert. This approach is commonly referred to as “feature

engineering”. The advantage of this approach is that we can benefit

from 50 years of experience gathered by electroencephalographers.

The limitation, however, is that explicitly crafting the features

is by definition limited by prior knowledge. There is another

possible approach, where features are defined by an algorithm.

This approach is called “feature learning”. Its main advantages are

that it is data-driven and not limited by a priori assumptions. In

deep learning, the same algorithm performs simultaneously feature

extraction and classification (Figure 1B).

2.2. How deep learning works

Deep learning (DL) is a class of hierarchical algorithms (the

“networks”, or “models”) composed of multiple processing units

(“neurons”) (23). Each neuron receives several numerical inputs,

which are multiplied by weights, and summed up. This sum is then

passed to a function to produce the output (Figure 2A). Usually,

neurons of the last layer of a network serve as general output for

the network, or a “prediction”. The name neuron comes from the

resemblance with biological neurons, in which inputs are provided

by other neurons or receptors, while the weights would be synapses

with variable strengths, the weighted sum of inputs approximates

the membrane potential, and the non-linear function represents
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the generation of action potentials. Using artificial neurons to

perform a labeling task is not a new idea (24). Their recent

success in practice is due to novel methods of training as well as

hardware progresses, allowing training of networks with a large

number of layers (hence the term “deep”) (25). Currently, deep

learning is state of the art in domains such as image processing,

or automatic translation, and has often become a synonym for

Artificial Intelligence (AI).

For image processing, the input to a neural network is the

value of the red, green, and blue component of each pixel. In

the case of EEG, the input is usually a time series of voltage

values recorded over time (Figure 2B). To become efficient in

analyzing new input data, a network has to be trained, that is,

the weights of the neurons need to be adjusted (hence the term

“learning”). A detailed tutorial on training methods lies beyond

the scope of this review. In a nutshell, during training for a

classification task, the network is repetitively presented with input

data, which are passed through all layers, and the final output of

the network is compared with the real class (e.g., class I = patient

had a favorable outcome, class II = patient had an unfavorable

outcome). If the prediction is correct, the weights of the network are

increased (the prediction is reinforced), and if wrong, the weights

are decreased.

A convolutional neural network (CNN) is a specific type

of DL architecture in which neurons in the first layer are not

simultaneously connected to all of the inputs, but are swept through

the input, acting as a kind of filter (i.e., via a convolution) (25). This

procedure saves computational time for large data and allows for

useful properties such as position invariance. When the complexity

of an artificial neural network is sufficiently high, the network

can approximate any function; CNNs can therefore perform both

feature extraction (i.e., approximate those functions that would

compute relevant features of the input data), and at the same

time, classification.

3. Review of the literature

3.1. Methodology

A search was performed in PubMed using the following

terms: (deep learning OR artificial neuron OR neural network OR

convolutional OR CNN OR DNN OR RNN OR LSTM) AND (Coma

OR cardiac arrest OR ICU OR HIE OR hypoxic OR anoxic) AND

(EEG OR electroencephalogram OR electroencephalography). 114

articles were found, of which six were original studies at least

partially devoted to the use of deep learning for prognostication

after cardiac arrest in adult humans based on EEG recordings.

Using references, another relevant peer-reviewed study was found,

resulting in the inclusion of seven studies for the present

review. We did not perform searches using other engines, nor

did we include papers published only in a repository or as a

PhD thesis.

The identified studies were evaluated in terms of the network

architecture that they used, the total number of patients, the

main task that deep learning aimed at solving, the classification

performance, and whether any feature visualization techniques

were used.

3.2. Summary of the literature search

Five of the existing studies on the use of deep learning for coma

outcome prognosis used a simple convolutional neural network

(CNN), albeit with very different architectures:

Van Putten et al. (26) used a network with one convolutional

layer to analyze a monocentric data set at various time points after

cardiac arrest (CA); the training set contained 230 patients, while

the test set of 50 patients. The area under the ROC curve (AUC) of

the model was 0.89 at 12 h after CA and 0.76 at 24 h.

Tjepkema-Cloostermans et al. (27) used a Visual Geometry

Group (VGG) architecture (3). This consists of a deep CNN with

13 convolutional layers, with a progressively decreasing size of

convolutions. Training and internal validation was performed on

661 patients from two hospitals, external validation on 234 patients

of three other hospitals. The performance for both validation

sets at two different time points was between 0.86 and 0.92.

Simultaneously incorporating data from two different time points

did not significantly modify the prediction performance.

The same group (18) analyzed a largely overlapping data

set using the same convolutional network in the context of a

comparison study between differentmethods (see below). The AUC

of the network was between 0.88 and 0.90.

Jonas et al. (28) used a reduced version of the VGG network

(“t-VGG”) with six convolutional layers to analyze a monocentric

data set (training set 213 patients, test set 53 patients). An overlap

of 75% between epochs was used to increase the training samples.

The mean EEGs latency was 20 h after CA. The performance was

0.89 for version with additional all-to-all layer, and 0.9 without (t-

VGG-GAP).

The t-VGG-GAP architecture was then used for outcome

prediction in multicentric cohort of patients with different

etiologies of coma (of which 30% after CA) (29). The authors

used five-fold cross validation (286 patients for training and 72

for testing). The performance was 0.72 for predicting survival and

0.70 for predicting a favorable outcome (defined as survival without

major disability). Of note, the same architecture could be trained for

predicting the cause of coma.

Two other studies were found that used a more complex

architecture and/or paradigm:

Zengh et al. (30) used a CNN for feature extraction in single

epochs, which was then fed to other DL networks (“long short time

memory”) to introduce time dependency between epochs, and was

then combined with clinical data for final prognostication. 1,038

patients from 7 hospitals were analyzed (five-fold cross correlation).

The AUC was 0.83 at 12 h after CA and 0.91 after 66 h.

Aellen et al. (22) focused on short EEG epochs (550ms) around

auditory stimuli, in contrast to the other studies where resting

state EEG was used. The input data used in this study to train the

neural networks are slightly different from what was used in the

previous studies (following auditory stimulation vs. resting state).

Nevertheless, the end goal is within the same scope, in predicting

outcome from post-anoxic coma via EEG signals. The data set

consisted of 136 patients from four hospitals. The AUC was 0.70,

whereas the positive predictive value for favorable outcome was

especially high (92%). The discriminative capability of the classifier

remained at similar levels on a subgroup of gray zone patients with

uncertain outcome prognosis based on existing clinical criteria.
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4. Discussion

Despite the use of different architectures, the performance

of previous work assessing coma outcome based on CNNs was

remarkably high and very similar. This point was explicitly

investigated in Jonas et al. (28): optimizing the hyperparameters

(size of EEG epoch, size and number of filters, number of

convolutional layers) or using other architectures from the EEG

literature onlymodified the network’s performance by a few percent

points. This finding is reassuring for future use of CNNs in the

medical practice, as the same architecture can probably be used in

many different clinical tasks.

Overall, the performance for prognostication after CA was

high, with AUC around 90% in the different studies. When

the networks were directly compared to other computational

methods, their performance was equivalent, and the DL algorithms

were more resistant to noise (18). When applied to a group

of patients with various etiologies of coma (29), the network’s

performance dropped (AUC 70%), whereas visual scoring of

specific features together with a random forest classifier achieved

an AUC of 80% on the same data set (17). Note however that

the combined visual feature/random forest approach leveraged the

knowledge of EEG experts with specific qualification in ICU EEG,

and was allowed to use information concerning EEG reactivity,

namely the modification of the EEG background after auditory of

somatosensory stimulus, whereas the DL algorithm was trained

exclusively on resting state EEG (in absence of stimulation). By

focusing on EEG during auditory stimulation, DL could find new

predictors of favorable outcome also for patients in the gray-zone

(patients who cannot be classified with current markers) (22).

The use of deep neural networks for coma outcome prognosis

is appealing for several reasons. First, they are highly performant;

second, unlike the majority of existing clinical tests, they can be

informative of both positive and negative outcome; third, they do

not suffer from subjective evaluations of EEG data; fourth, when

coupled with auditory stimulation, they can additionally provide

predictions of coma outcome for patients that are in a clinical “gray-

zone”, with indeterminate prognosis; fifth, with sufficient training

data, a DL-based algorithm could theoretically be expanded to

recognize other important clinical aspects that merely predict

outcome without the need to handcraft new features.

4.1. Bias and interpretability in deep
learning for EEG: a double-edged sword

Despite its advantages, several challenges need to be addressed

before DL can be deployed and used in clinical settings. First, as

DL networks learn based on data, they can reproduce existing

biases in the data at scale (31). The medical field is full of

examples of bias, starting already from data collection. Scalp EEG

measurements may be biased against several racial groups, because

the measurement itself may be inaccurate (32). For instance, EEG

devices may not be able to accommodate coarse and curly hair,

resulting in poor data quality (32, 33). Although this limitation

exists also in the case of visual EEG evaluations, it may be

particularly concerning when EEG signals are analyzed with the

use of AI black-box like approaches, where decisions reached by

a network may be due to poor data quality instead of intrinsic

and desired features of the EEG response. This is especially

problematic if members of underrepresented patients cohorts are

further excluded due to selection bias, which has been previously

described following a lack of written informed consent, requested

by ethical committees (34).

After data collection, certain patient profiles may exhibit

particular characteristics in their EEG signals, for example due

to age, temperature treatment, concomitant pathologies such as

epileptic seizures, infection, metabolic disturbances, or because

of the use of anesthetics, which drastically alter patterns of

spontaneous EEG activity. Some computational approaches for

coma outcome prognostication performed poorly when applied

to patients with epileptiform activity (35, 36). Moreover, in one

of the DL studies mentioned above, epileptic seizure but also

metabolic encephalopathy in case of liver insufficiency introduced

errors in the classification (28). In the same study it was shown

that introducing EEGs recorded during physiological sleep in the

training set changed the specificity and sensitivity for detecting

poor outcome in coma. Also, training the same architecture with

patients with other etiologies of coma allowed for specific patterns

not typically seen in patients with severe HIE (frontal generalized

rhythmic delta activity) to be recognized as relatively benign.

One of the main limitations of current studies using DL

for clinical EEG analysis is the focus on a single problem [e.g.,

prognostication, detection of epileptiform activity (37), scoring

of sleep stages (38) or artifact detections (39)] and the use

of highly specific training datasets, often with manual selection

of artifact-free epochs. This approach may artificially increase

the DL performance, which may be appealing to reviewers of

scientific articles, but often at the cost of generalization in a real

world settings.

Before being deployed in a clinical environment, any AI

algorithms should therefore be trained on enough data so that

all potential cases are well represented. In the country of the

authors of this review (Switzerland), data sharing is actively

promoted by funding agencies, but, in practice, it can be

difficult to openly share clinical data due to local regulations.

Algorithms should also be extensively tested in sub-groups of

coma patients, to ensure that they perform as expected not

only at group level, but also within individual sub-populations.

This implies, among others, the tedious work of inspecting false

positive and false negative rates, to understand the reason for the

misclassification (29).

Although the question of bias should not be taken lightly,

the use of AI technologies for coma outcome prognosis can in

fact help in overcoming human biases. These may arise at several

levels, the most evident of which concerns the visual analysis of

EEG signals which is inherently prone to subjective judgement.

Although interrater agreement is generally high for very malignant

EEG patterns, it is only moderate for malignant patterns, and

quite low for assessing EEG reactivity, which is a predictor of

good outcome (7, 40). In particular, interrater agreement can be

quite low between junior and senior neurophysiologists (8) or

between neurophysiologists and EEG technologists (40). AI-based

assessments of EEG signals can assist in overcoming these cognitive

biases, by providing reproducible and objective assessments of EEG

Frontiers inNeurology 05 frontiersin.org

https://doi.org/10.3389/fneur.2023.1183810
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org


Zubler and Tzovara 10.3389/fneur.2023.1183810

signals. They can also assist in homogenizing EEG evaluations

across hospital centers, and levels of training in medical personnel.

Although AI has the potential to reduce cognitive biases

resulting from subjective judgement, human biases may persist

and be even amplified with the use of AI. These may be

particularly present when interpreting and integrating results

generated by AI algorithms. As new algorithms will necessarily

learn from past data, they may be prone to propagating self-

fulfilling prophecies, regarding the decision to withdraw life-

support. Moreover, they may carry human biases that are

related to clinical decision-making and patient assessment (31).

Future initiatives will need to develop best practices that can be

implemented to mitigate risks of biases and ensure transparency in

novel AI applications.

Another important requirement is explainability. In the field

of prognostication, and more generally in healthcare it is of

crucial importance that humans can understand the rationale for

a decision reached by an algorithm (41). This is crucial, first,

in order to explain a medical decision to the patient and their

family, and second, to help detect and mitigate some of the

biases mentioned in the previous paragraphs. It is reassuring that

most studies on DL-based prognostication include techniques to

improve interpretability, or other control analyses. For instance

(28, 29), used a so-called gradient method, which highlighted

which part of the EEG signal was discriminative for each

class. Interestingly, some patterns which were relevant for the

network were similar to the ones used by human experts such

as a suppressed background or spiky transients for unfavorable

outcome; and continuous alpha or theta activity with posterior-

anterior gradient, or generalized rhythmic delta activity for

favorable outcome. With this type of methods, clinicians could

evaluate on a patient-by-patient basis, whether a given prognosis

was based on meaningful EEG features or whether it was instead

driven by random interpretation of non specific parts of the

EEG signal, or even artifacts. In an alternative approach (27),

displayed the distribution of the network’s output for sub-categories

of EEG based on visual patterns. This analysis also showed

good concordance with visual interpretation of EEG signals. Last,

Aellen et al. (22) assessed correlations between the outcome

prediction of the neural network for each patient and features

of neural synchrony or complexity, which have been previously

found to indicate chances of coma outcome, and of conscious

processing (42).

4.2. Future directions: incorporating AI
solutions into the clinical practice

Despite their strong potential, AI-based solutions for coma

outcome prognosis are not yet integrated into the clinical

practice. Among the challenges that will have to be resolved

lay first of all questions of reproducibility. Before deployment,

AI-based techniques will need to be systematically assessed

across several hospitals, to ensure that results generalize and are

robust beyond variations in local clinical practices, treatments,

or medical decision-making. Importantly, as the guidelines for

treating post-anoxic coma patients are constantly being updated,

it would be important to demonstrate that any AI algorithms

perform well despite local variations, for example due to

anesthetics, blood pressure or targeted temperature management

treatment (43–45). As training of AI algorithms requires extensive

amounts of data, which are not always possible to share

across hospitals, future applications could also examine the use

of federated learning frameworks, which train AI algorithms

locally, using consensus models, without the need to exchange

data (46).

Anothermajor challenge is that of digital literacy. AI algorithms

for neuro-critical care need by definition to encompass two

different fields: that of machine learning and neurology. To

ensure a practical implementation, several challenges will need

to be addressed. AI algorithms will need to be developed

and deployed as a “plug-and-play” solution, that can be easily

used by non-experts in AI or computer programming. At

the moment, applying AI algorithms on EEG data requires

advanced programming, machine learning, and data management

skills, and also complex Graphics Processing Unit (GPU)

setups. All these factors impede the routine use of AI by

medical staff.

On the other side, the field of machine learning also needs to

approach the clinical practice, by encouraging the development

of AI techniques suitable for physiological signals. This implies

a change of mindset. First, novel AI algorithms are needed for

EEG signals that are as powerful as those developed for images

or text, but taking into account the physiology and particular

characteristics of EEG. Progress in the field of deep learning for

EEG has given rise, in the recent years, to strong networks that

include time-domain convolutions, and that have relatively low

numbers of parameters and can learn from limited amounts of

EEG data (47). Second, the nature of EEG signals needs to be

considered when assessing the performance of AI algorithms. The

field of machine learning oftentimes over-emphasizes network

performance, and focuses on improvements that boost accuracy,

which lead to impressive performance metrics for images, videos,

or text. However, when dealing with EEG data, we need to develop

an understanding that EEG signals are extremely noisy by their

nature; that patients are very heterogeneous; and that the ground

truth (human raters and the human eye) can oftentimes not

provide an unambiguous true label. Moreover, the question of

coma outcome prognostication is a particularly challenging one,

as it may suffer from self-fulfilling prophecies (2), or because

patients’ outcome may be determined by factors that cannot be

measured by EEG, such as death following a second cardiac

arrest, an infection, or non-medical circumstances such as personal

directives or religious beliefs (for instance regarding withdrawal of

life supporting treatment). Therefore, we must accept that there

will always be cases where an algorithm cannot reach a decision

with confidence, whether for technical (e.g., artifacts) or medical

reasons. Algorithms should be offered the possibility to not provide

a decision, instead of being forced to output a value. Additionally,

algorithms in clinical settings should offer a measure of confidence

in their single-patient prognostication, for instance by considering

probabilities instead binary decisions. In fact, two studies have

shown that the predicted “probability” output by the last networks

layer correlates with actual probability (30) and with accuracy (29)

of the prediction.
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5. Conclusion

In summary, although promising results were

obtained in research settings, deep learning has not yet

revolutionized the field of clinical EEG evaluation, as it

did in other domains, such as for example automatic

translation. For future applications of AI in clinical

practice, an interdisciplinary mindset must be cultivated

and supported by clinical units, research institutions, and

funding venues.
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