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Background: Cognitive dysfunction and brain atrophy are both common

in progressive multiple sclerosis (MS) but are seldom examined

comprehensively in clinical trials. Antioxidant treatment may a�ect the

neurodegeneration characteristic of progressive MS and slow its symptomatic

and radiographic correlates.

Objectives: This study aims to evaluate cross-sectional associations between

cognitive battery components of the Brief International Cognitive Assessment for

Multiple Sclerosis with whole and segmented brain volumes and to determine if

associations di�er between secondary progressive (SPMS) and primary progressive

(PPMS) MS subtypes.

Design: The study was based on a baseline analysis from a multi-site randomized

controlled trial of the antioxidant lipoic acid in veterans and other people with

progressive MS (NCT03161028).

Methods: Cognitive batterieswere conducted by trained research personnel. MRIs

were processed at a central processing site for maximum harmonization. Semi-

partial Pearson’s adjustments evaluated associations between cognitive tests and

MRI volumes. Regression analyses evaluated di�erences in association patterns

between SPMS and PPMS cohorts.

Results: Of the 114 participants, 70% had SPMS. Veterans with MS made up 26%

(n = 30) of the total sample and 73% had SPMS. Participants had a mean age of

59.2 and sd 8.5 years, and 54% of them were women, had a disease duration of
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22.4 (sd 11.3) years, and had a median Expanded Disability Status Scale of 6.0 (with

an interquartile range of 4.0–6.0, moderate disability). The Symbol Digit Modalities

Test (processing speed) correlated with whole brain volume (R = 0.29, p = 0.01)

and total white matter volume (R = 0.33, p < 0.01). Both the California Verbal

Learning Test (verbal memory) and Brief Visuospatial Memory Test-Revised (visual

memory) correlated with mean cortical thickness (R= 0.27, p= 0.02 and R= 0.35,

p < 0.01, respectively). Correlation patterns were similar in subgroup analyses.

Conclusion: Brain volumes showed di�ering patterns of correlation across

cognitive tasks in progressive MS. Similar results between SPMS and PPMS

cohorts suggest combining progressive MS subtypes in studies involving cognition

and brain atrophy in these populations. Longitudinal assessment will determine

the therapeutic e�ects of lipoic acid on cognitive tasks, brain atrophy, and

their associations.

KEYWORDS

progressivemultiple sclerosis, veterans, processing speed, verbalmemory, visualmemory,

clinical trials, brain volume changes, brain atrophy

1. Introduction

Accelerated brain volume loss is a frequently used imaging

surrogate marker of relapse-independent disease progression

in multiple sclerosis (MS) (1). Brain atrophy reflects multiple

pathophysiological processes including axonal degeneration,

neuronal loss, and loss of glial trophic support. Underlying chronic

inflammation, mitochondrial dysfunction, oxidative stress, and loss

of blood–brain barrier integrity are implicated in driving central

nervous system neurodegeneration that occurs in MS faster than

from aging alone (2). Because of strong correlations with clinical

disease progression, whole brain atrophy is the primary outcome

measure in Phase 2 progressive MS clinical trials (3). However,

regional atrophy varies by MS phenotype and by the strength

of association with clinical worsening (4). Analyses of total and

segmented brain volumes are becoming available to researchers

and clinicians by automated processing software packages available

as open-source software and marketed commercially (5).

A consistent clinical correlation to brain atrophy in MS is

cognitive impairment (6). Cognitive dysfunction, present from

early relapsing-remitting MS (RRMS), increases in prevalence

and severity with disease duration and in secondary progressive

(SPMS) and primary progressive (PPMS) MS subtypes (7).

Information processing speed deficits are particularly common

(8). Deficits in additional cognitive domains including verbal

fluency, verbal episodic memory, visuospatial construction,

and executive dysfunction further distinguish progressive from

relapsing MS, while visuospatial construction deficits may

distinguish SPMS from PPMS (9). Rates of decline among

cognitive domains also differ by MS phenotype (10). Because of

the frequency of cognitive dysfunction in MS and its relevance

to health-related quality of life, cognitive assessment and

follow-up are recommended components of routine MS clinical

monitoring (11).

Information processing speed tests such as the Paced Auditory

Serial Addition Test (PASAT) and Symbol Digit Modalities Test

(SDMT) are frequently the only cognitive assessment conducted

in clinical practice and clinical trials (12). Batteries of cognitive

tests are recommended to assess different cognitive domains. The

Brief International Cognitive Assessment forMS (BICAMS) battery

includes three short tests assessing information processing speed

(SDMT), immediate verbal memory (California Verbal Learning

Test, Second Edition; CVLT), and immediate visual memory

[memory (Brief Visuospatial Memory Test-Revised; BVMT-R)

(13)]. While the BICAMS does not test all cognitive domains, the

battery was chosen as a balance between high-yield outcomes and

administration efficiency. Studies to date of correlations between

the BICAMS tests and brain volumes in progressive MS are limited

by small sample sizes, inclusion of relapsing MS or limited to a

single progressive MS subtype, or do not contain all three BICAMS

tests (14, 15).

The objectives of this study were to determine cross-

sectional associations between the components of the

comprehensive BICAMS cognitive battery with standard whole

and segmented brain volumes in people with progressive MS and

to determine if the patterns of associations differ between SPMS

and PPMS subtypes.

2. Materials and methods

2.1. Study design

This is a baseline analysis of an ongoing phase 2, double-

blind, multi-center, randomized, placebo-controlled trial (RCT) of

1,200mg daily oral lipoic acid (LA; Pure Encapsulations, Sudbury,

MA) as add-on disease-modifying treatment to slow worsening of

gait in progressive MS (NCT03161028). Participants were recruited

from five Veterans Affairs Medical Centers as part of the MS

Centers of Excellence Network, five United States University

sites, and one Canadian study site between August 2018 and

January 2022.

Frontiers inNeurology 02 frontiersin.org

https://doi.org/10.3389/fneur.2023.1188124
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org


Spain et al. 10.3389/fneur.2023.1188124

2.2. Participants

Inclusion criteria to the RCT were ages ≥18 years, prior

diagnosis of RRMS or PPMS by 2010 revised McDonald criteria

(16), current progressive MS defined as relapse-independent

disability progression within the previous 2 years either while not

taking disease-modifying therapy (DMT) or despite it, and an EDSS

score between 3.0 and 6.5 at screening. Exclusion criteria were

other medical or neurological conditions that would confound

the assessment of gait, use of scheduled corticosteroid treatments

in the year prior to enrollment, corticosteroid treatment for

relapse within 60 days of enrollment, use of more than small

amounts of LA in the prior 2 years, MRI constraints, pregnant or

breastfeeding, significant active concurrent illness, uncontrolled or

insulin-dependent diabetes, and lack of English fluency preventing

the use of patient-reported outcomes.

Participants included in this baseline analysis were those having

complete baseline data for all MRI measures and data from at least

one cognitive test. Because of study recruitment from VA medical

centers, veteran demographics are reported.

2.3. Standard protocol approvals,
registrations, and patient consents

The study was approved by the Veterans Affairs Central

Institutional Review Board (IRB), the University of Utah

Single IRB, the University of Vermont IRB, the Swedish

Medical Center IRB, and the Ottawa Research Ethics Board.

Written consent was obtained from all the participants prior

to performing the study procedures. The trial was registered at

Clinicaltrials.gov (NCT03161028).

2.4. Cognitive tests

The site study staff were trained on how to administer the

BICAMS by a psychologist with experience in neuropsychological

assessment in people with MS (AT) at the beginning of the study

with an in-person session that was recorded for ongoing study

staff training. Cognitive testing was performed on the same day

as the MRI acquisition. Cognitive testing was completed using

the BICAMS which includes the Symbol Digit Modalities Test

(SDMT), the California Verbal Learning Test-Second Edition

(CVLT) learning trials, and the Brief Visuospatial Memory Test-

Revised (BVMT-R) learning trials (17–19). Raw scores were

standardized relative to norms in the general population per the

test manual guidelines. While the oral SDMT was the preferred

format, some study sites used the written format until the error

was noted and corrected. SDMT written was standardized for age

and education, while SDMT oral was standardized for age, sex,

and education (20). CVLT was standardized for age and sex, and

BVMT-R was standardized for age only. Standardization yielded

Z-scores for SDMT and T-scores for CVLT and BVMT-R. For

Z-scores, the reference mean and standard deviation (sd) are 0 and

1, while for T-scores, the reference mean and sd are 50 and 10.

A person with a Z-score of −1 is 1 sd below the reference mean,

as is a person with a T-score of 40.

2.5. MRI acquisition protocol

3T MRI instruments were used to acquire the following

anatomical series of the brain: (1) A magnetization prepared

T1-weighted 3D sequence using a sagittally oriented gradient

echo readout with a 1-mm isotropic spatial resolution and full

brain coverage, as the basis for brain atrophy measures. (2)

A fluid-attenuated inversion recovery (FLAIR) 3D T2-weighted

series using a sagittally oriented turbo spin echo readout with

1mm isotropic resolution and full brain coverage. Acquisitions

across different 3T platforms were harmonized using the ADNI3

protocol (https://adni.loni.usc.edu/adni-3/) as a guide. Intravenous

MR contrast was not administered. (3) The American College of

Radiology (ACR) phantom scan was acquired within 7 days of each

participant scan for quality control according to ACR protocols.

2.5.1. MRI volumetric analyses
MRI analyses used for study outcomes were analyzed by

the Advanced Imaging Research Center at OHSU. T1-weighted

and FLAIR Digital Imaging and Communications in Medicine

(DICOM) image sets were converted to the Network Interface

to File Transfer in the Internet (NIFTI) format, followed by

signal intensity bias correction, skull stripped, de-noised, and co-

registered. Brain volumetric and cortical thickness measures were

extracted from image sets using Freesurfer software tools (v7.1.1)

(5). The output using these tools of “total brain parenchymal

brain volume” is the summation of normal appearing white matter,

white matter hyperintensities, cortical and deep gray matter, and

brainstem volumes and is referred to in this article as “whole brain

volume.” All tissue class volume masks were visually reviewed for

gross errors. Additional brain measurements included total normal

appearing white matter volume, total gray matter volume, deep

gray matter volume, and cortical thickness. Intracranial vault size

was estimated using a custom template generated in Montreal

Neuroscience Institute (MNI)152 space followed by non-linear

back-registration to native space images. Management of multiple

MRI platforms and software was conducted by acquiring high-

quality scans meeting quality control standards and by the use of

a phantom at every study site.

2.6. Statistical analysis

Data analyses were completed using R version 4.2.0 and Stata

version 15 (21, 22). Data were inspected to ensure normality and

lack of extreme outliers.

Demographic variables (Table 1) and baseline cognitive scores

and brain volumes (Table 2) were compared between SPMS

and PPMS subtypes. P-values were obtained using a t-test for

continuous variables, Fisher’s exact test for dichotomous variables,

and Mann–Whitney U-test for ordinal variables. We performed

semi-partial correlations to characterize the age- and sex-adjusted
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TABLE 1 Participant demographics for the full sample and by secondary progressive and primary progressive multiple sclerosis subtypes.

Full sample
(n = 114)

SPMS
(n = 80, 70%)

PPMS
(n = 34, 30%)

p-value

Age (years): mean (sd) 59.2 (8.5) 58.6 (8.2) 60.4 (9.2) 0.32

Female: n (%) 62 (54.4%) 48 (60.0%) 14 (41.2%) 0.10

White race: n (%)a 104 (91.2%) 72 (90.0%) 32 (94.1%) 0.72

Ever smoked: n (%) 53 (46.5%) 37 (46.3%) 16 (47.1%) >0.99

Bachelor’s degree or higher: n (%) 58 (50.9%) 42 (52.5%) 16 (47.1%) 0.81

Duration of disease since first symptom onset (years):

mean (sd)

22.4 (11.3) 25.0 (11.0) 16.2 (9.5) <0.01

EDSS: median (IQR) 6.0 (4.0–6.0) 6.0 (4.0–6.5) 5.5 (3.6–6.0) 0.06

Clinical and/or radiographic relapse in the 5 years prior

to entry: n (%)

27 (23.7%) 18 (22.5%) 9 (26.5%) 0.63

Taking DMT: n (%) 63 (55.3%) 45 (56.3%) 18 (52.9%) 0.84

Interferons/glatiramer/teriflunomide: n (%)b 12 (19.0%) 11 (24.4%) 1 (5.6%) 0.15

DMF/fingolimod: n (%)b 14 (22.2%) 11 (24.4%) 3 (16.7%) 0.74

CD20 B cell therapy: n (%)b 32 (50.8%) 18 (40.0%) 14 (77.8%) 0.01

Natalizumab: n (%)b 5 (7.9%) 5 (11.1%) 0 (0.0%) 0.31

aOther races were Black (4.4%), more than one race (2.6%), Asian (0.9%), Unknown (0.9%).
bPercentage of those taking DMT.

DMF, dimethyl fumarate; DMT, disease-modifying therapy; EDSS, Expanded Disability Status Scale; IQR, interquartile range; PPMS, primary progressive multiple sclerosis; SPMS, secondary

progressive multiple sclerosis; sd, standard deviation.

TABLE 2 Baseline cognitive scores and MRI brain volumes for the full sample and by secondary progressive and primary progressive multiple sclerosis

subtypes.

Full sample
(n = 114)

SPMS
(n = 80, 70.2%)

PPMS
(n = 34, 29.8%)

p-value

SDMT Z-score (mean, sd) −1.11 (1.52) −1.14 (1.56) −1.05 (1.46) 0.77

CVLT T-score (mean, sd) 53.75 (11.92) 53.96 (10.57) 53.24 (14.81) 0.80

BVMT-R T-score (median, IQR)a,b 44 (34–56) 44 (32.75–56.25) 45 (36–52) 0.78

Proportion with at least 1 impaired cognitive testc 48.2% (55) 48.8% (39) 47.0% (16) >0.99

WBV (mL): mean (sd) 1053.39 (123.58) 1046.51 (128.52) 1069.58 (111.20) 0.34

Total gray matter vol (mL): mean (sd) 465.92 (58.49) 463.39 (62.74) 471.88 (47.30) 0.43

Deep gray matter vol (mL): mean (sd) 47.33 (5.05) 47.03 (5.38) 48.05 (4.15) 0.28

Total white matter vol (mL): mean (sd) 441.29 (73.97) 437.48 (78.70) 450.26 (61.56) 0.36

Mean cortical thickness (mm): mean (sd) 2.34 (0.21) 2.35 (0.22) 2.31 (0.17) 0.40

aBVMT-R sample size was n= 113 (80 SPMS, 33 PPMS).
bMann–Whitney U-test was used for tests of the median due to the assignment of 19 for two participants getting BVMT-R scores at the lower bound of the standardization algorithm, giving

them each a T-score of <20 rather than an exact T-score.
cImpaired defined as more than 1.5 sd below the standardized population mean.

BVMT-R, Brief Visuospatial Memory Test-Revised; CVLT, California Verbal Learning Test, second edition; IQR, interquartile range; mL, milliliter; mm, millimeter; PPMS, primary progressive

multiple sclerosis; SPMS, secondary progressive multiple sclerosis; sd, standard deviation; SDMT, Symbol Digit Modalities Test; Vol, volume; WBV, whole brain volume.

correlations between each cognitive measure and each MRI

measure. To adjust the MRI output, we regressed each MRI

measure on age and sex and extracted the residuals. Sex and age

adjustments were not made to cognitive scores as they were already

standardized scores. Pearson’s correlation coefficients between each

set of MRI regression residuals and each cognitive measure were

calculated. Correlations were calculated for the full sample, as well

as for each subtype (SPMS and PPMS) separately. Although total

normal appearing white matter volume, total gray matter volume,

deep gray matter volume, and cortical thickness are all components

of whole brain volume, there were no statistical accountings

performed for the a priori correlations between whole brain volume

and sub-volumes. Scatterplots visualizing these correlations were

produced in R using the ggpubr package (23).

We also built age- and sex-adjusted linear regression models

to characterize the strength of association between each cognitive

measure and each MRI measure. Models including the MS subtype

and the interaction between the MS subtype and each MRI
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TABLE 3 Semi-partial Pearson’s correlations (R) between cognitive tests and sex- and age-adjusted brain volumes for the full sample of participants and

by secondary progressive and primary progressive MS subtypes.

Correlation pairings Full sample
(n = 114)

SPMS
(n = 80, 70.2%)

PPMS
(n = 34, 29.8%)

R praw/padj R praw/padj R praw/padj

SDMT

Whole brain vol 0.29 <0.01/0.01 0.26 0.02/0.10 0.39 0.03/0.12

Total gray matter vol 0.13 0.18/0.46 0.05 0.69/0.85 0.40 0.02/0.12

Deep gray matter vol 0.22 0.02/0.06 0.22 0.04/0.15 0.20 0.27/0.45

Total white matter Vol 0.33 <0.01/<0.01 0.34 <0.01/0.01 0.27 0.12/0.22

Mean cortical thickness 0.10 0.28/0.60 0.03 0.79/0.81 0.34 0.05/0.19

CVLT

Whole brain vol 0.00 0.99/0.99 −0.03 0.77/0.85 0.08 0.64/0.74

Total gray matter vol 0.04 0.70/0.95 −0.08 0.45/0.85 0.32 0.06/0.19

Deep gray matter vol 0.00 0.98/0.99 −0.02 0.85/0.85 0.07 0.71/0.76

Total white matter vol 0.00 0.99/0.99 0.05 0.67/0.85 −0.12 0.50/0.69

Mean cortical thickness 0.27 <0.01/0.02 0.22 0.05/0.15 0.39 0.02/0.12

BVMT-R

Whole brain vol 0.00 0.99/0.99 0.06 0.62/0.85 −0.18 0.30/0.45

Total gray matter vol 0.08 0.42/0.70 0.09 0.41/0.85 0.02 0.91/0.91

Deep gray matter vol 0.09 0.32/0.60 0.14 0.20/0.51 −0.08 0.64/0.74

Total white matter vol −0.04 0.66/0.95 0.03 0.82/0.85 −0.30 0.09/0.19

Mean cortical thickness 0.35 <0.01/<0.01 0.37 <0.01/0.01 0.31 0.08/0.19

BVMT-R, Brief Visuospatial Memory Test-Revised; CVLT, California Verbal Learning Test, second edition; PPMS, primary progressive multiple sclerosis; SPMS, secondary progressive multiple

sclerosis; SDMT, Symbol Digit Modalities Test; TBP, Total brain parenchymal; Vol, volume.

Raw (praw) and Benjamini–Hochberg adjusted (padj) p-values presented. Statistical significance was set at a p-value of ≤0.05.

measure were built to examine the association in each MS subtype

independently. Reduced models, not including any MS subtype

effects, were built to examine each association in the pooled

population (SPMS and PPMS combined).

To adjust for multiple comparisons, we calculated Benjamini–

Hochberg adjusted p-values with an overall false detection rate of

0.05. Both raw and adjusted p-values are presented in tables and

plots, but the p-values mentioned in the body of the study are

adjusted p-values.

2.7. Data availability

The datasets generated during the current study are not publicly

available due to the ongoing status of the longitudinal study but are

available from the corresponding author upon reasonable request.

3. Results

Of the original study sample size of 115 respondents, one

participant was excluded from the analysis because excessive

T2 lesion volume resulted in unreliable volume measurements.

Participant demographics are listed in Table 1. Mean age was 59.2

(range: 34–73, sd 8.5) years, 54% were women, with mean disease

duration of 22.4 (range: 3–49, sd 11.3) years, and median EDSS

of 6.0 [interquartile range (IQR) 4.0–6.0]. Twenty-seven (23.7%)

participants had active disease defined as clinical or radiographic

(new, enlarging, or enhancing MRI lesions) relapses in the 5 years

prior to study entry. Most (55.3%) were taking DMT at the baseline

visit. The SPMS cohort (n = 80, 70.2%) had a longer duration of

disease since the firstMS symptom onset (mean 25.0 sd 11.0 vs. 16.2

sd 9.5 years, p < 0.01). The PPMS cohort had a higher proportion

of those on DMT taking B cell-depleting therapies (77.8% vs. 40%,

p = 0.01). Otherwise, MS subtypes were comparable. Veterans

with progressive MS comprised 26% (n = 30) of the total sample,

of whom 73.3% had SPMS. Mean age of veterans was 58.7 years

(range: 34–73, sd 8.9), 23% were women, disease duration was

25.5 years (range: 3–49, sd 12.5), and median EDSS is 5.75 (IQR,

4.0–6.0). Aside from fewer women, veteran demographics and the

proportion of SPMSwere generally similar to that of the full sample.

Baseline cognitive scores and whole brain and segmented brain

volumes including cortical thickness for the full sample and by

MS subtype are shown in Table 2. Two participants had BVMT-R

scores at the lower bound of the standardization algorithm, giving

them T-scores of <20 rather than exact T-scores. Because of this,

BVMT-R summary statistics are presented as median and IQR

rather than mean and sd. For correlation and regression analyses,

these individuals were assigned a T-score of 19. Baseline cognitive

scores were similar between SPMS and PPMS subtypes. Defining
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FIGURE 1

Semi-partial Pearson’s correlations between the cognitive processing speed test Symbol Digit Modalities Test (SDMT) Z-scores and whole brain

volume, deep gray matter volume, total white matter volume, and mean cortical thickness. MRI measures have been adjusted for age and sex, so

what is presented here are the residuals (distance each participant is from the age- and sex-adjusted mean). Correlations are for combined

secondary progressive (SPMS, filled circles) and primary progressive (PPMS, unfilled circles) multiple sclerosis cohorts. Statistical significance was set

at a p-value of ≤0.05.

impairment as scoring more than 1.5 sd below the standardized

population mean, 48.2% of all participants (n = 55) were impaired

on at least one of the three cognitive tests. Half (53.3%) of veterans

had an impaired cognitive test. For individual tests, 36.8% (n= 42)

of all participants had impaired scores for SDMT, 4.4% (n = 5) for

CVLT, and 25.7% (n= 29) for BVMT-R (24).

Table 3 and Figures 1–3 present semi-partial Pearson’s

correlations between cognitive tests and brain volumes with raw

and Benjamini–Hochberg adjusted p-values. SDMT correlated

modestly yet significantly with whole brain volume (R = 0.29, p =

0.01) and total white matter (R= 0.33, p< 0.01) (Figure 1, Table 3).

SDMT had a smaller correlation with deep gray matter volume,

losing significance after adjustment for multiple comparisons

(R = 0.22, p = 0.06). SDMT had smaller and non-significant

correlations with total gray matter volume (R = 0.13, p = 0.46)

and mean cortical thickness (R = 0.10, p = 0.60). In contrast, both

the CVLT and BVMT-R correlated modestly and significantly with

mean cortical thickness (R= 0.27, p= 0.02, and R= 0.35, p< 0.01,

respectively) but not with total brain parenchymal volume, total

gray matter volume, or total white matter volume (all p ≥ 0.60)

(Figures 2, 3, Table 3).

Regression analyses did not reveal systematic differences

between SPMS and PPMS subtypes in the correlations between

cognitive tests and brain volume. Associations between cognitive
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FIGURE 2

Semi-partial Pearson’s correlations between the California Verbal Learning Test, second edition (CVLT) T-scores and whole brain volume, deep gray

matter volume, total white matter volume, and mean cortical thickness. MRI measures have been adjusted for age and sex, so what is presented here

are the residuals (distance each participant is from the age- and sex-adjusted mean). Correlations are for combined secondary progressive (SPMS,

filled circles) and primary progressive (PPMS, unfilled circles) multiple sclerosis cohorts. Statistical significance was set at a p-value of ≤0.05.

scores and brain volumes are broadly similar within each MS

subtype (Supplementary Table 1), and there was no evidence of a

consistent subtype interaction effect (Supplementary Table 2).

4. Discussion

This study demonstrated that components of the

comprehensive BICAMS cognitive battery had unique correlation

patterns with brain volumes in people with progressive MS.

Specifically, the information processing speed (SDMT) test

correlated with normalized whole brain and total white matter

volumes, while the verbal memory (CVLT) and visual memory

(BVMT-R) tests correlated only with mean cortical thickness.

Correlations were low to moderate ranging from R = 0.22 to

R = 0.35. However, the unique patterns of correlations are

suggestive of unique CNS pathways driving cognitive domains.

While statistical significance suffered due to lower sample sizes,

the overall patterns of correlations were similar between SPMS

and PPMS cohorts as supported by regression analysis. The

similar patterns of correlations support the broad overlap in the

pathophysiology of SPMS and PPMS including injury to normal

appearing white and gray matter and cortical lesions (25). This

suggests combining SPMS and PPMS subtypes when analyzing

associations between brain volumes and cognitive tests in the

domains assessed. Given similar demographics and proportion

with baseline cognitive impairment of veterans to the larger cohort,

the conclusions of our analyses may apply to veteran populations.

The strength of correlation between SDMT and whole brain

volume (R = 0.29) found in our population is slightly less than in

similar studies in relapsing andmixed relapsing and progressiveMS
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FIGURE 3

Pearson’s correlations between the Brief Visuospatial Memory Test-Revised (BVMT-R) T-scores and whole brain volume, deep gray matter volume,

total white matter volume, and mean cortical thickness. MRI measures have been adjusted for age and sex, so what is presented here are the

residuals (distance each participant is from the age- and sex-adjusted mean). Correlations are for combined secondary progressive (SPMS, filled

circles) and primary progressive (PPMS, unfilled circles) multiple sclerosis cohorts. Statistical significance was set at a p-value of ≤0.05.

cohorts. In purely relapsing MS cohorts, Fenu et al. report nearly

identical Pearson’s correlations between SDMT and whole brain

volume (R = 0.38, n = 195) as D’hooghe et al. (R = 0.4, n = 254)

and Calabrese et al. (R = 0.41, n = 70) despite different MRI

segmentation methodologies (26–28). Interestingly and despite

a smaller sample size, Fenu also found significant correlations

between SDMT and total gray matter and mean cortical thickness

(R = 0.31 and R = 0.35, respectively), while D’hooghe et al. did

not find correlations with additional brain regions. Fenu et al.

additionally reported significant correlations between both CVLT

and BVMT-R and whole brain, total gray matter, and cortical

thickness as reported with SDMT, and with similar correlation

strengths (from R = 0.24 to R = 0.36) (25). In a mixed relapsing

and progressive MS cohort, Benedict et al. also reported a modest

correlation between SDMT and whole brain volume (R = 0.40)

but no significant correlations between whole and segmented brain

volumes with CVLT or BVMT-R (29).

We found only one study conducted in a purely progressive

MS population relating BICAMS to brain volumes. Gueveia et al.

reported significant correlations of both the SDMT and BVMT-R

with deep gray matter volume (R= 0.66 and R= 0.41, respectively)

in a PPMS cohort (n = 55), a finding we did not replicate, along

with a significant correlation between BVMT-R and neocortical

gray volume (R = 0.39) (15). This group did not evaluate whole

brain volumes. Comparison of our findings to other progressiveMS

cohorts is anticipated given the growing numbers of treatment trials

for progressive MS.

Differences in methodologies of studies associating cognitive

tests and brain volumes in non-MS cohorts including small

vessel disease, neuromyelitis optica, traumatic brain injury, and
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normal aging limit direct comparisons to our results; however,

heterogeneous findings suggest a lack of consensus regarding

the clinical implications of whole or regional atrophy (30, 31).

Brain atrophy in MS may represent a late-stage neurodegenerative

phenomenon from demyelination and axonal and glial cell loss.

Alternative imaging techniques such as diffusion tensor imaging

and MR spectroscopy may detect structural and functional damage

prior to irreversible atrophy, highlighting a treatment opportunity

(32, 33).

Our participant population, although not selected for cognitive

dysfunction, demonstrated a high prevalence (48.2%) of scores

more than 1.5 sd below the standardized population mean on

cognitive tests, highlighting the importance of identifying and

treating cognitive dysfunction in progressive MS. While the

SDMT had the highest percentage of abnormal scores (36.8%),

13 participants (11.4%) had abnormal scores in other cognitive

domains that would have been missed if the SDMT was the

only cognitive test utilized. This reinforces the value of screening

across multiple cognitive domains when possible for clinical and

research inquiries.

An unexpected finding of our study was the relative lack

of impairment in CVLT performance compared to the SDMT

and BVMT-R. Usually, impairment is found in all three domains

tested in the BICAMS. While neither the CVLT nor BVMT-R gets

corrected for education level, our highly educated study population

may have had better auditory learning and biased the results.

Interestingly, one study found the combination of SDMT and

BVMT-R to be the most sensitive to cognitive impairment and had

the strongest association with the full battery, suggesting that the

CVLT performance may be less clinically relevant (34).

Strengths of the study include the relatively large sample

of SPMS and PPMS participants from a large geographical

area, trained personnel conducting cognitive testing, centralized

blinded scoring of the CVLT and BVMT-R by two raters, and a

centralized MRI processing site for brain volume analyses. Study

limitations arise primarily from drawing the study sample from

an interventional study and not based on the current analyses.

The interventional trial required active disability worsening for

study entry. As such, our results may not be applicable to stable,

non-worsening MS populations. The sample size was not powered

to detect differences between SPMS and PPMS in the measures

investigated here. The SDMT was administered variously in oral

and written formats which, although scored appropriately for the

format, may have affected the analyses. The BICAMS battery

does not include cognitive domains that may distinguish SPMS

and PPMS (9). This analysis lacked healthy control or RRMS

comparison populations thereby limiting conclusions about the

uniqueness of our findings to progressive MS. Finally, regional

cortical thickness and deep gray matter volume—both linked to

cognitive dysfunction in some MS studies—were not outcomes

of the interventional trial study but are ones that could be

investigated in future (4, 35). The cross-sectional design of the

current analysis limits conclusions about causality or influence.

In fact, longitudinal data from a large interventional trial of

natalizumab in SPMS did not find MRI volume changes associated

with the worsening of SDMT or other measures of disability (36).

Anticipated longitudinal studies including this one in progressive

MS populations will clarify the clinical correlates of whole and

regional brain atrophy.

5. Conclusion

In this cross-sectional study of veterans and other people

with progressive MS, information processing speed was associated

with whole brain and total white matter volumes, while verbal

and visual memory tests were associated with mean cortical

thickness. The strengths of associations were all modest though

statistically significant. SPMS and PPMS subtypes appeared to have

similar patterns of associations although small numbers precluded

definitive confirmation. The planned longitudinal examination

of this cohort will determine if changes in cognition and brain

volume over time are associated. Advanced imaging techniques

may determine if other measures are better predictors of cognitive

or other disabilities change over time in progressive MS.
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