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Background: Patients with comorbid schizophrenia, depression, drug use, and 
multiple psychiatric diagnoses have a greater risk of carotid revascularization 
following stroke. The gut microbiome (GM) plays a crucial role in the attack 
of mental illness and IS, which may become an index for the diagnosis of IS. A 
genomic study of the genetic commonalities between SC and IS, as well as its 
mediated pathways and immune infiltration, will be conducted to determine how 
schizophrenia contributes to the high prevalence of IS. According to our study, 
this could be an indicator of ischemic stroke development.

Methods: We selected two datasets of IS from the Gene Expression Omnibus 
(GEO), one for training and the other for the verification group. Five genes 
related to mental disorders and GM were extracted from Gene cards and other 
databases. Linear models for microarray data (Limma) analysis was utilized to 
identify differentially expressed genes (DEGs) and perform functional enrichment 
analysis. It was also used to conduct machine learning exercises such as random 
forest and regression to identify the best candidate for immune-related central 
genes. Protein–protein interaction (PPI) network and artificial neural network 
(ANN) were established for verification. The receiver operating characteristic 
(ROC) curve was drawn for the diagnosis of IS, and the diagnostic model was 
verified by qRT-PCR. Further immune cell infiltration analysis was performed to 
study the IS immune cell imbalance. We  also performed consensus clustering 
(CC) to analyze the expression of candidate models under different subtypes. 
Finally, miRNA, transcription factors (TFs), and drugs related to candidate genes 
were collected through the Network analyst online platform.

Results: Through comprehensive analysis, a diagnostic prediction model with 
good effect was obtained. Both the training group (AUC 0.82, CI 0.93–0.71) and 
the verification group (AUC 0.81, CI 0.90–0.72) had a good phenotype in the 
qRT-PCR test. And in verification group 2 we validated between the two groups 
with and without carotid-related ischemic cerebrovascular events (AUC 0.87, 
CI 1–0.64). Furthermore, we  investigated cytokines in both GSEA and immune 
infiltration and verified cytokine-related responses by flow cytometry, particularly 
IL-6, which played an important role in IS occurrence and progression. Therefore, 
we speculate that mental illness may affect the development of IS in B cells and 
IL-6  in T cells. MiRNA (hsa-mir-129-2-3p, has-mir-335-5p, and has-mir-16-5p) 
and TFs (CREB1, FOXL1), which may be related to IS, were obtained.
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Conclusion: Through comprehensive analysis, a diagnostic prediction model 
with good effect was obtained. Both the training group (AUC 0.82, CI 0.93–0.71) 
and the verification group (AUC 0.81, CI 0.90–0.72) had a good phenotype in the 
qRT-PCR test. And in verification group 2 we validated between the two groups 
with and without carotid-related ischemic cerebrovascular events (AUC 0.87, CI 
1–0.64). MiRNA (hsa-mir-129-2-3p, has-mir-335-5p, and has-mir-16-5p) and 
TFs (CREB1, FOXL1), which may be related to IS, were obtained.
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1. Introduction

Stroke is one of the leading causes of death and disability 
globally, of which about 87 percent is ischemic stroke (IS) (1). Most 
IS patients have one or more comorbidities (2). IS patients with 
comorbidities experience more severe defects, increased disability 
and hospitalization rates, and higher mortality rates (3). Post-stroke 
cognitive impairment and dementia (PSCID) are the main sources 
of post-stroke morbidity and mortality worldwide (4). Current 
studies have shown that 25–30 percent of IS survivors develop 
vascular cognitive impairment (VCI) or vascular dementia (VaD) 
immediately or later (5). Post-stroke depression (PSD) is a general 
mental health problem affecting about 33 % of IS survivors. PSD 
adversely affects recovery and rehabilitation of cognitive and motor 
impairment after stroke, significantly increasing recurrence chances 
of neurovascular problems (6). Anxiety disorders affect about 1/4 
of IS patients (7), which hinders IS rehabilitation and prevents 
patients from resuming daily activities (8), but clinical trials have 
not produced any clear evidence to guide the treatment of post-
stroke anxiety disorders (9). There is a corresponding association 
between obsessive–compulsive disorder and IS. According to a 
national longitudinal study by Chen et al., patients with obsessive–
compulsive disorder have a higher risk of developing IS during 
follow-up compared with non-obsessive–compulsive disorder 
controls (10), but the correlation between the two is not clear. Odds 
of carotid revascularization after stroke are lower in patients with 
psychiatric disorders, especially those with schizophrenia, 
depression, substance use disorders, and multiple psychiatric 
diagnoses (11). In patients with schizophrenia, the presence of 
atopic disease increases the risk of ischemic stroke. The increased 
the number of atopic comorbidities, the heightened the risk of 
ischemic stroke (11). We require more clinical data to clarify the 
causal relationship between SC, gut microbes, and IS. However, our 
findings will help predict IS early through clinical genetic testing, 
as well as to predict the high incidence of IS in specific populations, 
such as schizophrenia. Additionally, our research will contribute to 
a better understanding of the genetic, immunological, and 
metabolic mechanisms underlying IS’s high incidence and 
dangerous prognosis.

Human body’s gut microbiome (GM) is the largest microbiome 
that plays an important role in regulating the immune system (12). In 
the mouse model, GM is also associated with the occurrence and 
sequelae of IS (13, 14). IS usually causes intestinal dysfunction, GM 

imbalance, intestinal bleeding, and intestinal septicemia, thus affecting 
the poor prognosis (15). More and more evidence shows that there is 
a correlation between GM and mental disorders, such as anxiety 
disorder, depression (16), schizophrenia (17), and so on. However, 
there is a lack of research on the relationship between GM and IS 
complicated with mental disorders. Therefore, this study is mainly 
through the analysis of five kinds of mental disorders (schizophrenia, 
depression, anxiety disorder, obsessive–compulsive disorder, and 
dementia) and IS in GM.

2. Materials and methods

2.1. Datasets

The IS datasets GSE22255, and GSE66724 from the GEO database 
were selected as the training group (18).1 Merging multiple datasets 
required the use of the ‘inSilicoMerging’ algorithm from the 
R-software package (19). We utilized the Johnson et al. (20) method 
to eliminate the batch effect, to select GSE58294 and GSE198600 as 
the test group. Five genes related to mental disorders and GM were 
collected from Genecards, the NCBI database, and related literature. 
Finally, 710 genes related to mental disorders and 434 genes related to 
GM were obtained and sorted out according to different types 
(Supplementary Tables S1, S2). The process specific to this method is 
presented in Figure 1.

2.2. Differentially expressed gene screening

We used Limma (21), a generalized linear equation model to 
use as a difference table screening method. R-based Limma was 
utilized to analyze the differences in order to derive the DEGs 
among control and comparison groups. The criteria for identifying 
DEGs in this study were|log2 Fold Change (FC)| > 1 and p < 0.05, 
and the heat map and volcano plot of IS DEGs were visualized by 
sangerBox (22).

1 www.ncbi.nlm.nih.gov/geo/
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2.3. Gene Set function enrichment analysis

The DEGs of IS and related genes of mental disorders and GM 
were cross-screened by Venn plot. For functional enrichment analysis, 
the genes related to mental disorders of IS were obtained. Further, 
KEGG rest API2 and gene set function enrichment analysis (GSEA), 
were utilized to obtain the KEGG pathway’s latest gene annotation. 
Moreover, the GO annotation of the gene “org.Hs.eg.db:” in the 
R-package (vs. 3.1.0) (23) was used as the gene map background. The 
clusterProfiler from the R-package was utilized for enrichment 
analysis (24) to obtain gene enrichment results. For GSEA analysis 
(25), GSEA software (vs. 3.0) was used to divide the sample into two 
groups. Also “c2.cp.kegg.v7.4.symbols.gmt” subset from Molecular 
Signatures Database (26) was used to assess the molecular mechanisms 
and the related pathways. We preset the minimum gene set to 5 on the 
basis of gene expression profile and phenotypes groupings. The value 
of the maximum gene set was 5,000, and a p-value<0.05 and an 
FDR < 0.1was kept as indices of statistical significance.

2.4. Screening candidate genes related to is 
and mental disorders by machine learning 
and constructing a protein–protein 
interaction network

“Glmnet” (27) and “RandomForest” (28) in the R software 
package were used to integrate gene expression data with survival time 
and survival status. Further lasso-cox and Random Forest methods 
were utilized for regression analysis. Moreover, 10%-fold cross-
validation was set up to derive the optimal model. The final diagnosis 
prediction model was obtained by cross-screening the outcomes of the 

2 https://www.kegg.jp/kegg/rest/keggapi.html

two machine-learning techniques through the Venn plot. Protein–
protein interaction (PPI) network was built using the Gene MANIA 
database. The latter is a user-friendly, flexible website for deriving 
assumptions about gene function, gene prioritization for functional 
analysis, and gene list analysis (29).

2.5. Validation of predictive models for 
diagnosis and prognosis

pROC (30) from the R package was used for ROC analysis to 
obtain AUC. Also, pROC’s CI function was utilized to assess the 
confidence interval (CI) and AUC so as to obtain the AUC result. 
Further, for visualization, sangerBox was used. Finally, we observed 
the expression of training set characteristic genes (GSE22255, 
GSE66724) and test group (GSE58294, GSE198600). In addition, a 
neuralnet (31) in the R software package was used to build an ANN 
for the characteristic genes obtained by the above method, thereby 
building a high-precision diagnostic model.

2.6. qRT-PCR and flow cytometry 
verification

Patients with acute IS hospitalized in Jiangsu Shengze Hospital, 
which is affiliated with the NMU (Nanjing Medical University) from 
January 1st, 2023, to January 15th, 2023, were enrolled retrospectively. 
Inclusion criteria: (1) the time of onset was within 7 days; (2) it met 
the diagnostic criteria revised by the Chinese Cerebrovascular Disease 
Classification 2015 of the Chinese Medical Association and was 
confirmed by head CT and/or MRI; (3) the medical records were 
complete. This research was conducted in accordance with the HD 
(Helsinki Declaration) and permitted by the Jiangsu Shengze 
Hospital’s Ethics Committee (Lun No.: 2022–017-01).

FIGURE 1

Flow chart.
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FIGURE 2

(A) volcano plot; (B) heat map of DEGs in IS; (C), KEGG analysis corresponding to mental disorder-related genes; (D), candidate genes were obtained 
by cross screening of mental disorder-related genes and GM in DEGs of IS.

The qPCR gene of mRNA was detected in the PBMC samples 
of five patients with IS and five physical examiners. PBMC was 
extracted by the ficoll separation method (tbdscience, Tianjin, 
China), samples were anticoagulated by EDTA, and mRNA was 
extracted by magnetic beads method (BioPerfectus, Jiangsu, 
China). We used a one-step reverse transcription fluorescence 
quantitative PCR kit (BBI Lifesciences, Shanghai, China) for 
sybr green quantitative PCR amplification of mRNA. The 
primers were shown in Supplementary Table S3, and the 
amplification instrument was Applied Biosystems 7,500. The 
specificity of cDNA amplification was analyzed by melt curve, 
and the difference in gene expression was analyzed by 
Amplification Data.

We performed immunocytokine flow cytometry detection on the 
EDTA anticoagulated whole blood of 5 IS-confirmed patients and 5 
physical examiners. An 8-item cytokine detection kit (multiplex 
microsphere flow immunofluorescence luminescence) (RAISEcare, 
Shandong, China) was used as the detection reagent, and BD 
FACSCanto II (Bccton, Dickinson and Company) was used as the 
cytokine detection instrument. The detection operation process is 
strictly in accordance with the kit instruction manual. We utilized flow 

cytometry to analyze the differences in the performance of the eight 
cytokines in the verification group.

2.7. Animal model and cell verification

Victoria G. Hernandez et  al. induced stroke by distal middle 
cerebral artery occlusion (dMCAO) in an animal model and used 
RiboTag technology to obtain mRNA transcripts derived from 
astrocytes and microglia in the hyperacute phase (4 h) and acute phase 
(3 days) after stroke. The expression and log2 fold data for all 
sequenced genes are available on a user-friendly website (32).3

2.8. Immune infiltration analysis

The immune cell infiltration was analyzed by Cibersort (33) in 
R statistical package, and the correlation was evaluated by the 

3 https://buckwalterlab.shinyapps.io/AstrocyteMicrogliaRiboTag/
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spearman coefficient (34). The heat map of infiltrating immune cell 
correlation was drawn by corrplot (35) in the R software package.

2.9. Construction of miRNA and TF-hub 
gene network and drug prediction

The network of gene miRNA, gene-TFs, and gene-drug interaction 
was established by Network analyst (36).4

2.10. Subgroup analysis by candidate genes

Unsupervised hierarchical clustering analysis of IS samples was 
carried out utilizing the “ConsensusClusterPlus” of R (37) and the 
candidate genes’ expression as input information. For Gene Set Variation 
Analysis (GSVA), the R statistical package was utilized to assess each 
sample’s enrichment score in the gene set (38). The gene rank was 
predefined, and to evaluate the molecular mechanisms and related 
pathways, we downloaded the subsets c2.cp.kegg.v7.4.symbols.gmt, h.all.
v7.4.symbols.gmt, and c2.cp.v7.4.symbols.gmt from Molecular 
Signatures Database. The minimum gene set was 5, and 5,000 was the 
maximum gene set. Each sample’s enrichment score in each gene set was 
evaluated, and finally, the enrichment score matrix was obtained. The 

4 https://www.networkanalyst.ca/

DEGs of subgroups were obtained by Limma analysis, and the functional 
differences between subgroups were analyzed by KEGG and GO.

3. Results

3.1. Is differentially expressed genes’ 
screening

Combining GSE22255 and GSE66724 as training group datasets, 
874 DEGs were identified in IS training group dataset by the Limma 
method, from which 417 were down-regulated and 457 up-regulated 
(Figures 2A,B). The genes’ functional enrichment analysis that relates 
them to mental disorders was conducted. KEGG showed that genes 
related to mental disorders were mainly enriched in the interaction 
known as the Neuroactive ligand-receptor type (Figure 2C). This 
proved that there was a correlation between mental disorders and IS 
(39). Seven candidate genes related to mental disorders and GM were 
cross-screened by Venn plot (Figure 2D).

3.2. Functional enrichment analysis (FEA) of 
related candidate genes

FEA of candidate genes was carried out, and KEGG analysis showed 
that the “Toll-like receptor signaling pathway,” “Rheumatoid arthritis,” 

FIGURE 3

(A): KEGG analysis of candidate genes; (B): GO analysis of the cell component of candidate genes; (C): GO analysis of biological process of candidate 
genes; (D): GO analysis of the molecular function of candidate genes.
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FIGURE 4

(A,B): candidate genes’ screening through LASSO regression; (C): Screening of candidate genes through RF regression; (D): candidate genes cross 
screening through Venn plot and machine learning; (E): PPI network construction of candidate genes.

“IL-17 signaling pathway,” and other pathways had enrichment of 
candidate genes (Figure 3A). GO analysis showed that in terms of cell 
composition (CC), the candidate genes were primarily located in the 
“RNA polymerase II transcription factor complex” and “nuclear 
transcription factor complex” (Figure 3B). The main biological processes 
(BP) of candidate genes included “response to cytokine,” “response to 
oxygen-containing compound,” and “cytokine-mediated signaling 
pathway” (Figure 3C). Molecular function (MF) analysis depicted that 
the most crucial processes among the candidate genes were “signaling 
receptor binding,” “cytokine receptor binding,” and “cytokine activity” 
(Figure  3D). Accordingly, our candidate genes may be  involved in 
immune infiltration as well as pathways related to cytokines in IS.

3.3. Screening of candidate genes related 
to is and construction of PPI network and 
PCD By machine learning

Candidate genes were identified by LASSO regression, and the results 
depicted that five potential candidate genes were identified (Figures 4A,B). 
We also used RF regression to identify candidate genes and showed four 
potential biomarkers (Figure 4C). Then the results selected by the two 
kinds of machine learning were cross-analyzed, and ultimately four 
candidate genes (CXCL8, FOS, LEP, MTHFR) were obtained (Figure 4D). 
And the PPI network was established through these four candidate genes, 

of which Physical Interactions occupied 77.64%, Coexpression occupied 
8.01%, and Predicted occupied 5.37% (Figure 4E).

3.4. Diagnostic model’s verification

The diagnostic value of the four candidate genes was verified by the 
ROC curve when all candidate genes were used as joint indicators 
(AUC 0.82, CI 0.93–0.71) (Figure 5A). We also put the diagnostic 
model into the verification group (GSE58294, GSE198600). It was 
shown that the diagnostic ROC (AUC 0.81, CI 0.90–0.72) of the 
positive and negative control groups in GSE58294 and the prognosis 
prediction ROC (AUC 0.87, CI 1–0.64) of the two groups in 
GSE198600 had a good predictive value (Figures 5B,C). The candidate 
genes were utilized to construct the neural network, and the outcomes 
depicted that the four candidate genes were able to distinguish the IS 
samples from the control samples, and the accuracy could reach 100% 
in the training group (Figures 5D,E). We also evaluated the expression 
profiles of the four candidate genes (Figures 5F–I), and the outcomes 
showed that there were statistically significant differences in candidate 
genes. GSEA analysis revealed that all four candidate genes were 
heavily enriched in immune-related pathways, such as the MAPK 
signaling pathway (Figures 6A–D). A relationship between candidate 
genes and pathways related to immune infiltration and cytokine 
production was further established by this study.

https://doi.org/10.3389/fneur.2023.1189746
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org


Shen et al. 10.3389/fneur.2023.1189746

Frontiers in Neurology 07 frontiersin.org

FIGURE 5

(A): training group’s ROC curve; (B,C): test group’s ROC curve; (D,E): artificial neural network verification of training group; (F–I): analysis of candidate 
gene expression profile in the training group (CXCL8, FOS, LEP, MTHFR, respectively).

FIGURE 6

(A–D): GSEA analysis of CXCL8, FOS, LEP and MTHFR.
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FIGURE 7

(A): measuring the RNA expression of candidate genes in blood samples using qRT-PCR; (B,C): differences of eight cytokines in the two groups.

FIGURE 8

As = Astrocyte, Mg = icroglia, In = Input, IP=Immunoprecipitated, 4 h = 4 h, 3d = 3 days. (A–C): the expressions of Lep, Fos and Mthfr in astrocyte cells and 
microglia cells of stroke group and sham group, respectively.

3.5. Qrt-PCR-based verification of 
candidate genes, cytokines validated by 
flow cytometry

In order to verify the reliability of the dataset, clinical samples 
were taken, and the expression level of candidate genes was further 
identified by qRT-PCR (see Supplementary Table S3 for specific data). 
CXCL8, FOS, and LEP revealed statistically significant differences 
(p < 0.05), but similar differences were not found in MTHFR, which 
may be due to the less number of samples. The overall results were 
similar to those of mRNA chips (Figure 7A).

Flow cytometry was used to detect cytokines in the two groups of 
cases.，we found a significant difference in IL-6 between the two 
groups (p < 0.05). This is consistent with the conclusion we predicted 
based on the GSEA analysis (Figures 7B,C).

3.6. Cell expression in animal models

Regarding the Mthfr gene, we observed that in Astrocyte cells, 
the differences between the Stroke and Sham groups were 0.66 and 
0.66 (Log2Foldchange) at 4 h and 3 days, respectively, with the Stroke 
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group showing higher expression. In Microglia cells, there was no 
significant difference between the Stroke and Sham groups at 4 h, 
with a difference of −0.05, but at 3 days, the Stroke group showed 
higher expression with a difference of 0.61. For the Lep gene, there 
was no significant difference in expression at 4 h and 3 days in 
Astrocyte cells, with differences of −0.00 and − 0.02, respectively. For 
the Fos gene, in Astrocyte cells, there was a significant difference 
between the Stroke and Sham groups at 4 h, with a difference of 3.01, 
and at 3 days, with a difference of 0.88, both showing higher 
expression in the Stroke group. In Microglia cells, there was a 
significant difference between the Stroke and Sham groups at 4 h and 
3 days, with differences of 3.35 and − 0.02, respectively, with the 
Stroke group showing higher expression (See Figure 8 and Table 1 
for details).

3.7. Immune cell infiltration analysis

In this study, using the Cibersort algorithm, the concentration of 
22 immune cells in IS samples and control samples in the training 

group was estimated (Figures 9A,B). The immune cell infiltration of 
IS and the control group was compared in the box plot (Figure 9C). 
The results revealed that there were statistically significant differences 
in memory B cells and resting mast cells in IS patients, and both were 
substantially compared to the control group. In the prognostic group 
of GSE198600, we  found similar immune infiltration B lineage 
between the groups with and without carotid-related ischemic 
cerebrovascular events (p < 0.05) (Figure 8D).

3.8. Gene-miRNA, gene-TF, and gene-drug 
network diagram

The interaction networks of genes and miRNA, genes and TF with 
genes and drugs were generated by Network analyst. Four candidate 
genes-miRNA networks were constructed, and it was found that 
hsa-mir-129-2-3p, has-mir-335-5p, and has-mir-16-5p could regulate 
the expression of CXCL8, FOS and MTHFR simultaneously 
(Figure 10A). Four candidate genes-TF networks were constructed, and 
the results revealed that CREB1 could regulate the expression of CXCL8, 

TABLE 1 Lep, Fos and Mthfr in astrocyte cells and microglia cells of stroke group and sham group, respectively.

Gene Log2Foldchange FDR Contrast Sample Timepoint Cell

Mthfr 0.658273148 0.0015194 Stroke vs Sham IP 4 hours Astrocyte

Mthfr 0.666646781 9.739E-05 Stroke vs Sham IP 3 days Astrocyte

Mthfr 0.016733677 0.99996073 Stroke vs Sham Input 4 hours Astrocyte

Mthfr −1.042966608 0.00022618 Stroke vs Sham Input 3 days Astrocyte

Mthfr −0.052261005 0.92826721 Stroke vs Sham IP 4 hours Microglia

Mthfr 0.613049601 0.00128746 Stroke vs Sham IP 3 days Microglia

Mthfr 0.040883082 0.99999794 Stroke vs Sham Input 4 hours Microglia

Mthfr 0.532884857 0.16583881 Stroke vs Sham Input 3 days Microglia

Lep −0.000231797 0.99996073 Stroke vs Sham Input 4 hours Astrocyte

Lep −0.01781688 Stroke vs Sham Input 3 days Astrocyte

Fos 3.007177925 2.48E-34 Stroke vs Sham IP 4 hours Astrocyte

Fos 0.883801901 0.00049238 Stroke vs Sham IP 3 days Astrocyte

Fos 0.914864058 0.27297506 Stroke vs Sham Input 4 hours Astrocyte

Fos −0.260105863 0.39797136 Stroke vs Sham Input 3 days Astrocyte

Fos 3.353981233 6.10E-13 Stroke vs Sham IP 4 hours Microglia

Fos −0.021996332 0.97666485 Stroke vs Sham IP 3 days Microglia

Fos 1.902812386 0.00033217 Stroke vs Sham Input 4 hours Microglia

Fos −0.247118725 0.43279267 Stroke vs Sham Input 3 days Microglia

Lep −0.000231797 0.999960729 Stroke vs Sham Input 4 hours Astrocyte

Lep −0.01781688 Stroke vs Sham Input 3 days Astrocyte

Fos 3.007177925 2.48E-34 Stroke vs Sham IP 4 hours Astrocyte

Fos 0.883801901 0.000492377 Stroke vs Sham IP 3 days Astrocyte

Fos 0.914864058 0.272975062 Stroke vs Sham Input 4 hours Astrocyte

Fos -0.260105863 0.397971358 Stroke vs Sham Input 3 days Astrocyte

Fos 3.353981233 6.10E-13 Stroke vs Sham IP 4 hours Microglia

Fos -0.021996332 0.976664854 Stroke vs Sham IP 3 days Microglia

Fos 1.902812386 0.000332169 Stroke vs Sham Input 4 hours Microglia

Fos -0.247118725 0.432792674 Stroke vs Sham Input 3 days Microglia

As, Astrocyte, Mg = microglia, In = Input, IP=Immunoprecipitated, 4 h = 4 h, 3d = 3 days.
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FIGURE 9

(A): each sample’s relative percentage of 22 immune cells; (B): The correlation among the 22 immune cells; (C): immune infiltration difference 
between IS and control samples; (D): Immune infiltration difference between the groups with and without carotid-related ischemic cerebrovascular 
events.

FOS, and MTHFR simultaneously, and FOXL1 could regulate the 
expression of CXCL8, LEP, and MTHFR simultaneously (Figure 10B).

Based on Drug Bank (40) and Comparative Toxicogenomics 
Database (41), a gene-drug interaction network was established 
(Figure 10C), and four of the most relevant drugs (Nickel, Arsenic, 
Aflatoxin B1, and sodium arsenite) were selected.

3.9. Candidate gene clusters’ consensus 
clustering (CC) analysis

By CC analysis of four related candidate gene models, 
we  observed that there were the most substantial differences 
among different groups (Figures 11A,B), so they were divided into 
C1 and C2 categories. Using the PCA diagram, it was revealed that 
the gene expression patterns of different clusters were different 
(Figure 11C). The expression levels of related genes in the two 
subgroups were visualized by a violin diagram (Figure  11D). 
There was a statistically significant difference among the CXCL8 
and FOS (p < 0.05).

3.10. GSVA of biological pathway among 
subsets of candidate genes

We found that TNFA signaling via NFKB, UV response up, 
and inflammatory response in group C1 was lesser compared to 

group C2, but protein secretion in group C1 was greater as 
compared to group C2 (Figure  12A). The KEGG pathways, 
including amino sugar, galactose metabolism, beta-alanine 
metabolism, and nucleotide sugar metabolism in group C1, were 
greater compared to group C2. However, the pathways of type 
I diabetes mellitus and Circadian rhythm in group C1 were lesser 
than those in group C2 (Figure 12B). In the Reatcome pathway, 
HuR (ELAVL1) binds and stabilizes mRNA, MET receptor 
recycling, and TP53 Regulates Transcription of Caspase Activators 
and Caspases in group C1 were significantly greater compared to 
group C2, but Cytokine Network and p75NTR negatively regulate 
cell cycle via SC1 were lower than those in group C2 (Figure 12C). 
The GSVA analysis of the two groups with different prognoses in 
the verification group GSE198600 revealed that they were very 
similar to the CC group, and they were significantly enriched in 
several pathways of the glycan metabolism (Figure 12D). Target 
genes are predictive of IS risk grouping in unknown situations, 
and the reasons for such grouping criteria may be  related to 
psychiatric disorders, especially schizophrenia, and 
gut microbiota.

3.11. Functional differences among 
subgroups

Through Limma analysis, 375 DEGs were obtained, from which 
237 were down-regulated and 138 were up-regulated (Figure 13A). 
FEA and KEGG analysis revealed that the enrichment of differential 
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genes was primarily in the pathways “TNF signaling pathway,” “il-17 
signaling pathway,” and “Cytokine-cytokine receptor interaction” 
(Figure 13B). GO analysis showed the differential genes were chiefly 
located in the “intrinsic component of plasma membrane” and 
“secretory granule” on the basis of CC (Figure 13C). The primary 
biological processes (BP) of differential genes include the “immune 
system process” and “regulation of molecular function” (Figure 13D). 
MF analysis revealed that the main processes of the differential genes 
were “identical protein binding” and “signaling receptor binding” 
(Figure  13E). Through GO enrichment and the KEGG analysis, 
we observed that these differential genes were primarily enriched in 
immune system-related pathways.

4. Discussion

Existing studies have shown that ischemic stroke (IS) with 
dementia, depression, and other mental illness symptoms are 

common. The gut microbiome (GM) plays a critical role in 
mental illness and IS (42). However, this study aimed to identify 
the differences between genes related to ischemic stroke (IS) 
and mental disorders in the gut microbiome (GM) through 
bioinformatics analysis and qRT-PCR verification, and to 
predict drugs related to IS through candidate genes. Four 
candidate genes (CXCL8, FOS, LEP, MTHFR), three miRNA 
(hsa-mir-129-2-3p, has-mir-335-5p, and has-mir-16-5p), and 
two TFs (CREB1, FOXL1) were identified, and the four most 
related drugs (Nickel, Arsenic, AflatoxinB1, and sodium 
arsenite) were obtained.

The results of this study suggest that the gut microbiome may play 
a critical role in mental illness and IS. CXCL8, FOS, LEP, and MTHFR 
were found to be potential candidate genes for IS. These genes have 
been previously linked to other diseases and pathways, including 
chemokine activity, interleukin-8 receptor binding, and metabolism 
of water-soluble vitamins and cofactors. In addition, several studies 
have shown a significant correlation between FOS and IS, and 
MTHFR gene polymorphism and the increased risk of IS. Our study 

FIGURE 10

(A): interaction between candidate genes and miRNA; (B): Interaction between candidate genes and TFs; (C): gene-drug interaction network (red 
represents candidate genes, orange data comes from DrugBank, green data comes from Comparative Toxicogenomics Database).
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FIGURE 11

(A,B): CC analysis of related candidate genes; (C): PCA diagram shows subclusters’ distribution; (D): violin diagram shows the differential expression of 
related candidate genes among subgroups.

supports these findings and provides further evidence of the role of 
these genes in IS.

Moreover, we found that IL-6, glucose metabolism, and B cell 
infiltration may be common pathways between schizophrenia and 
IS. This suggests that there may be a genetic correlation between 
these two diseases, and further studies are needed to clarify 
this relationship.

CXCL8 is a gene that codes for a protein and has been linked to 
diseases such as adult respiratory distress syndrome and melanoma. 
Pathways related to CXCL8 include TGF-pathway and MIF-mediated 
glucocorticoid regulation, as well as gene ontology annotations for 
chemokine activity and interleukin-8 receptor binding. Mouse 
experiments conducted by Hui Lv et al. suggest that CXCL8 may affect 
the development of IS by regulating the PI3K/Akt/NF-κB signaling 
pathway. Silencing CXCL8 led to a significant decrease in the 
deflection index, improved the size of the infarct, neurological 
function, and inhibited apoptosis index and glial cell loss (43). FOS is 
a gene that codes for a protein and is linked to diseases such as 
osteoblastoma and congenital systemic lipodystrophy. Pathways 
related to FOS include MyD88-dependent cascades initiated by 
endosomal and prolactin signal transduction. Gene ontology 
annotations for FOS include DNA binding to transcription factor 
activity and binding. Multiple bioinformatics analysis studies (44) 
have suggested a correlation between FOS and IS, and qRT-PCR 
verification has shown a statistically significant difference in IS-related 
FOS (p < 0.01).MTHFR is a gene that codes proteins. MTHFR is a 
gene that codes for proteins and is linked to diseases such as 
homocystinuria and folate-sensitive neural tube defects caused by a 

lack of N-methylenetetrahydrofolate reductase activity. Pathways 
related to MTHFR include the metabolism of water-soluble vitamins 
and cofactors, the methotrexate pathway (cancer cells), 
pharmacodynamics, and pharmacokinetics. Meta-analyses have 
shown a significant relationship between the C677T mutation of the 
MTHFR gene and the increased risk of IS. The MTHFR gene 
polymorphism is related to an increased IS risk, with a higher 
correlation observed in the Asian population (45). Ali Sazci et al. 
found that the MTHFR 1298C allele, C1298C genotype, and C677C/
C1298C compound genotype are closely associated with ischemic 
stroke (46).

This study not only identified a genetic correlation between 
schizophrenia and IS, but also suggests that IL-6, glucose metabolism, 
and B cell infiltration are likely to be common pathways between these 
diseases. Four candidate genes were predicted, and the four most 
related drugs (Nickel, Arsenic, AflatoxinB1, and sodium arsenite) 
were obtained. Several studies have suggested a correlation between 
heavy metal levels and IS, with higher plasma concentrations of 
arsenic, aluminum, and cadmium and lower concentrations of iron 
and selenium increasing the risk of IS (47). Therefore, drugs 
containing Nickel, Arsenic, and sodium arsenite should be avoided in 
drug selection.

Further clinical data, particularly regarding schizophrenia 
and IS comorbidities and their follow-ups, are needed to clarify 
the causal relationship between SC, gut microbes, and 
IS. Relevant case collections and a large amount of clinical data 
and information will be  needed to verify the conclusions of 
this study.
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FIGURE 12

(A): HALLMARK pathway’s GSVA; (B): KEGG pathway’s GSVA; (C): Reatcome pathway’s GSVA; (D): A GSVA analysis of two groups in the validation set 
GSE198600 with different prognoses.

FIGURE 13

(A): subgroup DEGs’ Volcano plot; (B): differential genes’ KEGG analysis; (C): differential genes’ GO analysis of cell composition; (D): differential genes’ 
GO analysis of the biological process (BP); (E): differential genes’ GO analysis of molecular function (MF).
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5. Conclusion

Through comprehensive analysis, a diagnostic prediction model 
with good effect was obtained. Both the training group (AUC 0.82, 
CI 0.93–0.71) and the verification group (AUC 0.81, CI 0.90–0.72) 
had a good phenotype in the qRT-PCR test. And in verification 
group 2 we validated between the two groups with and without 
carotid-related ischemic cerebrovascular events (AUC 0.87, CI 
1–0.64). Furthermore, we investigated cytokines in both GSEA and 
immune infiltration and verified cytokine-related responses by flow 
cytometry, particularly IL-6, which played an important role in IS 
occurrence and progression. Therefore, we speculate that mental 
illness may affect the development of IS in B cells and IL-6 in T 
cells. MiRNA (hsa-mir-129-2-3p, has-mir-335-5p, and has-mir-
16-5p) and TFs (CREB1, FOXL1), which may be  related to IS, 
were obtained.
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