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Nerve trunk healing and neuroma 
formation after nerve transection 
injury
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The nerve trunk healing process of a transected peripheral nerve trunk is 
composed of angiogenesis, nerve fiber regeneration, and scarring. Nerve trunk 
healing and neuroma formation probably share identical molecular mediators 
and similar regulations. At the nerve transection site, angiogenesis is sufficient 
and necessary for nerve fiber regeneration. Angiogenesis and nerve fiber 
regeneration reveal a positive correlation in the early time. Scarring and nerve 
fiber regeneration show a negative correlation in the late phase. We hypothesize 
that anti-angiogenesis suppresses neuromas. Subsequently, we  provide 
potential protocols to test our hypothesis. Finally, we recommend employing 
anti-angiogenic small-molecule protein kinase inhibitors to investigate nerve 
transection injuries.

KEYWORDS

peripheral nerve injury, angiogenesis, nerve fiber regeneration, scarring, traumatic 
neuroma, protein kinase inhibitor

1. Introduction

Nowadays, advances in experimental investigations have not significantly influenced 
their clinical applications in the research field of peripheral nerve injury (1–4). The nerve 
fiber regeneration does not always parallel the neural function recovery when the nerve 
trunk is completely transected. Each transected peripheral axon in laboratory animals 
regenerates robustly, but none of the severed human nerves restore their functions 
completely. Nerve transection injuries represent the most challenging and common 
situation (5). Nerve crush injuries occupy only a tiny proportion (6). Therefore, basic or 
applied investigations using nerve transection models may be more meaningful than nerve 
crush models.

In this review, we will propose the concept of nerve trunk healing, a neurobiological process 
following nerve transection injury. Subsequently, we will raise several questions and try to 
answer them. What is the relationship between nerve trunk healing and neuroma formation? 
What are the relationships among angiogenesis, nerve fiber regeneration, and scarring at the 
nerve transection sites? Inspired by the anti-angiogenic strategy in tumor therapy, we will 
hypothesize that anti-angiogenesis can suppress neuromas. Subsequently, we  will provide 
protocols to verify our hypothesis. We  will end this review by highlighting the potential 
repurposing of the commercially-approved anti-angiogenic small-molecule protein kinase 
inhibitors in the field of peripheral nerve injury.
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2. The nerve trunk and the 
surrounding tissue bed

As a finely-organized three-dimensional structure, the peripheral 
nerve trunk consists of not only nerve fibers but also connective tissues 
and blood vessels (Figure  1) (7). An intact nerve trunk lies on the 
“surrounding tissue bed” (8, 9). It may comprise muscles, tendons, fasciae, 
blood vessels, or fats. Nerve trunks are not fixed but shift in the 
surrounding tissue bed (10). Connective tissue components of the 
peripheral nerve trunk are arranged into the endoneurium, perineurium, 
and epineurium (Figure 1) (11, 12). Like skin to the body, the epineurium 
is the edge of a nerve trunk (11). Outside the epineurium is the 
paraneurium (or mesoneurium), where the nerve trunk glide (8, 11, 13). 
A peripheral nerve trunk owns two microvascular systems: the 
extraneural “extrinsic system” and the intraneural “intrinsic system” 
(Figure 1) (14). The former spreads in the paraneurium (14); the latter 
spreads throughout the three connective tissue layers (15).

Taken together, a nerve trunk seems like an organ, rather than a 
single tissue, which slides in the surrounding tissue bed and transmits 
electrical impulses: (i) its parenchyma comprises both myelinated and 
unmyelinated nerve fibers (peripheral axons and Schwann cell 
sheath); (ii) its stroma consists of epineurium, perineurium, and 
endoneurium as well as blood vessels; and (iii) Schwann cell basal 
laminae separate the parenchyma from the stroma.

3. Changes of nerve trunks after 
transection injury

3.1. Interstump gaps in which “new 
structures” form

The nerve trunk divides into the proximal and distal stumps following 
a complete transection injury. Because of the elasticity within the nerve 
trunk, both stumps retract (Figure 2) (16). Subsequently, the so-called 
“interstump gap” named by Göran Lundborg inevitably forms between 
the ends of two stumps (5). Hence, we  consider that there are four 
compartments at the nerve transection site: (i) the interstump gap, (ii) the 
end of the proximal stump, (iii) the end of the distal stump, and (iv) the 
surrounding tissue bed (Figure 3).

These interstump gaps are biological battlefields where axons and 
multiple cell types interact, such as Schwann cells, macrophages, 
endothelial cells, and fibroblasts (5). These cells originate mainly from 
the proximal and distal stumps (17–25). In animal models, under an 
appropriate length of the interstump gap, these cells can spontaneously 
span the interstump gap and subsequently form a “new structure.” The 
“new structure” is named differently in several animal experiments 
with different study designs, such as “neuromas” (26–29), “suture line 
neuromas” (30, 31), “neuroma scars” (32), and “bridges” (33, 34) (also 
see Section 3.4). Despite various nomenclatures for the “new 
structure,” the common result is the uniting of two nerve stumps.

3.2. The nerve trunk healing process at 
nerve transection sites

Inspired by the article “Healing of Nerves” by Dr. Hanno Millesi and 
the classic pathological theory of skin wound healing as well as the 

monograph “The Healing of Nerves” by Sir Charles Ballance and Sir 
James Purves-Stewart, we  recommend that the phrase “nerve trunk 
healing” might be used to represent the reconstitution of the interstump 
gap by the “new structure,” which reconnects the two separated nerve 
stumps (35, 36). Teleologically, we speculate that three basic requirements 
must be met for a transected nerve trunk to heal its architecture as similar 
as possible to its original state: (i) the “new structure” must contain blood 
vessels supplying oxygen and nutrients, which is accomplished by 
angiogenesis; (ii) the “new structure” must involve nerve fibers 
transmitting electrical stimulus, which is accomplished by nerve fiber 
regeneration; (iii) the “new structure” must restore the connective tissue 
layers maintaining the tensile strength and the gliding mobility, which is 
accomplished by scarring. Accordingly, we infer that angiogenesis, nerve 
fiber regeneration, and scarring must occur at the nerve transection site 
(see Sections 4–6) (Figure 4).

The concept of nerve trunk healing interprets the pathological and 
physiological processes occurring in the interstump gap after nerve 
transection injury at the organ level. We separate the nerve trunk 
healing process, at the tissue level, into three concurrent responses, 
namely, angiogenesis, nerve fiber regeneration, and scarring. This 
thinking pattern may provide new insight for understanding what is 
happening at the nerve transection sites.

In pathology, the concept of “healing” and “repair” are used 
interchangeably (37). In this sense, the phrase “nerve trunk healing” 
and “nerve trunk repair” may be  used synonymously. However, 
considering the potential miscomprehension with the phrase “surgical 
repair,” we recommend the phrase “nerve trunk healing.”

3.3. A conceptual concern about 
“regeneration”

A question probably will emerge about whether the phrase “nerve 
trunk regeneration” is more appropriate than the phrase “nerve trunk 
healing” at the nerve transection site. We have found an inapparent 
controversy about the term “regeneration,” which has been used 
widely in references concerning peripheral nerve injury.

Based on the general pathological theory, regeneration is 
accomplished by the proliferation of residual undamaged cells, and 
the outcome of regeneration is restoring the “original” or “normal” 
architecture of damaged parts (38). To our knowledge, “new 
structures” forming in interstump gaps (see Section 3.1) have not been 
anatomically identical to the original nerve trunks. In this sense, at the 
nerve transection site, nerve trunks do not pathologically regenerate 
either at the organ level or at the tissue level.

Outside the field of medicine, “regeneration” is an ambiguous term 
with multiple meanings in both regenerative biology and social science 
(39, 40). Properly speaking, nowadays, the field of “peripheral nerve 
regeneration” has been innovatively studied by neurobiologists and tissue 
engineers (3, 41). The exact meaning of the phrase “peripheral nerve 
regeneration,” in most situations, is “regeneration of nerve fibers within 
peripheral nerves,” “nerve fiber regeneration” or “axonal regeneration and 
remyelination,” rather than “nerve trunk regeneration.”

In pathology, the concept of “repair (or healing)” consists of 
“regeneration” and “scarring” (see Section 5.1). If the phrase “nerve 
trunk regeneration” had to be used, it would be applied in the situation 
of nerve crush injury in which the connective tissues and blood vessels 
reserve the continuity.
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3.4. The neuroma formation at nerve 
transection sites

Another change in nerve trunks after traumatic injury is 
neuroma formation. Simply, neuromas are divided into “terminal 
neuromas” and “neuromas-in-continuity” (42). The terminal 
neuroma, which reveals the chaos of regenerating axons, Schwann 

cells, blood vessels, fibroblasts, and connective tissues, inevitably 
grows at the end of the proximal stump when there is no distal 
stump or the interstump gap is too long (Figure 5) (43, 44) “Neuroma 
after nerve repair” is one subtype of neuroma-in-continuity (45, 46). 
Alternative phrases, such as “suture line neuroma” (Figure 5) (30, 
31), “neuroma scar” (32), or simply “neuroma” (28, 29, 47, 48), refer 
to the masses or swellings at the surgical repair sites in animal 
experiments (also see Section 3.1). These investigations indicate that 
even surgically repaired interstump gaps can not avoid the formation 
of suture line neuromas.

3.5. The relationship between nerve trunk 
healing and neuroma formation

Regardless of nomenclature and terminology, in animal 
experiments, the “new structure” we mentioned in Section 3.1 is likely 
identical to the nature of the “neuroma” in Section 3.4. A question may 
arise about how to interpret the intrinsic relationship between nerve 
trunk healing and neuroma formation. The two processes may seem 
unrelated, even opposite, but counterintuitively, they are probably two 
sides of the same coin. The reasons are as follows. First, they are both 
initiated by the nerve transection injury. Second, both the “new 
structure” within the interstump gap and the neuroma consist of 
blood vessels, regenerating axons, and scar tissues. It indicates that 
new blood vessel formation, scar tissue deposition, and nerve fiber 
regeneration must occur at the tissue level. Third, above all, cellular 
responses and molecular mediators underlying the two processes may 
be indistinguishable and indistinctive, because cells and molecules 
that emerge at the nerve transection site (such as hemocytes, 
macrophages, fibroblasts, endothelial cells, Schwann cells, cytokines, 
growth factors, and extracellular matrix molecules) are identical and 
probably under similar regulations.

FIGURE 2

The change of a nerve trunk after transection injury (Created with 
BioRender.com). (A) The normal nerve trunk and extrafascicular 
blood vessels. (B) After nerve transection injury, the nerve trunk 
divides into the proximal and distal stumps. Two stumps retract 
because of the elasticity within the nerve trunk. An interstump gap 
inevitably forms.

FIGURE 1

The peripheral nerve trunk consists of connective tissue layers, blood vessels, and nerve fibers (Created with BioRender.com). (A) Connective tissue 
components of the peripheral nerve trunk are arranged into three intimately connected layers from the outside to the inside: epineurium, perineurium, 
and endoneurium. (B) Extrafascicular and intrafascicular vessels spread throughout the epineurium and endoneurium, respectively. (C) Nerve fibers 
include myelinated axons and unmyelinated axons. (D) The peripheral nerve trunk is embedded in the surrounding tissue bed.
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Collectively, it is rational to consider neuromas as the result of the 
process of nerve trunk healing after nerve traumatic injury. 
Furthermore, the formation of neuromas and the healing of nerve 
trunks are the same neurobiological event. In this sense, terminal 
neuromas are the results of the nerve trunk healing process at the end 
of the proximal stump; and suture line neuromas are consequences of 
this process after neurorrhaphy at the nerve transection sites. 
Therefore, the knowledge or clues from the field of “peripheral nerve 
injury,” “peripheral nerve regeneration,” and “neuroma formation” 
should not be separated.

3.6. Clinical considerations

Clinically, nerve transection injuries generated by daily trauma in 
humans may not be  as uniform as those produced in laboratory 
animals. Surgeons develop various techniques to close interstump 
gaps of different sizes, such as end-to-end neurorrhaphy, nerve 
transferring, and nerve grafting (49). Surgery provides the only 
opportunity for a transected nerve to restore the innervation of the 
target organs in clinical practice (43), but what is noteworthy is that 
the fundamental role of surgical intervention is to juxtapose two ends 
of stumps and shorten the interstump gap mechanically. Even though 
a transected nerve trunk is microsurgically repaired, an interstump 
gap of minimum length remains at the surgical repair site (36, 50). 
Closing the interstump gap histologically is accomplished only by the 
nerve trunk healing process. Comprehending the nerve trunk healing 
process after surgical intervention is a biological issue whose secrets 
are not only needles, threads, conduits, or microscopes (51).

Although most neuromas are asymptomatic, in the practice of 
hand surgery, about one in 15 patients will suffer from a painful 
neuroma after digital amputation (52). In the practice of neurology, 
nerve biopsy is one kind of invasive operation related to terminal 
neuromas (53). Physical therapy, oral medications, steroid injections, 
ablation, and surgical management are applied in the treatment of 
painful neuromas, but there is no single strategy that completely and 
consistently eliminates neuromas, and the best treatment for a 
neuroma is probably to prevent its formation (45). According to the 
discussion in Section 3.5, understanding the nature of the nerve trunk 
healing process may contribute to exploring new strategies for the 
prevention or treatment of neuromas, especially terminal neuromas.

4. Behaviors of nerve fibers after 
transection injuries

From the proximal stump, nerve fibers regenerate. The average 
number of axonal sprouts from their parent axon is five (3). Moreover, 
every axonal sprout owns one growth cone at its end (45). Each 
“regeneration unit” originates from a single myelinated axon (30, 54). The 
original large fascicles in the proximal stump disappear and are replaced 
by “minifascicles” (55). This process is named “compartmentation” (55). 
It is logical that before an axonal sprout reinnervates into the target organ, 
it must cross the interstump gap and subsequently enter the distal stump. 
Regenerating units and minifascicles are observed not only in the 
proximal stump but also in the interstump gap and the distal stump (30, 
31, 56). Remarkably, in the distal stump, the total number of regenerated 
nerve fibers increases compared with it before the nerve transection 
injury (30). This is consistent with numerous axonal sprouts growing 
from the proximal stump. This observation indicates that nerve fibers 
own a robust ability to cross the interstump gap.

Within the distal stump, nerve fibers degenerate (Wallerian 
degeneration), but connective tissues survive (57–60). In the 
extrafascicular area of the distal stump, there are numerous 
regenerating units, which reveal loss of axonal sprouts (30, 31); in the 
intrafascicular area, axons fail to regrow through their original 
pathway (61). Therefore, the functional recovery of nerve transection 
injury is never complete (62).

5. Responses of connective tissues at 
nerve transection sites

5.1. The nerve trunk healing process must 
contain scarring

On the general pathological principle, the tissue-repair process 
involves two biological reactions: regeneration by the proliferation of 
cells and scarring (scar formation, fibrosis) by depositing collagen 
fibers from fibroblasts (38). This theory is best compatible with the 
skin wound healing process by the second intention, in which the 
epidermis, the basement membrane, and the dermis are all destroyed 
following a significant tissue defect (63). After the transection injury 
of a peripheral nerve trunk, the normal wound healing cascade 

FIGURE 3

A schematic illustration of a transected nerve trunk and its surrounding tissue bed (Created with BioRender.com). The nerve transection site has four 
individual compartments: the end of the proximal stump, the interstump gap, the end of the distal stump, and the surrounding tissue bed.
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initiates around the surrounding tissue bed (64). In the interstump gap 
where Schwann cell basal laminae and connective tissue layers lose 
their continuity, the nerve trunk healing process may not differ from 
lacerated skin but is probably more complicated. Thus, we suggest that 
the reconstitution of the interstump gap on the nerve trunk must 
include scarring. In other words, appropriate scarring may be favorable 
for the normal nerve trunk healing process, but excessive scarring 
probably contributes to adverse nerve trunk adhesion.

5.2. The hypothesis that the scar impedes 
peripheral axon regeneration

In the central nervous system, the so-called “glial scar” forms at the site 
of tissue damage, which is the main barrier for central axons to regenerate 
(59, 65). The glial scar is mainly composed of reactive astrocytes and 
proteoglycans (65). Properly speaking, the glial scar is not the so-called 

“scar tissue” that consists of fibroblasts and collagens. The concept that 
central axons can not cross glial scars is widely accepted (60, 65).

Nevertheless, in the peripheral nervous system, it is controversial 
whether scarring at the surgical repair site is a major contributing 
factor for incomplete neural function recovery. Based on Milles’s 
works, Lundborg stated that scarring at the distal repair site of a nerve 
graft might prohibit axonal sprouts, but this situation is very 
uncommon if the tension of the repair site is avoided (5). Similarly, 
scarring at the surgical repair site is not included in the eight factors 
influencing neural function recovery after surgical manipulation (43). 
In contrast, several investigations support the hypothesis that the 
scarring at the surgical repair site forms a mechanical barrier that 
impedes axonal regeneration and subsequently impairs neural 
function recovery (28, 29, 64, 66–69). Meanwhile, this barrier 
presumably contributes to a “neuroma scar” consisting of misdirected 
axonal sprouts (32). Moreover, this barrier probably functions as an 
origin of the ectopic neural discharge of injury-induced pain (70, 71).

FIGURE 4

The nerve trunk healing process at the nerve transection site (Created with BioRender.com). (A,B) Angiogenesis occurs in the proximal stump, distal 
stump, interstump gap, and surrounding tissue bed. (C,D) Nerve fibers own a robust ability to regenerate from the proximal stump. Some nerve fibers 
cross the interstump gap and subsequently enter the distal stump where Wallerian degeneration occurs, but others enter the surrounding tissue bed. 
(E,F) Scarring by depositing collagen fibers occurs to reconstitute the interstump gap. DS, distal stump; PS, proximal stump.
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5.3. Negative correlation between scarring 
and axonal regeneration

One strategy for improving the outcome of the nerve trunk healing 
process after transection injury is permitting more nerve fibers to regrow 
into the distal stump by preventing scar formation at the surgical repair 
site using pharmacological agents or anti-adhesion equipment (72–74). 
The underlying logic of this strategy is the hypothesis that scarring might 
impede axonal regeneration at the nerve transection site (see Section 5.2). 
Atkins and colleagues first reported a negative correlation between the 
level of scarring and two indicators of neural function recovery (the axon 
counting number and the electrophysiological parameter) at the surgical 
repair site following nerve transection injury in 6 weeks (68). They 
seminally used two types of transgenic mice: a more-scarring model and 
a less-scarring model.

In this section, we pay close attention to locally-administrated 
agents that reveal pharmacological effects of scar inhibition and 
axonal regeneration stimulation at the surgical repair site in nerve 
transection models (Table  1) (29, 75–77). Additionally, the 
intragastrical administration of FK506 (4 mg/kg per day for 2, 4, and 
6 weeks) contributes to improved nerve fiber regeneration, accelerated 
neural function recovery, and decreased scarring in the same rat 
model (78). These studies strongly indicate that a negative correlation 
exists between scarring and axonal regeneration as well as between 
scarring and neural function restoration in the late phase (Figure 6) 
(29, 75–78). However, it is probably reluctant to demonstrate a cause-
and-effect relationship between scarring and nerve fiber regeneration.

6. Reactions of blood vessels after 
nerve transection injuries

6.1. Clot formation and inflammatory 
reaction after nerve transection injuries

Experimental studies in vivo and clinical experiences have 
revealed that an open wound of living vascularized organisms must 

bleed. Complete transected nerve trunks are no exceptions and must 
result in vascular injury at the injury site. For transected nerves, the 
highest priority is to stop bleeding by hemostasis. The clot physically 
plugs the interstump gap and the surrounding tissue bed to minimize 
blood loss. If the tension of nerve stumps is completely avoided, the 
fibrin clot may be sufficient to maintain the coaptation between nerve 
stumps (36).

Cell and tissue damage by traumatic injuries inevitably occur at 
the transected nerves. Since inflammation is a response of vascularized 
tissues and organs bringing leukocytes and molecules to the sites of 
injury to eliminate the hostile agent (38), the transected nerve trunk 
must undergo the inflammatory response. In the standard nerve 
transection model and under the sterile condition, the injury site may 
experience acute inflammation, which induces vascular reactions 
(vasodilation and angiogenesis) as well as sets motion to the nerve 
trunk healing process and finally resolves.

6.2. Angiogenesis at nerve injury sites

Angiogenesis is under special attention by pathologists, oncologists, 
and plastic surgeons. In the mindset of pathologists, angiogenesis (or 
neovascularization) is one step of the tissue-repair process, which is set in 
motion by inflammation (38). In the thinking pattern of oncologists who 
support the balance hypothesis for angiogenesis (see Section 7.1), the 
metastasis of tumor cells and the metastasis growth to a clinically 
detectable size depend on angiogenesis (79). In the conventional thinking 
of plastic surgeons, vascularization of the tissue-engineered products or 
the tissue grafts by angiogenesis, vasculogenesis, and inosculation is one 
major issue (80–82). To our knowledge, not many investigations 
concerning angiogenesis at nerve injury sites exist. Rare are studies of 
angiogenesis at the transected nerve suture lines. Angiogenesis is directly 
observed in the proximal stump, distal stump, interstump gap, and 
surrounding tissue bed (Figure 4) (9, 19, 21, 25, 83–86). Here, we propose 
that mechanisms of angiogenesis at the nerve injury site may not 
be different from those during the inflammatory response, tumorigenesis, 
and tissue grafting.

FIGURE 5

The formation of terminal neuroma and suture line neuroma (Created with BioRender.com). A terminal neuroma revealing the chaos of regenerating 
nerve fibers, blood vessels, and collagen fibers grows at the end of the proximal stump when there is no distal stump. Similarly, a suture line neuroma 
forms at the nerve transection site even after the interstump gap is surgically repaired.
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6.2.1. Angiogenesis in the Interstump gap of 
nerve transection sites

The limitation of oxygen diffusion through normal tissues is 
100–200 μm (87). Generally, cells beyond 150 μm from blood 
vessels fail to survive (88, 89). The 200 μm may be the minimum 
length of the interstump gap, which spontaneously forms within 

rodent nerves following transection injury (26, 27). This 
information suggests that the interstump gap must be  in 
decreased oxygen levels (or hypoxia) because there are no blood 
vessels in the interstump gap at the initial time. Cattin and 
colleagues proved that the interstump gap of transected rat sciatic 
nerve is under a hypoxic microenvironment in the initial 2 days, 
containing few blood vessels (25). In 3 days, the interstump gap 
of the rat sciatic nerve significantly vascularizes by a dramatic 
influx of blood vessels, indicating angiogenesis occurs; in mice, 
this process takes 5 days (25).

6.2.2. Angiogenesis of the interstump gap in the 
nerve regeneration chamber

Podhajsky and Myers investigated the angiogenesis in a 10-mm gap 
within the silicone chamber of the rat sciatic nerve transection injury 
(86). Although the vascular growth occurs from both the proximal and 
distal stumps, the traveling wave of angiogenesis in the chamber appears 
in the proximal-distal direction (86). This direction is consistent with the 
nerve graft revascularization reported in other research (90, 91).

6.2.3. Angiogenesis within the proximal and distal 
stumps

In the proximal stump of the transected nerve trunk, 
angiogenesis is observed at least 7 days after nerve injury (19). 
Similarly, in the distal stump of the transected nerve trunk, 
prominent angiogenesis is observed 14 days after nerve injury (21). 
In both stumps, angiogenesis is most apparent in the epineurium 
and perineurium (19, 21).

Podhajsky and Myers studied the vascular response (the spatial 
and temporal change of the total endothelial surface area within the 
intrafascicular area) at the rat sciatic nerve crush injury site and its 
distal stump (10-mm length) from 1 week to 9 weeks (92). In the early 
phase, peaked in the first week, the vessel size increases but not the 
vessel number, which may indicate vasodilation; in the second phase, 

TABLE 1 Locally-administrated agents revealing pharmacological effects of scar inhibition and axonal regeneration stimulation at surgical repair sites 
in sciatic nerve transection models of animals.

Agent Explanation Dosage Animal Observation 
time

Pharmacological effects

IL-10 (29) Anti-inflammatory cytokine 125 ng in 100 μl C57-Black-6 mouse 6 weeks
To decrease scarring

To improve electrophysiological restoration

M6P (75) TGFβ inhibitor 600 mM × 100 μl C57-Black-6 mouse
6 weeks

12 weeks

To reduce scarring

To enhance electrophysiological recovery

To enhance behavior recovery

FK506 (76) Immunosuppressive drug 10 ng/mL × 15 μl European rabbit 12 weeks
To prevent scarring

To enhance nerve fiber regeneration

HA (76)

Mucopolysaccharide (a 

natural component of the 

extracellular matrix)

4 mg in 0.5 ml European rabbit 12 weeks

To prevent scarring

To enhance nerve fiber regeneration

HA-CMC (77)

Solution of 

mucopolysaccharide and 

biocompatible polysaccharide

1 ml
Sprague–Dawley 

rat
12 weeks

To reduce scarring and adhesion

To enhance the organization of regrowing axons

TGFβ, transforming growth factor beta; IL-10, interleukin-10; M6P, mannose-6-phosphate; FK506, tacrolimus; HA, hyaluronic acid; CMC, carboxymethylcellulose.

FIGURE 6

Relationships among angiogenesis, nerve fiber regeneration, and 
scarring at peripheral nerve transection sites at the tissue level 
(Created with BioRender.com). Angiogenesis at the nerve 
transection site is sufficient and necessary for nerve fiber 
regeneration in the early time. Angiogenesis and nerve fiber 
regeneration show a positive correlation in the early time. Scarring 
and nerve fiber regeneration reveal a negative correlation in the late 
time. The relationship between angiogenesis and scarring during 
nerve trunk healing is still unknown.
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peaked in the sixth week, the vessel number and density increase, 
which may indicate angiogenesis (92).

6.3. Angiogenesis is sufficient and 
necessary for nerve fiber regeneration

Previously, Caillaud and colleagues reviewed Wallerian 
degeneration, axonal regeneration, and revascularization in the distal 
stump after nerve traumatic injury (93). In this section, we mainly 
focus on the relationship between angiogenesis and nerve fiber 
regeneration in the interstump gap of the nerve transection site.

Hobson and colleagues provided direct evidence for the structural 
relationship between angiogenesis and nerve fiber regeneration within 
the 10-mm interstump gap of rat sciatic nerve fibronectin conduit as 
early as the 10th day (85). Stimulated angiogenesis by local 
administration of exogenous recombinant human vascular endothelial 
growth factor (rhVEGF) accompanies the enhancement of nerve fiber 
regeneration within the 10-mm interstump gap of rat sciatic nerve 
silicon conduit on the 10th day (94). These lines of evidence likely 
suggest a positive correlation between angiogenesis and nerve fiber 
regeneration in the interstump gap in the early time (Figure 6).

Schwann cells, accompanied by growing axons, migrate into 
the aberrant angiogenesis areas around rhVEGF-loaded heparin 
beads in distal stumps, gaps, and proximal stumps of rat sciatic 
nerve transection model without surgical anastomosis on the 6th 
day (25). Inhibited angiogenesis by local administration of 
exogenous VEGFA antibody is parallel with impairment of nerve 
fiber regeneration within the interstump gap of mouse inferior 
alveolar nerve transection model without surgical anastomosis 
on the 7th day (95). Inhibition of angiogenesis by oral 
administration of cabozantinib (inhibitor of VEGF receptor 2) 
blocks the entry of Schwann cells and axons into the interstump 
gap in sciatic nerve transection model of PLP-EGFP transgenic 
mice (mice of which Schwann cells  specifically express the 
enhanced green fluorescent protein (EGFP)) on the 5th day (25). 
These phenomena indicate the angiogenesis induced by VEGF-
VEGFR signaling (see Section 7.2) is sufficient and necessary for 
nerve fiber regeneration at the nerve transection site in the early 
time (Figure 6). Furthermore, angiogenesis is likely one of the 
causes of nerve fiber regeneration at the nerve transection site.

After 6 months, the transverse structure of the distal stump of 
Vegfafl/fl Tie2-Cre mice (mice lacking Vegfa in hematopoietic cells and 
endothelial cells, and its anti-angiogenic effect is dependent on cells 
derived from hematopoietic stem cells) is not visibly different from the 
Vegfafl/fl control mice, except that the whole distal stump of the former 
is visibly smaller than the latter (25). This evidence indicates that a 
normal angiogenic process by VEGF-VEGFR signaling (see Section 
7.2) in the interstump gap is necessary for effective nerve fiber 
regeneration in the distal stump in the late phase.

6.4. Inferring the relationship between 
angiogenesis and scarring

Both angiogenesis and scarring are indispensable for mammalian 
survival (96, 97). In Section 5.3, we  infer a negative correlation 
between scarring and nerve fiber regeneration at the nerve transection 

site in a late state (at least 6 weeks). In Section 6.3, we infer a positive 
correlation between angiogenesis and nerve fiber regeneration at the 
nerve transection site in an early phase (about 1 week). Further, the 
question arises about how angiogenesis and scarring interact at the 
nerve transection site if this crosstalk exists. To our knowledge, 
we have not found any literature to address this question (Figure 6). 
Spatially, angiogenesis and scarring occur at the same nerve 
transection site. Temporally, angiogenesis accomplishes as early as 
48  hours at the nerve transection site (9); scarring initiates with 
traumatic injury and proceeds for an extended period (weeks to 
months) (38, 98, 99). Hence, considering a simple linear correlation 
between angiogenesis and scarring at nerve transection sites is 
probably unreasonable.

If angiogenesis does not occur at the nerve transection site, there 
is likely no granulation tissue or mature scar in the interstump gap and 
surrounding tissue bed. Subsequently, the nerve trunk healing process 
may fail. Hence, we speculate that angiogenesis may be necessary for 
scarring in nerve transection injury.

7. The knowledge about angiogenesis 
from tumor therapy

7.1. The balance hypothesis for 
angiogenesis

Dr. Judah Folkman first hypothesized that anti-angiogenesis 
might be  a potential therapeutic strategy for curing human 
cancers 52 years ago (100, 101). According to the balance 
hypothesis for the angiogenic switch, the relative balance of 
activators and inhibitors can keep the switch of angiogenesis on 
or off (102). Although angiogenesis does not cause carcinomas or 
sarcomas, it facilitates tumor progression and metastasis (97). 
Hence, the underlying logic of the anti-angiogenic therapy for 
solid tumor treatments is that angiogenesis is necessary for 
metastatic tumor cells to escape from a primary tumor as well as 
for a metastatic tumor to grow into a clinically inspected 
volume (79).

7.2. VEGF-VEGFR signaling

The mammalian vascular endothelial growth factor and its 
receptor (VEGF/VEGFR) family members consist of five dimeric 
VEGFs (VEGFA, VEGFB, VEGFC, VEGFD, and placenta growth 
factor (PLGF)), three monomeric receptors (VEGFR1, VEGFR2, 
and VEGFR3), and co-receptors [neuropilin family (NRP1 and 
NRP2) and heparan sulfate proteoglycans (HSPGs)] (103). In 
common situations, VEGF refers to VEGFA (100, 104). VEGFs are 
extensively expressed not only in the vasculature but also in the 
central nervous system, kidney, lung, and liver (105, 106). In 
adults, VEGFR1 (also FLT1) and VEGFR2 (also FLK1/KDR) are 
found mainly in blood vascular endothelial cells while VEGFR3 
(also FLT4) is predominantly expressed in lymphatic endothelial 
cells where it regulates lymphangiogenesis (87, 107). VEGFR1 is 
also localized in monocytes, macrophages, vascular smooth 
muscle cells, neuronal cells, and tumor cells; VEGFR3 is also 
found in neuronal progenitors, macrophages, and osteoblasts 
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(103, 108, 109). VEGFR2 is the chief mediator for the roles of 
VEGFA in both slow responses through gene regulation (such as 
endothelial cell survival, migration, and proliferation) and quick 
responses (such as vessel permeabilization) (Figure 7) (100, 108–
110). The VEGFA-VEGFR2 signaling pathway is implicated in 
every aspect of physiological and pathological angiogenesis (109). 
When a dimeric VEGFA molecule combines with two monomeric 
VEGFR2 molecules on the endothelial cell membrane, these 
VEGFR2 molecules dimerize and auto-phosphorylate, 
subsequently, initiating numerous downstream signaling cascades 
(Figure 7) (109). Hence, strategies to block the VEGF-VEGFR 
signaling pathway for tumor therapy have been investigated 
(104, 111).

7.3. PDGF-PDGFR signaling

The mammalian platelet-derived growth factor and its receptor 
(PDGF/PDGFR) family members are composed of five dimeric 
PDGFs (PDGF-AA, PDGF-BB, PDGF-CC, PDGF-DD, and 
PDGF-AB) and two monomeric receptors (PDGFRα and PDGFRβ) 
(112, 113). Following the combination of a dimeric PDGF molecule 
and two monomeric PDGFR molecules, these PDGFR molecules 
dimerize and auto-phosphorylate (Figure  7) (114). PDGFs are 
expressed by different cell types including endothelial cells, 
vascular smooth muscle cells, Schwann cells, fibroblasts, 
macrophages, and so on (114). During mammalian development, 
in vivo, PDGF-AA and PDGF-CC interact with PDGFRα 
homodimers while PDGF-BB interacts with PDGFRβ homodimers 
(112). In the developing vasculature, PDGF-B is synthesized by 
endothelial cells and PDGFRβ is expressed in mural cells (pericytes 
and vascular smooth muscle cells) (115). During angiogenesis, 
PDGFRβ regulates the recruitment of pericytes and the (PDGF-
BB)-PDGFRβ signaling pathway is essential for vascular 
maturation (Figure 7) (116).

7.4. Anti-angiogenic small-molecule 
protein kinase inhibitors to multiple targets

The prerequisite for VEGFs and PDGFs to reveal their 
biological effects is that the target cells express VEGFRs and 
PDGFRs on their plasma membranes (Figure 7). The nature of 
VEGFRs and PDGFRs are protein kinases (PKs) (117). Nowadays, 
the United States Food and Drug Administration (U.S. FDA) has 
approved 73 small-molecule protein kinase inhibitors (PKIs), 
summarized by Roskoski (118, 119). These small molecules have 
been selected from a large number of chemical compounds 
during time-spending laboratory investigations and clinical trials 
(120). Since the concurrent blockage of the VEGF-VEGFR and 
PDGF-PDGFR signaling pathways is an attractive anti-angiogenic 
strategy, we searched for anti-angiogenic small molecules that 
simultaneously inhibit VEGFRs and PDGFRs among these 73 
drugs and subsequently selected nine candidates, namely, 
sorafenib, sunitinib, pazopanib, axitinib, ponatinib, regorafenib, 
nintedanib, lenvatinib, and tivozanib (Figure 7 and Table 2) (110, 
118, 119, 121–138). Additionally, it is notable that these nine 
anti-angiogenic small molecules are multi-target drugs.

8. A new hypothesis and ways to test

8.1. The hypothesis that anti-angiogenesis 
suppresses neuromas

According to the discussion in Sections 4–6, the essential 
prerequisite for nerve trunk healing is angiogenesis at the nerve 
transection site. If the angiogenesis is inhibited, nerve fiber 
regeneration and scarring may be unaccomplished. Subsequently, the 
nerve trunk healing process may frustrate. Inversely, if the 
angiogenesis is stimulated, nerve fiber regeneration and scarring, at 
least, may not be impaired. If inhibition of angiogenesis at the nerve 
transection site contributes to the impairment of nerve trunk healing, 
based on Section 3, the anti-angiogenic strategy may be beneficial for 
the prevention or treatment of neuromas, particularly 
terminal neuromas.

The capacity for transected nerve fibers to regenerate is robust (see 
Section 4). Numerous axonal sprouts rise from the proximal stump, 
cross the interstump gap, and enter the intrafascicular area of the 
distal stump; meanwhile, they also misdirect to the extrafascicular 
area in both the distal and proximal stumps (19, 30, 54, 55). This 
misdirection of nerve fibers to the extrafascicular area leads to the loss 
of new nerve fibers in the intrafascicular area of the distal stumps and 
may contribute to the formation of suture line neuromas at the 
surgical repair sites. The extrafascicular area of a nerve trunk is 
abundant for connective tissue and blood vessels, where angiogenesis 
and scarring mainly occur after nerve transection injury (19, 21, 66). 
Accordingly, the question arises about whether the inhibition of 
extrafascicular angiogenesis contributes to avoiding nerve fiber loss 
and scarring at the nerve transection site as well as preventing suture 
line neuromas.

Here, we hypothesize that anti-angiogenic therapy can suppress 
both terminal neuromas and suture line neuromas. The underlying 
mechanism is that angiogenic inhibition probably contributes to the 
failure of nerve fiber regeneration and scarring.

8.2. Feasible routes to verify our hypothesis

In the future, we suggest employing the anti-angiogenic effect 
of small-molecule PKIs to investigate the aforementioned 
hypothesis. A series of subtly designed in vitro or in vivo 
experiments with any of these nine small molecules may lead to 
potential success in verifying our hypothesis (Table  2). The 
potential advantage of this strategy is that the mechanism of drug 
action of these nine small molecules has been well studied. 
Meanwhile, their safety and effectiveness have already been 
confirmed by strict clinical trials.

8.2.1. Two strongly-suggested anti-angiogenic 
small molecules

For pilot investigations, we highly recommend axitinib and 
tivozanib, because these two anti-angiogenic molecules reveal 
more target specificity toward VEGFRs and PDGFRs than the 
other seven molecules. Axitinib is an inhibitor of VEGFR1, 
VEGFR2, VEGFR3, PDGFRα, and PDGFRβ, approved by the 
U.S. FDA in 2012 for the second-line therapy for advanced renal 
cell carcinoma (RCC) (124–127). Similarly, tivozanib is an 
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inhibitor of VEGFR1, VEGFR2, VEGFR3, and PDGFRβ, approved 
by the U.S. FDA in 2021 for the third-line therapy for advanced 
RCC (132–134). Both axitinib and tivozanib own higher inhibitory 
activity against VEGFRs than PDGFRs (125, 134). One 
characteristic of primary and advanced RCCs is their resistance to 
chemotherapy and radiotherapy (138, 139). It is noteworthy that 
the underlying mechanism of axitinib and tivozanib for treating 

advanced RCC is inhibiting tumor angiogenesis rather than 
directly killing the cancer cell.

8.2.2. Proper selection for animal species and 
nerve models

Animal experiments on peripheral nerves serve to answer 
questions that cannot be  investigated in the human species 

FIGURE 7

The main machinery of the angiogenic signaling pathway and its blocking with anti-angiogenic small-molecule protein kinase inhibitors (Created with 
BioRender.com). When a VEGFA dimer combines with two VEGFR2 monomers on the cell membrane, these VEGFR2 monomers dimerize and auto-
phosphorylate, which initiates downstream signaling cascades leading to cell survival, migration, and proliferation. Similarly, following the combination 
of a PDGF-BB dimer and two PDGFRβ monomers, these PDGFRβ monomers dimerize and auto-phosphorylate. The VEGFA-VEGFR2 pathway is 
implicated in every aspect of angiogenesis. PDGFRβ regulates the recruitment of pericytes and the (PDGF-BB)-PDGFRβ pathway is essential for 
vascular maturation. The simultaneous blocking of the VEGFR and PDGFR with multi-target small-molecule protein kinase inhibitors is an effective 
anti-angiogenic strategy. VEGFA, vascular endothelial growth factor a; PDGF-BB, homodimer of platelet-derived growth factor b chain; VEGFR2, 
vascular endothelial growth factor receptor 2; PDGFRβ, platelet-derived growth factor receptor beta.
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because challenging is to directly study the basic knowledge 
about cellular responses and molecular events from clinical 
practices on human nerves. However, before asking a specific 
question concerning peripheral nerve injury, it is essential to 
consider whether an animal model is suitable to provide a 
reasonable answer (36). The sciatic nerves of rats have been the 
most popular subject for experimental neuromas (140). 
Unfortunately, the ends of proximal stumps of transected rat 
sciatic nerves did not form classic terminal neuromas resembling 
human ones (141). In this sense, higher species may be  more 
appropriate, such as dogs, monkeys, baboons, and chimpanzees 
(46, 142). Hence, for pilot research, the suture line neuroma 
model of rodents may be  more rational than the terminal 
neuroma model (30, 31).

8.2.3. Administration route, dosage, and timing
Previously, our research team demonstrated that the 

subcutaneous injection of an axitinib-dimethyl sulfoxide (DMSO)-
saline solution (10 mg axitinib per 1 kg animal weight) twice per 
day successfully inhibits angiogenesis within the choke zones of the 
rat vascular delay flap model (143). Therefore, for the exploratory 
study, we recommend the topical administration of small-molecule 
PKI-DMSO solution with a single dose (10 mg PKI per 1 kg animal 
weight) at a time on the nerve trunk immediately after nerve 
transection injury.

9. Conclusion

In this review, we put forward the concept of nerve trunk healing 
and roughly divide this process into three biological phenomena: 
angiogenesis, nerve fiber regeneration, and scarring (Figure  4). 
Subsequently, we  infer that nerve trunk healing and neuroma 
formation are two sides of the same coin. Furthermore, we analyze the 

potential relationship between the three processes based on literature 
about nerve transection injuries in animal models. Briefly, 
angiogenesis at the nerve transection site is sufficient and necessary 
for nerve fiber regeneration and may also be necessary for scarring; a 
positive correlation exists between angiogenesis and nerve fiber 
regeneration in the early phase while a negative correlation exists 
between scarring and nerve fiber regeneration in the late phase 
(Figure 6).

Nowadays, no one can deny that the best treatment for a 
neuroma is to prevent its formation (45). Inspired by the molecular 
knowledge from the field of tumor angiogenesis, we hypothesize that 
the anti-angiogenic strategy suppresses neuromas. Innovatively, 
we  recommend employing nine anti-angiogenic small-molecule 
PKIs approved by U.S. FDA to test our hypothesis and provide 
feasible protocols (Figure 7) (Table 2).

Investigating nerve trunk healing as well as neuroma formation 
with anti-angiogenic small-molecule PKIs may open new avenues in 
the field of peripheral nerve injury. First, applying anti-angiogenic 
small-molecule PKIs at the nerve transection sites may facilitate the 
understanding of the relationship between angiogenesis and scarring 
during nerve trunk healing, which is still unknown in the literature. 
Second, if the anti-angiogenic effect of small-molecule PKIs 
contributes to the suppression of neuromas, the topical application of 
these molecules may facilitate the treatment of neuromas as adjuvant 
therapy. Third, if neuromas are successfully suppressed by these 
U.S. FDA-approved molecules in animal models, preclinical studies 
and clinical trials may be designed for the repurposing of these drugs 
for neuroma prevention or treatment.
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year
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VEGFR
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2005 Sorafenib (121) NEXAVAR® Tablet VEGFR1/2/3 PDFGRβ KIT, FLT3, RET, c-Raf, b-Raf

2006 Sunitinib malate (122) SUTENT® Capsule VEGFR1/2/3 PDGFRα/β KIT, FLT3, RET, CSF1R

2009 Pazopanib (123) VOTRIENT® Tablet VEGFR1/2/3 PDGFRα/β FGFR1/3, KIT, ITK, LCK, CSF1R

2012 Axitinib (124–127) INLYTA® Tablet VEGFR1/2/3 PDGFRα/β KIT

2012 Ponatinib (128) ICLUSIG® Tablet VEGFR PDGFR FGFR, KIT, FLT3, RET, Eph, Src, Tie2, BCR-ABL

2012 Regorafenib (129) STIVARGA® Tablet VEGFR1/2/3 PDGFRα/β
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PDGFRα, platelet-derived growth factor receptor alfa; PDGFRβ, platelet-derived growth factor receptor beta; FGFR, fibroblast growth factor receptor; KIT, stem cell factor receptor; FLT3, 
Fms-like tyrosine kinase 3; RET, glial-derived neurotrophic factor receptor; CSF1R, colony-stimulating factor 1 receptor; ITK, interleukin-2-inducible T-cell kinase; LCK, lymphocyte-specific 
protein tyrosine kinase; DDR2, discoidin domain receptor 2; BCR-ABL, the protein translated from the BCR-ABL gene which is located in the Philadelphia chromosome.
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