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Cluster and network analysis of 
non-headache symptoms in 
migraine patients reveals distinct 
subgroups based on onset age 
and vestibular-cochlear symptom 
interconnection
Hui Li , Xiaonuo Xu , Jiying Zhou * and Liang Dong *

Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 
China

Objective: The present study endeavors to identify natural subgroups of migraine 
patients based on the patterns of non-headache symptoms, utilizing cluster 
analysis. Subsequently, network analysis was performed to estimate the structure 
of symptoms and explore the potential pathophysiology of these findings.

Method: A total of 475 patients who met the diagnostic criteria for migraine were 
surveyed face-to-face during the period of 2019 to 2022. The survey included 
collecting demographic and symptom data. Four different solutions were 
generated by the K-means for mixed large data (KAMILA) clustering algorithm, 
from which the final cluster solutions were selected based on a series of cluster 
metrics. Subsequently, we performed network analysis using Bayesian Gaussian 
graphical models (BGGM) to estimate the symptom structure across subgroups 
and conducted global and pairwise comparisons between structures.

Result: Cluster analysis identified two distinct patient groups, and the onset 
age of migraine proved to be an effective characteristic differentiating the two 
patient groups. Participants assigned to late-onset group showed a longer 
course of migraine, higher frequency of monthly headache attacks, and greater 
tendency toward medication overuse. In contrast, patients in early-onset group 
exhibited a higher frequency of nausea, vomiting, and phonophobia compared 
to their counterparts in the other group. The network analysis revealed a 
different symptom structure between the two groups globally, while the pairwise 
differences indicated an increasing connection between tinnitus and dizziness, 
and a decreasing connection between tinnitus and hearing loss in the early-onset 
group.

Conclusion: Utilizing clustering and network analysis, we  have identified two 
distinct non-headache symptom structures of migraine patients with early-
onset age and late-onset age. Our findings suggest that the vestibular-cochlear 
symptoms may differ in the context of different onset ages of migraine patients, 
which may contribute to a better understanding of the pathology of vestibular-
cochlear symptoms in migraine.
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1. Introduction

Migraine is a common neurological disorder that affects 14–15% 
of the global population and it is considered a leading contributor to 
years lived with disability, accounting for 4.9% of the global burden of 
ill health (1). While migraine is commonly associated with headache 
pain, it is considered to be a multisensory processing disorder (2) that 
can manifest in various non-headache symptoms, including nausea, 
photophobia, and phonophobia. These non-headache symptoms can 
also have significant impact on an individual’s daily life, leading to a 
range of comorbidities in psychiatry, such as nausea, vomiting (3), 
osmophobia (4) and vestibular symptoms (5).

Non-headache symptoms of migraine display non-random 
patterns and are affected by various factors, including demographic 
variables and features specific to the migraine condition. Research has 
indicated that particular symptoms are more prevalent in specific 
subgroups; for example, nausea is more commonly reported by 
women with lower incomes, while photophobia is more frequent in 
men with obesity and allodynia (6). Additionally, non-headache 
symptoms of migraines display a dynamic characteristic. A study has 
suggested that during a median follow-up time of 9 years, the 
prevalence of cochlear symptoms increased from 15 to 49% with the 
progression of vestibular migraine (7). The patterns of non-headache 
symptoms further emphasize the heterogeneous nature of migraines 
based on existing evidence. Gaining an understanding of the patterns 
among these symptoms may provide valuable insights into the 
underlying mechanisms of the disorder.

In recent years, the application of machine learning techniques in 
headache research has garnered increasing attention. A classification-
based approach has demonstrated promising outcomes in the 
differentiation of migraine subgroups through the clinical, imaging 
measures or the combines (8). The Random Forest classification 
approach, for example has demonstrated its remarkable ability to 
accurately diagnose primary headaches (9) and predict the 
effectiveness of medication in patients (10). Meanwhile, unsupervised 
methods, including cluster analysis, have also been employed in the 
study of headaches, such as cluster headache (11) and medication 
overuse headache (12), to facilitate a comprehensive understanding of 
the disease subgroups by identifying discriminatory factors. The 
machine learning techniques hold the potential to make valuable 
contributions to the diagnosis, treatment, and overall management 
of Migraine.

Moreover, network analysis has emerged as an increasingly 
popular method for investigating the interrelationships between 
symptoms or behaviors, with applications in various fields including 
psychiatry (13) and social science (14). This approach offers a novel 
perspective and a set of tools for comprehending the structure of the 
elements in the network, where the nodes represent elements, and the 
edges denote their associations. The width of the edges is indicative of 
the strength of the associations and provides a mechanism for 
exploring the structure and elucidating differences between structures. 
In another word, network analysis could prove valuable in exploring 
patterns of non-headache symptoms in migraine.

In the present study, we employ a cluster analysis of demographic 
and symptom data, to discern distinct patterns of non-head symptoms 
among migraine patients. Subsequently, we  applied a network 
approach to gain deeper insights into the structure of the symptom 
network, hoping to elucidate its complex organization.

2. Method

2.1. Participants

This research was carried out from 2019 to 2022. The participants 
were selected from those who sought diagnosis, treatment, or services 
at the Neurological Clinic of the First Affiliation Hospital of 
Chongqing Medical University. A total of 485 participants who met 
the following inclusion criteria were recruited for the study: (1) 
Fulfilling the diagnostic criteria of Migraine based on the International 
Classification of Headache Disorders 3 (15); (2) Age ranging from 16 
and 65 years old; (3) Absence of secondary headache disorders, severe 
neurological and psychological disorders. Participants were excluded 
based on the following exclusion criteria: (1) Course of migraine less 
than 1 year (n = 5); (2) frequency of migraine attacks less than once per 
month (n = 4); (3) the presence of errors in the collected data (n = 1). 
Eventually, the study was able to recruit a total of 475 participants.

2.2. Data collection

The present study utilized a survey to collect information 
regarding demographic data, migraine attack characteristics, and 
symptoms during migraine attacks. The survey was administered via 
face-to-face interviews with experienced clinicians and participants.

Our analysis focused on variables identified to be  related to 
migraine non-headache symptoms in the literature, such as gender 
differences (16), the presence of family history and headache onset age 
(17) and the course (7). Our evaluation also considered the frequency 
and severity of migraine attacks and their association with 
non-headache symptoms, such as dizziness/vertigo (18). Additionally, 
we  assessed medication overuse as a risk factor for migraine 
progression (19). The symptoms we  included were those found 
previously associated with migraine (20–24). In selecting our final list 
of variables, we considered factors like sample size, missing data, and 
measurement quality. Our analysis included the following variables: 
Demographic data include gender, age, the onset age of migraine, the 
course of migraine, the family history of headache and dizziness, as 
well as an assessment of medication overuse, defined as the use of 
analgesic for more than 15 days per month. Migraine attack 
characteristics include the frequency and intensity of migraine attacks. 
In this study, symptoms were defined as those commonly experienced 
by the participants at least once during migraine attacks which include 
nausea, vomiting, photophobia, phonophobia, osmophobia, dizziness, 
vertigo, tinnitus, hearing loss, aural fullness, and visual symptoms 
such as blurred vision.

2.3. Data preprocessing

This study utilized the mice package (version 3.15.0) in R 4.2.2 to 
address the issue of missing data, which ranged from 0.2 to 1.9%. The 
missing values were imputed using the Predictive Mean Matching 
(PMM) method (25). Five imputed datasets were generated, and the 
average of the imputed data was calculated and rounded to replace the 
missing values. The variable representing age was not included in the 
following analysis due to its redundancy in providing additional 
information when onset age and course were considered.
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2.4. Cluster analysis

2.4.1. KAMILA clustering
The cluster analysis was performed using the KAMILA algorithm 

implemented in the R package KAMILA (version.1.2) (26), which is 
a model-based algorithm designed to cluster datasets containing both 
numerical and categorical variables. In a recent comparative study of 
nine clustering methods for heterogeneous data, the KAMILA 
algorithm was found to be  dominant over the other methods, 
demonstrating stability and high performance across various 
simulated scenarios (27).

The KAMILA algorithm commences by initializing centroids for 
the continuous variables and parameters for the categorical variables. 
Subsequently, it calculates the Euclidean distance between the 
continuous variables and their nearest centroid, and an estimated 
mixture distribution of the continuous variables is derived from these 
distances. Regarding the categorical variables, the probabilities of 
observing the data, given the cluster, are computed, and the 
log-likelihood of the sum of these two components is utilized to 
allocate each subject to a cluster. The centroids and parameters are 
updated to better depict the clusters, and this process is reiterated until 
cluster stability is achieved. Details are described elsewhere (28).

Prior to conducting the analysis, the continuous variables were 
standardized by cantering them to a mean of 0 and a standard 
deviation of 1. Data was fit to the model with 25 random initializations 
and a maximum of 25 iterations per initialization, which is considered 
sufficient to produce stable results (28). The number of clusters was 
selected based on the prediction strength method (29). The threshold 
was chosen to 0.8. the number of cross-validation runs was set to 10 
and the average predict strength was calculated.

The stability of the clusters was evaluated using the Jaccard 
coefficient (30). This coefficient measures the similarity between two 
subsets of a set based on their set membership. To determine the 
stability of the clusters, new datasets were generated from the original 
dataset using bootstrapping and the KAMILA clustering method was 
applied to each of these datasets. For each cluster identified in the 
original clustering, the most similar cluster in the new clustering was 
identified, and the Jaccard coefficient was recorded. The stability of 
each individual cluster was assessed by taking the mean of the Jaccard 
coefficient over all resampled datasets. In this study, the number of 
bootstrapping runs was set to 2000 to obtain cluster stability result. 
The Jaccard index should be over 0.5 and preferred over 0.75 (30).

2.4.2. Partial least squares-discriminant analysis
To gain a deeper understanding of the cluster result, a Partial Least 

Squares Discriminant Analysis (PLS-DA) implemented in the R 
package mdatools (version 0.13.1) (31) was conducted. Partial Least 
Squares Discriminant Analysis (PLS-DA) is a multivariate analysis 
technique used to investigate the relationship between predictor 
variables and a categorical response variable. The remaining variables 
were set as predictors, with the cluster class designated as the responder. 
The model was constructed using a maximum of five components and 
cross-validation was performed 10 times to obtain the classification 
accuracy. Classification accuracy measures the percentage of correctly 
classified instances in the dataset. A high accuracy score suggests that 
the RLS-DA model has properly divided the dataset in general.

The first two components of the PLS-DA model were used to 
visualize the clustering analysis results in two dimensions, as they 

captured most of the variation. The clusters were separated, and 
patterns within the data were identified by plotting the observations 
on these two components.

Furthermore, the VIP (Variable Importance in Projection) score 
was calculated for each variable included in the PLS-DA model. The 
VIP score provides a measure of the relative importance of each 
variable in predicting the response variable. It is calculated as the 
weighted sum of the squares of the PLS weights, where each weight 
represents the significance of the corresponding variable in the PLS 
model. VIP scores greater than 1 indicate strong importance of a 
variable in predicting the response variable.

The appropriate number of clusters was determined based on the 
evaluation of both cluster metrics and PLS-DA’s plot. A descriptive 
analysis was carried out using Wilcox-rank-sum test for numerical 
variables (assuming not follow a normal distribution) and chi-square 
tests for categorical variables. To address the issue of inflated Type 
I error rates due to multiple comparisons, the Bonferroni correction 
was employed to yield a new alpha level of 0.0026.

2.5. Network analysis

The next part of this study was to investigate the underlying 
structure of symptoms in different clusters, using the BGGM (Bayesian 
Gaussian Graphical Models) package (version 2.0.4) in R (32). The 
BGGM provided an innovative methodology for estimating network 
structures using a Bayesian approach. Details regarding the Bayesian 
approach are described elsewhere (33). The symptoms served as node 
and their non-zero partial correlations were denoted as edges.

The BGGM package provides two methods for comparing 
networks. The “global” method assesses the degree of difference in 
network structure by comparing the partial correlation matrix 
distance (CMD) of two networks and allows for an overall evaluation 
of the differences between the networks in terms of their structure 
(34). To evaluate the differences, the posterior predictive distribution 
is computed under the assumption of group equality, providing the 
expected error under the null model of equivalence between partial 
correlation matrices. The CMD is then estimated for the observed 
groups and compared to the posterior predictive distribution, from 
which a posterior predictive value of p is computed. Rejection of the 
null model indicates that the assumption of group equality is not valid. 
After establishing the global difference, the pairwise comparison 
method is used to evaluate the differences between the networks at the 
individual edge level, by comparing the posterior distributions of each 
edge in a similar way.

3. Result

3.1. Cluster analysis

The KAMILA algorithm was employed to form two, three, four, 
and five clusters. The cluster predictive strength and Jaccard 
coefficients were calculated for each solution, as summarized in 
Supplementary Table S1. The two-cluster solution exhibited the 
highest predictive strength (0.860) compared to other solutions. Both 
clusters in the two-cluster solution showed high stability with Jaccard 
coefficients of 0.931 and 0.920, respectively. The cross-cluster 
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difference was illustrated using radar plots in Figure  1A. The 
two-cluster and three-cluster solutions yielded the most distinct radar 
shapes when compared to other solutions.

3.2. Partial least squares-discriminant 
analysis

For each solution, a Partial Least Squares-Discriminant Analysis 
(PLS-DA) was performed, with the accuracy of two-cluster and three-
cluster exceeding 0.9. The first two components were utilized to 
generate cluster patterns, as depicted in Figure 1B. The two-cluster 
solution exhibited superior separation compared to other solutions, 
which demonstrated varying degrees of overlap.

To identify the most important feature of each solution, the 
Variable Importance in Projection (VIP) score was calculated for each 
predictor. Predictors with a VIP score over 1 were plotted in 
Figure 1C. Notably, the onset age of migraine was ranked among the 
top 2 VIP predictors across all solutions. In the two-cluster and three-
cluster solutions, which outperformed other solutions, the course of 
migraine was also ranked as top2 VIP predictors.

The findings above suggest that the two-cluster solution provides 
the most optimal grouping of participants. Demographic and 
symptoms characteristics of participants by cluster are presented in 
Table 1. There were differences in age, onset age, course, frequency of 

headache, medication overuse and the occurrence of nausea, vomit 
and phonophobia. Participants assigned to cluster two exhibit a later 
onset of migraine symptoms compared to those in cluster one, 
accompanied by a longer course of migraine, a higher frequency of 
headache attacks per month, and a greater potion for medication 
overuse. With regards to symptoms, participants belonging to cluster 
one demonstrates a greater frequency of nausea, vomiting, and 
phonophobia when compared to those in the other.

3.3. Network analysis

The symptoms structure of all sample, cluster one, cluster two was 
estimate using Bayesian Gaussian graphical models in Figure 2.

The difference in the global network was evaluated by comparing 
the partial correlation matrix distance (CMD) of the two networks. 
The CMD between cluster one and cluster two symptom networks 
yielded a value of 0.57, with a significance level of p < 0.01, thus 
rejecting the null hypothesis of group equality. The results of the global 
test indicate that there was a significant difference in the 
network structure.

Figure 3 displays the posterior means and 95% credibility intervals 
for all possible edges. Within the 95% credibility interval, there were 
no significant differences in individual edges between the two clusters. 
However, if the conditions were relaxed, there were two potential 

FIGURE 1

Results of the clustering analysis for two to five cluster solutions. (A) Radar charts representing the means on scaled values (binary variables were 
coded numerically). (B) Scatter plots displaying the distribution of four solutions. (C) Bar charts demonstrating the Variable Importance in Projection 
(VIP) score that exceeds one for each solution.
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candidates for significant differences. Specifically, within the 90% 
credibility interval, the connection between tinnitus and hearing loss 
exhibited a negative association in Cluster one compared to Cluster 
two. Within the 85% credibility interval, the connection between 
tinnitus and dizziness showed a positive association in Cluster one 
compared to Cluster two. All pairwise edge difference test results were 
documented in Supplementary Table S2.

4. Discussion

In this exploratory study, we  employed machine learning 
techniques and network analysis to examine the relationships among 
non-headache symptoms in individuals with migraines. We discovered 
two distinct subgroups, with the early-onset group showing a positive 
connection between dizziness and tinnitus and a negative connection 
between tinnitus and hearing loss in comparison to the other group.

4.1. Early onset age of migraine

Numerous studies have identified a link between genetic 
predisposition and the early onset of migraine. Firstly, the family 

history of migraine has been associated with an early age of onset. For 
instance, a Finnish study of 4,930 individuals found that individuals 
who experienced migraine headaches before the age of 20 had a 
significantly higher mean polygenic risk score and stronger family 
history of migraine (35). Similarly, a large-scale study of 2,829 
migraine patients corroborated this finding by demonstrating that a 
lower age of migraine onset was associated with a stronger family 
history of the condition, as confirmed by a validated web-based 
questionnaire (36).

Secondly, various studies have linked specific genes with the early 
onset of migraine. For example, one study examining the relationship 
between the common methionine/valine polymorphism at codon 129 
within the prion protein gene (PRNP) and migraine revealed that 
patients with the PRNP  129VV genotype were significantly more 
likely to experience migraine at an earlier age (37). Another study 
focused on hemiplegic migraine and found that patients with 
mutations in CACNA1A, ATP1A2, or SCN1A tended to have a lower 
age at disease onset (38).

However, there are contentious findings regarding the relationship 
between early onset age and migraine. One study suggests that a 
stronger family history of migraine is associated with a lower age-at-
onset, higher frequency and number of medication days, and the 
migraine with aura subtype (36). However, another study shows that 

TABLE 1 Demographic and clinical characteristics of patients by cluster.

Characteristics
Clusters

χ2 value of p
One N = 260 Two N = 215

Female (%) 212 (44.6%) 158 (33.3%) 4.429 0.035

Age, median (IQR) 32 (25, 36) 53 (46.5, 56) < 0.001*

Onset age, median (IQR) 22 (16, 28) 35 (27.5, 43) < 0.001*

Course, median (IQR) 8 (4, 11) 18 (10, 29.5) < 0.001*

Severity, median (IQR) 7 (5, 7) 7 (5, 8) 0.011

Frequency of headache, median (IQR) 5 (3, 10) 20 (6, 30) < 0.001*

Chronic Migraine (%) 35 115 56.52 < 0.001*

Migraine with aura (%) 16 4 0.15 0.699

Medication Overuse (%) 6 (1.3%) 55 (11.6%) 56.952 < 0.001*

Family history of headache (%) 146 (30.7%) 142 (29.9%) 4.825 0.028

Family history of dizziness (%) 62 (13.1%) 54 (11.4%) 0.103 0.748

Symptoms

Nausea (%) 208 (43.8%) 115 (24.2%) 38.013 < 0.001*

Vomit (%) 124 (26.1%) 44 (9.3%) 38.165 < 0.001*

Photophobia (%) 139 (29.3%) 96 (20.2%) 3.6544 0.056

Phonophobia (%) 140 (29.5%) 65 (13.7%) 26.749 < 0.001*

Osmophobia (%) 24 (5.1%) 19 (4%) 0.022 0.882

Dizziness (%) 67 (14.1%) 51 (10.7%) 0.264 0.607

Vertigo (%) 9 (1.9%) 4 (0.8%) 1.133 0.287

Tinnitus (%) 11 (2.3%) 16 (3.4%) 2.263 0.132

Hearing loss (%) 5 (1.1%) 7 (1.5%) 0.848 0.357

Aural fullness (%) 5 (1.1%) 7 (1.5%) 0.848 0.357

Vision symptoms (%) 17 (3.6%) 9 (1.9%) 1.259 0.262

*Indicating significant difference under the adjusted value of p 0.0022.
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family history was linked to an earlier age at onset, particularly in 
patients without aura (39). Moreover, in another study, the correlation 
between the early-onset group and a higher frequency of migraine 
attacks was not confirmed when adjusting for the years of illness (40).

Our hypothesis is that the inconsistency among these studies may 
be due to data collection at the time of migraine diagnosis, without 
considering the effect of the migraine course on the disease, as 
migraine might progress over time. In this current study, we used an 
unsupervised method to divide migraine patients based on both 
headache features and non-headache symptoms. We found that the 
onset age of migraine ranks first in dividing the group, followed by the 
course of migraine. We have successfully identified a group of early 
onset migraine patients with a relatively shorter course of illness. 
However, in the relatively weaker solution of three clusters, the sample 
can be further divided into early onset migraine patients with a longer 
course and late onset migraine patients with a shorter course. 

Therefore, it may be worthwhile to consider both onset age and the 
course of illness in future studies.

4.2. Tinnitus and dizziness in early onset 
migraine

Several studies have established a connection between early-onset 
migraine and tinnitus. A cross-sectional study of 5,729 participants 
found a positive correlation between migraine and tinnitus in young 
adults (22). Another survey, utilizing the 1999 to 2004 NHANES data, 
showed that among patients with tinnitus, those with migraine tended 
to be younger than those without migraine (21). Moreover, a genome-
wide association study (GWAS) of the Han Chinese population 
revealed that rs146094041 in ESRRG and rs7124169 in chromosome 
11 were more susceptible to early-onset migraine (41). The ESRRG 

FIGURE 2

Results of the network analysis. Estimated symptoms network for total sample (A), cluster one (B), cluster two (C).

FIGURE 3

Pairwise edge differences in two networks represented with Posterior mean and 95% credential interval.
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expression is highly upregulated in cochlear hair cells and linked to a 
candidate gene for senile hearing impairment (42). Interestingly, a 
study investigating carotid intima-media thickness (cIMT) in children 
and adolescents of migraineurs compared to healthy controls found 
significantly thicker cIMT, despite similar biochemical profiles and 
glucose homeostasis, indicating a possible primitive vascular function 
abnormality in pediatric migraineurs (43). Another study, examining 
820 males and 528 females, revealed significant associations between 
tinnitus and increased intima-media thickness after adjusting for 
confounding factors such as sex and age (44).

Regarding the early onset of migraines and vestibular symptoms, 
we conducted a search for evidence of vestibular migraines among 
children and adolescents. A recent study examined age-related 
characteristics in the onset of vestibular migraines and discovered that 
external spontaneous vertigo and visually-induced vertigo are 
distinguishing clinical features of juvenile forms (45). Another study 
investigating vestibular migraine in children revealed high rates of 
abnormalities in vestibular test, suggesting the involvement of the 
lateral semicircular canal, the utricle, and the superior vestibular 
conduction pathway in vestibular migraine of childhood (46), 
indicating peripheral vestibular dysfunction may contribute to the 
manifestation of vestibular symptoms.

A recent study has analyzed the auditory symptoms of patients 
with vestibular migraine and their connection to vestibular symptoms. 
The patients were divided into two groups based on the presence or 
absence of hearing loss. The study found that tinnitus is more common 
in patients with vestibular migraine and hearing loss. Additionally, the 
group with vestibular migraine and hearing loss had a younger age of 
onset compared to the other group (47).

In patients with migraine, it is theorized that the trigeminal nerve 
axons are abnormally activated, leading to the release of 
neurotransmitters including calcitonin gene-related peptide (CGRP) 
and substance P (SP), neurokinin A, and nitrous oxide. These then cause 
vasodilation, mast cell degranulation, and neurogenic inflammation in 
the inner ear, resulting in the subsequent impact on inner ear function 
(48, 49), which ultimately leads to the development of vestibular-
cochlear symptoms. In animal studies, it has been observed that CGRP 
is associated with the maturity (50) and function (51) of the inner ear 
in mouse models. In human studies, it was found that the plasma level 
of CGRP is higher in young patients with migraines compared to those 
with other types of headaches and controls (52).

Based on the previous research and the results of this study, 
we believe that there is a certain degree of association between tinnitus 
and dizziness in patients with early-onset migraine. The exact reason 
for this association is not yet clear and may be related to genetics, 
blood vessels, inner ear function, and neural inflammatory factors. 
However, the evidence regarding the treatment of tinnitus in patients 
with migraines is still insufficient. One study suggest that migraine 
prophylaxis therapy with Flunarizine may be effective (53). Since anti-
CGRP treatment appears to be effective in vestibular migraine (54), 
we recommend that its efficacy be further explored for early onset 
migraine patients with tinnitus.

4.3. Tinnitus and hearing loss in late onset 
of migraine

In the current investigation, while we  were successful in 
identifying a subset of individuals with early onset migraine and a 

comparatively shorter disease duration, we encountered challenges in 
interpreting the findings of the other group. This group was also 
characterized by a higher frequency of migraine attacks and a greater 
proportion of medication overuse. Our limited sample size prevented 
us from conducting further subgroup analysis. The observed positive 
correlation between tinnitus and hearing loss in this group may 
be attributed to multiple factors.

Migraine patients have a higher incidence of tinnitus and 
subjective hearing loss (21), with sensorineural hearing loss occurring 
between the ages of 40 to 50 years (55). In a meta-analysis comprising 
six studies, the pooled hazard ratio of migraine with the risk of 
sensorineural hearing loss was slightly higher in people over 40 years 
of age (56).

The onset of migraine later in life has been associated with an 
elevated risk of stroke (57), while another study found that hearing 
loss patients are also more likely to experience stroke (58). While the 
link between late-onset migraine, hearing loss, and stroke remains 
unconfirmed, it is commonly believed to be related to vascular issues. 
Additionally, the growing connection between tinnitus and hearing 
loss may also be related to an increased risk of vascular problems, as 
both conditions can be influenced by vascular factors (59). Given the 
possible connection between these conditions, it is important for 
healthcare professionals to remain vigilant for signs of vascular 
conditions in patients with late-onset migraines and auditory 
symptoms. Further research is necessary to establish a definitive link, 
but in the meantime, increased awareness may lead to earlier detection 
and treatment.

4.4. Limitations

As far as we know, this study represents the first instance in which 
machine learning and network analysis have been utilized to 
investigate the interconnections among non-headache symptoms of 
migraine. However, this study is subject to certain limitations. Firstly, 
it is important to note that the data for this study were obtained 
through a convenient sampling method of consecutive patients. As 
such, we acknowledge that the generalizability of our findings may 
be limited to the population from whom we sampled. We suggest that 
further research should adopt more rigorous sampling techniques to 
obtain representative data and test whether our outcomes are 
transferrable to populations and settings beyond those of this study. 
Secondly, despite our effort to comprehensively assess non-headache 
symptoms experienced during migraine attacks and all related factors, 
we  acknowledge that that we  did not include all non-headache 
symptoms commonly seen in migraine patients, such as allodynia and 
kinesiophobia, nor did we evaluate other related factors. The lack of a 
unified scale to evaluate all the symptoms introduced certain 
limitations to our study. The use of specific scales such as the Allodynia 
Symptom Checklist (ASC) to evaluate allodynia would have been 
beneficial to improve the accuracy of our study. However, other 
symptoms such as phonophobia and photophobia are still assessed 
through consultation rather than standardized scales. Therefore, the 
non-exhaustive measurement of non-headache symptoms should 
be  considered as a limitation of our study. Future research could 
benefit from the use of standardized scales to assess a broader range 
of non-headache symptoms in migraine patients. Thirdly, although 
we identified an overall structural difference across the two groups, 
the pairwise differences were only confirmed under relaxed 
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conditions, likely due to the relatively small sample size. Lastly, 
we only analyzed non-headache symptoms during the ictal phase, 
which may not fully demonstrate the overall patterns of non-headache 
symptoms across the entire migraine attack. Further studies, with 
larger samples and the inclusion of interictal symptoms, are necessary 
to gain a more detailed understanding of symptom patterns.

Conclusion

We have found two distinct non-headache symptoms structure of 
group with early onset age of migraine and the other utilizing cluster 
and network analysis. Our findings suggest that the vestibular-
cochlear symptoms may differ in the context of different onset ages of 
migraine patients, hoping to gain a better understanding of the 
pathology of vestibular-cochlear symptoms in migraine.
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