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Background: Pediatric acquired brain injury (pABI) profoundly affects 
cognitive functions, encompassing IQ and executive functions (EFs). 
Particularly, young age at insult may lead to persistent and debilitating 
deficits, affecting daily-life functioning negatively. This study delves into the 
intricate interplay of age at insult, time post-insult, and their associations 
with IQ and EFs during chronic (>1  year) pABI. Additionally, we  investigate 
cognitive performance across different levels of global function, recognizing 
the multifaceted nature of developmental factors influencing outcomes.

Methods: Drawing upon insult data and baseline information analyzing 
secondary outcomes from a multicenter RCT, including comprehensive 
medical and neuropsychological assessments of participants aged 10 to 
17  years with pABI and parent-reported executive dysfunctions. The study 
examined associations between age at insult (early, EI; ≤7y vs. late, LI;  
> 7y) and time post-insult with IQ and EFs (updating, shifting, inhibition, and 
executive attention). Additionally, utilizing the Pediatric Glasgow Outcome 
Scale-Extended, we explored cognitive performance across levels of global 
functioning.

Results: Seventy-six participants, median 8  years at insult and 5  years 
post-insult, predominantly exhibiting moderate disability (n  =  38), were 
included. Notably, participants with LI demonstrated superior IQ, executive 
attention, and shifting compared to EI, [adjusted mean differences with 95% 
Confidence Intervals (CIs); 7.9 (1.4, 14.4), 2.48 (0.71, 4.24) and 1.73 (0.03, 3.43), 
respectively]. Conversely, extended post-insult duration was associated 
with diminished performances, evident in mean differences with 95% CIs 
for IQ, updating, shifting, and executive attention compared to 1–2  years 
post-insult [−11.1 (−20.4, −1.7), −8.4 (−16.7, −0.1), −2.6 (−4.4, −0.7), −2.9 
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(−4.5, −1.2), −3.8 (−6.4, −1.3), −2.6 (−5.0, −0.3), and −3.2 (−5.7, −0.8)]. Global 
function exhibited a robust relationship with IQ and EFs.

Conclusion: Early insults and prolonged post-insult durations impose 
lasting tribulations in chronic pABI. While confirmation through larger 
studies is needed, these findings carry clinical implications, underscoring 
the importance of vigilance regarding early insults. Moreover, they dispel 
the notion that children fully recover from pABI; instead, they advocate 
equitable rehabilitation offerings for pABI, tailored to address cognitive 
functions, recognizing their pivotal role in achieving independence and 
participation in society. Incorporating disability screening in long-term 
follow-up assessments may prove beneficial.

KEYWORDS

acquired brain injury, intellectual ability, executive function, long-term outcome, 
child, adolescent

1 Introduction

Acquired brain injury (ABI) is sustained after birth by traumatic 
brain injury (TBI) or atraumatic brain insults such as tumor, stroke, 
hypoxia, or infection (1). Common sequelae following pediatric ABI 
(pABI) are neurological problems (2), fatigue (3) and cognitive, social, 
emotional, and behavioral deficits, leading to reduced participation, 
quality of life, and pervasive problems in everyday functioning (4–7). 
The majority may experience persistent cognitive impairments, 
typically affecting processing speed, attention, and memory, but also 
intelligence (IQ) and particularly executive functions (EFs) (8–16).

Generally, IQ and specifically verbal IQ is regarded as more robust 
to injury, and thus less commonly impaired (17). However, there are 
reports of negative consequences on IQ after pediatric TBI (8, 18), 
brain tumor (14), stroke (19) and brain infections (20). Moreover, the 
consequences may manifest over time (21–23), mainly affecting 
nonverbal (perceptual–spatial) skills (24–26). Furthermore, EFs are 
believed to have the most pervasive and debilitating consequences of 
pABI (27) as these top-down cognitive processes are necessary for 
goal-directed and self-regulating behavior (28–33). EFs are typically 
described as three interrelated, separable processes (29–31): (a) 
updating (i.e., holding information in mind and manipulating it), (b) 
shifting (i.e., flexibly switching perspectives, attention or responses), 
and (c) inhibition (i.e., ignore distraction, focus, and suppress or/resist 
pre-potent responses). Some have proposed extending the model to 
highlight the importance of attentional control or executive attention 
(33–36). EFs develop from childhood to late adolescence, through 
differentiation (37), and by dissimilar trajectories (38, 39). Inhibition, 
shifting, and executive attention are known to develop rapidly during 
pre-school years (40–42) before slowing down during adolescence (43, 
44), or continue developing during middle childhood and adolescence 
(45). Unlike the others, updating or working memory (46, 47) seems 
to have a more prolonged development (38, 48). Yet, adult levels of EFs 
may not be reached until late adolescence or early adulthood (42, 49). 
Of note, rapid brain maturation is associated with enhanced 
vulnerability for insult (50, 51). Even though executive dysfunctions 
are common following pABI, they often go undetected, are 
misattributed or not properly addressed (52, 53), this may potentially 
intensify the dysfunctions over time (54).

Injury mechanisms and pathological processes instigated by ABI, 
differ significantly between adults and children, with more diffuse (55, 
56) and persistent impairments in pABI (18, 57). In pediatrics, the 
effects of ABI may not cease to evolve after the acute period and initial 
recovery, but instead go on due to alterations in pace and course of 
brain maturation, connectivity and the acquisition of new skills (18, 
58, 59). Thus, skills may not develop as expected, and given the 
protracted nature of development, deficits may emerge over time and 
in some cases, the deficits become fully evident years after the insult 
(60). The discrepancies to healthy peers, therefore, tend to escalate 
over time as demands increase (5). Consequently, pABI is recognized 
as a chronic health condition (61), leading to childhood mortality, 
morbidity, and acquired disability (62, 63). Surprisingly, and despite 
the lasting consequences, the pediatric population remains remarkably 
underserved and understudied in regard to necessary cognitive 
rehabilitation following pABI (64–68). In order to increase the 
knowledge base, there is a need to develop a deeper understanding of 
recovery, rehabilitation, and long-term implications for the pABI 
population. Research should focus on the distinct features of pABI 
and the developmental aspects.

High variability in pediatric long-term outcomes (69) makes 
prediction difficult (70, 71) and may hamper remediation attainment. 
Developmental stage or age at insult influence long-term cognitive 
outcome (72). However, the relationship has proven to be complex 
(73) and non-linear (74). Contradictory findings are likely a result of 
multiple factors influencing long-term outcomes (70). Associations 
between early insults and poorer outcomes within IQ, attention, 
memory, and EFs applies across different pABI samples (18, 20, 23, 
75–79), which point to key similarities related to age and development. 
Anderson and colleagues (72) found the worst and most universal 
cognitive deficits in pediatric TBI (pTBI) before the age of two, and in 
contrast more favorable outcomes after the age of seven. Preschool 
years and adolescence may represent sensitive periods (80, 81) 
associated with increased vulnerability due to rapid maturation of 
function or underlying neural networks (60, 70, 78). Focal brain 
lesions sustained in childhood generally show favorable recovery (82). 
However, more global and diffuse insults frequently seen in 
preschoolers (83, 84) appear more threatening to the developing brain 
(18). Although this knowledge has changed the clinical administration 
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of aggressive cancer treatment in the youngest patients (85, 86), the 
risk of underestimating the consequences of early insults prevails. To 
highlight periods of critical importance, studies have operated with 
clinically meaningful categorizations (e.g., preschool, school-aged 
children, or adolescents). Interestingly, a hypothesis of a clinically 
meaningful distinction pertaining to insults suffered before and after 
the age of seven in pTBI showed favorable outcomes in children 
exceeding 7 years when compared to the younger (18, 25). To our 
knowledge, this remains to be  investigated in a sample of mixed 
pABI etiologies.

In addition to age, it is important to account for time post-insult 
given the occurrence during active development and brain maturation 
(18, 58, 59). In terms of recovery after pABI, the first 2 years post insult 
have been the most thoroughly studied and there is a general 
agreement that most cognitive recovery occurs during this time band 
(5, 8, 87–89). Studies addressing recovery 3 to 4 years post-insult have 
demonstrated great variability and inconsistent results; plateau of 
symptoms with persistent deficits (90, 91), stepwise worsening (39), 
or continued recovery (92). Inconsistent results, particularly related 
to severity and age at the insult, have also been found in the prolonged 
recovery phase, excess of 5 years (10, 81, 92, 93), and 10 years post-
insult (20, 94, 95).

Several studies have demonstrated poorer cognitive performances 
with increased severity (8) and a “double hazard” where a more severe 
insult earlier in development has the most devastating outcomes. This 
has been demonstrated in TBI (18), tumor (96–98) and brain 
infections (83). In addition, sex differences may affect outcomes as 
seen in pTBI (99) stroke (100) and tumor (101). Moreover, there may 
be environmental factors influencing outcome such as social status 
(e.g., maternal education) (66) or family unit (i.e., if the child lives in 
a single versus two-parent households) (102). Moreover, etiology may 
contribute to dissimilar patterns of dysfunction, which necessitate 
accounting for potential confounding factors when assessing 
outcomes (102–104).

Essential to any assessment is the ability to document that 
symptoms such as cognitive deficits, are associated with functional 
impairments (105). Persons with ABI struggle with ongoing functional 
limitations characterized by problems executing activities and with 
involvement in life situations affecting quality of life and daily 
functioning (106). There is no consensus on how to measure global 
functioning, but adult ABI studies, including TBI (107) and atraumatic 
insults (106), have used the Glasgow Outcome Scale- Extended 
(GOS-E). Cognitive skills may mediate the effect of ABI on daily 
functioning (108, 109). Cattelani et al. (110) found that those who 
were re-employed following TBI, scored 20 points higher on formal 
IQ tests compared to their non-employed counterparts. However, the 
relationship between cognitive performance and global functioning is 
not well understood, warranting studies on cognitive performance at 
different levels of functional recovery (111).

Problems in daily functioning are often reported following pTBI, 
and parents report greater adaptive deficits in children with severe 
insults compared to moderate or mild (112, 113). Importantly, 
uncovering deficits in everyday functioning is crucial since such 
deficits in childhood go on and predict delayed or failure to achieve 
adult milestones (e.g., work, independence, and meaningful 
relationships) (114, 115). Research employing a single measure of 
global functioning following pABI is scarce (116) even though there 
is a developmentally appropriate version of GOS-E, the pediatric 

version of GOS-E (GOS-E Peds) (117). Despite strong associations to 
functional independence (measured by Vineland Adaptive Behavior 
Scale) lending support to its concurrent validity for assessing long-
term outcomes (118, 119), GOS-E Peds is rarely used. Prospective 
pABI studies have demonstrated significant improvement in disability 
during the first year post-injury, followed by minor subsequent 
improvement (120, 121). Studies that have employed different 
measures suggest that GOS-Peds might be more sensitive to change 
over time (122) and GOS-E Peds is recommended as a global outcome 
measure (123). In general, good cognition relates to favorable 
functional outcomes; however, adaptive dysfunction may be present 
in the context of broadly intact IQ in children (124), and clinical 
pediatric groups have demonstrated lower adaptive levels than 
expected from their IQ level (125). Since adaptive behavior heavily 
relies on planning and organizational skills, investigating executive 
dysfunctions may help explain everyday functional difficulties (16, 52, 
126–130). Neumane and colleagues (122) found that up to 80% of 
children with severe pTBI had significant disabilities 2 years post-
injury. They found that poorer functional outcome was significantly 
associated with lower IQ and increased EF impairments. This is in 
keeping with previously demonstrated associations between GOS-E 
peds and IQ (117) and specific cognitive functions (131).

Collectively, there is an immediate need to enhance the evidence-
base following pABI to promote more understanding and assist 
treatment methods to emerge. As one of few studies, we report on 
brain injury symptoms, cognitive functioning, and level of global 
function in the chronic phase (>1 year) of pABI, and a population base 
including more than two thirds of Norwegian patients assessed for 
pABI the last decade (132). The data was retrieved from one of the first 
randomized controlled trials (RCTs) investigating the efficacy of 
pediatric cognitive rehabilitation. Distinct from most previous studies, 
the current study aim to investigate hypotheses across different pABI 
etiologies due to common difficulties in the chronic phase. We aim to 
disentangle how factors relevant to long-term outcomes, namely age 
at insult and time post-insult are associated with cognitive outcomes 
adjusting for factors previously shown to have prognostic value. 
Moreover, we propose novel insight into cognitive performance at 
different levels of global functioning in daily life. Based on previous 
studies, suggesting that preschool age is a particularly sensitive period, 
we use a clinically relevant categorization investigating if early insult 
(EI, ≤ 7 years of age) is associated with poorer IQ and EFs when 
compared to late insult (LI, > 7 years of age). We hypothesize that EI 
will be associated with poorer IQ and EFs. Moreover, we take into 
account ongoing developmental and recovery processes, by assessing 
the association between time-bands post-insult and IQ and EFs, 
hypothesizing that the best cognitive performances are within the first 
2 years of insult indicative of most spontaneous recovery. Finally, 
we  explore cognitive performance at different levels of global 
functioning in daily life as categorized by GOS-E Peds.

2 Materials and methods

2.1 Study setting and design

This study presents baseline data collected from January 2017 
through April 2019 from a multicenter parallel RCT (132, 133) from 
a population base including more than two thirds of Norwegian 
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patients assessed for pABI the last decade and conducted at pediatric 
university hospitals.

2.2 Participants

Eligible participants were 10–17 years old, with a verified pABI 
diagnosis (TBI, brain tumor, stroke, hypoxia/anoxia or brain 
infections/inflammations), at least 12 months after injury/illness/
completed cancer therapy, with reported executive dysfunction in 
daily life determined by a semi-structured interview developed for this 
study (133).

Exclusion criteria included: (i) pABI before 2 years of age, (ii) 
cognitive, sensory, physical, or language impairments impairing the 
ability to attend regular school (i.e., primarily follow educational goals 
of peers and regular classroom teaching), thus effectively engage and 
benefit from the intervention, (iii) pre-insult neurological disease, 
severe psychiatric disorder and/or use of stimulant medication, (iv) 
recently detected brain tumor relapse, or (v) not fluent in Norwegian 
(133). None of the participants had received specific cognitive 
rehabilitation prior to the study.

2.3 Recruitment

Invitation letters were sent to potential participants (n = 223) 
identified by hospital discharge diagnosis and record information 
from three university hospitals with trauma referral centers for the 
Central, South-Eastern, and Northern regions of Norway, respectively, 
covering all children assessed for pABI in 3 out of 4 health care regions 
in Norway (133). The information letter solicited participants 
experiencing executive dysfunction in daily life. Following a positive 
invitation response, written informed consent was obtained from 
potential participants (>16 years) or primary caregivers. Of the 99 
individuals who were considered eligible for a semi-structured 
interview, 10 participants did not meet inclusion criteria and were 
excluded, and two participants declined to participate. Once the 
participants had been randomized (n = 87), a baseline assessment of 
76 participants was completed. Pre-inclusion attrition included 11 
participants (after randomization, before baseline), due to worsening 
of illness, initiation of drug testing, or intensification of physical 
rehabilitation (n = 9), and new information indicating obvious 
violation of eligibility not previously communicated (n = 2).

2.4 Measures

2.4.1 Demographic and injury variables used in 
analyses

The demographic variables were collected by a systematic 
interview by a study nurse; Family unit is defined as the child’s current 
living situation as informed by the primary caregiver (i.e., intact 
family unit = living with both parents). Maternal education level serves 
as a proxy for socioeconomic status and is defined as the highest 
educational level of the child’s mother. Etiology was divided into three 
categories; brain tumor, TBI and other (i.e., stroke, infection/
inflammation, hypoxia). Family unit, maternal education, sex, and 

etiology may contribute to dissimilar patterns of dysfunction, and thus 
should be accounted for when assessing outcome (103, 104).

2.4.2 Independent variables

2.4.2.1 Age at insult
Based on expected cerebral maturational spurts increasing 

vulnerability to insults, the participants are presented according to age 
at insult: early insult (EI) ≤ 7 years and late insult (LI) > 7 years (25).

2.4.2.2 Time post-insult
The time variable was defined as years after the injury for TBI, 

years after brain surgery (or if no surgery, years post diagnosis) for 
brain tumors, and years after hospital admission (for other etiologies). 
Three clinically meaningful post-insult time categories, expanding on 
Babikian and Asarnow’s (8) review of outcome after pediatric TBI, 
presented: 1-2-years, 3-4-years and 5-12-years. The latter time-band 
represent a less researched period on cognitive and adaptive function 
(108) also coinciding with the termination of most clinical follow-up 
programs for pABI in Norway (86).

2.4.3 Outcome measures
Full scale IQ was estimated by the subscales Vocabulary, 

Similarities, Digit Span, Coding, Block Design and Matrix reasoning 
from the Wechsler Intelligence Scale for Children- Fifth Edition 
(WISC-V) (134), which is an individually administered test battery 
(M = 100, SD = 15, subscales M = 10, SD = 3).

The EF assessments applied are the same tests as used for the RCT 
(133). Standardized neuropsychological tests were used to assess; EF 
updating, Digit Span (WISC-V), presented as scaled scores (M = 10, 
SD = 3) (134), EF shifting, Trail Making Test 4 (total time) (TMT4, 
D-KEFS) presented as scaled scores (M = 10, SD = 3) (135), EF 
inhibition, the Conners’ Continuous Performance Test, 3ed (CPT-III, 
Commissions) presented as T-scores (inverted) (M = 50, SD = 10) 
(136), and finally EF executive attention, the Color Word Interference 
Test 4 (CWIT4) presented as scaled scores (M = 10, SD = 3) (135). 
Applicable to all, higher scores indicate better performance.

All performance-based tests described have demonstrated 
adequate validity and reliability, and most have been recommended 
by McCauley et al. (123) as outcome measures for research.

2.4.4 Categorization of disability/recovery
Global function (i.e., ability to resume independent living, 

education and leisure activities) was assessed with the GOS-E, 
Pediatric Revision (GOS-E Peds) (117), which is an adaptation of the 
validated adult version (GOS-E). GOS-E Peds assesses global disability 
and recovery after brain injury, i.e., functional independence inside 
and outside the home, capacity for work/school, participation in social 
and leisure activities, and family and peer interactions (137). Further, 
it provides developmental specificity in the pediatric population with 
good predictive, criterion, and discriminative validity (117). It is the 
recommended global outcome measure in pediatric TBI (123) and 
more recently, it has been used in studies of other etiologies than pTBI 
(138). GOS-E Peds consists of 8 levels (from a minimum score of 1 to 
a maximum score of 8). Level 1 (death) and Level 2 (vegetative state) 
was not applicable in the current study. Severe disability: Level 3 
(lower severe, i.e., always needs support in the home) and Level 4 
(upper severe, i.e., sometimes needs support at home or always outside 
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of the home). Moderate disability: Level 5 (lower moderate, i.e., self-
contained in school, unable to participate in social activities, or daily 
intolerable psychosocial difficulties) and Level 6 (Upper moderate, i.e., 
reduced academic capacity, significant decrease in social/leisure 
participation, or frequent/weekly psychosocial difficulties). Good 
recovery: Level 7 (lower good, i.e., slightly reduced social/leisure 
participation, occasional psychosocial difficulties, or other persisting 
symptoms), and Level 8 (upper good, i.e., no identifiable difficulties 
related to the injury). For analysis purposes, we merged lower and 
upper levels into three levels of disability/recovery (69); severe (level 
3–4), moderate (level 5–6) and good recovery (level 7–8).

2.4.5 Test-procedures
Experienced test technicians and psychology students (master 

level) conducted all assessments. Assessments were limited to 1 day, 
and the tests were arranged in blocks and the block order were 
randomly assigned to participants. As such, the order of test 
administration varied among the participants avoiding a test regime 
where a particular test was administered the last for all participants. 
Moreover, participants had frequent breaks and a one-hour lunch 
break to alleviate tiredness. To compensate for variation associated 
with multiple assessors, a Standard Operating Procedure (SOP) 
described the protocol and procedures for assessment, and the test 
administrators received training from an experienced 
clinical neuropsychologist.

2.5 Ethics statement

Study procedures and monitoring were performed according to 
ICH Guideline for Good Clinical Practice and Norwegian procedures 
and regulations for Clinical Trials, described by the Norwegian 
Clinical Studies Infrastructure Network, https://www.norcrin.no/
in-english/. Written informed consent was signed for all participants. 
The study was approved by the Regional Committees for Medical and 
Health Research Ethics, Norway (2017/772/REK), and conducted in 
accordance with principles of the Helsinki Declaration and the 
standards for Ethical Research Involving Children (ChildWatch 
International and UNICEF). Clinical Trial Registration No.: 
NCT03215342.

2.6 Statistical analysis

Sample demographics and outcomes are presented descriptively, 
as numbers and percentages, median and interquartile range (IQR), 
or mean (M) and standard deviation (SD) as suitable. Separate data 
are presented for the clinically meaningful division of age at insult 
(early insult, EI, and late insult, LI) and checked for potential 
differences between the groups on demographics, insult 
characteristics, and baseline assessments. Normality assumptions were 
checked by visual inspection of histograms and residual plots and 
checked for multi-collinearity and homoscedasticity. No imputation 
of missing scores was made.

Separate linear regression models were employed for the 
independent variables (i.e., age and time). We investigated associations 
between age at insult (EI and LI) and the dependent variables (IQ and 
EFs) measured by performances in standardized neuropsychological 

tests. Like age at insult, linear regression modeling was employed to 
investigate associations between time post-insult (1-2-years, 3-4-years, 
and 5-12-years) and the dependent variables (IQ and EFs). For each 
of the analyses we controlled for potential confounders; maternal 
education, family unit, sex and etiology, in a step-wise inclusion to a 
multivariable model constituting the adjusted analyses (henceforth 
referred to as adjusted analyses).

Age at insult and time-post insult may correlate, but collinearity 
checks did not reveal strong associations. We  performed 
supplementary analyses including both variables in the same 
multivariable regression model to try to assess their unique 
contributions to the dependent outcome variables.

IQ and EFs assessed by neuropsychological tests were stratified for 
different levels of global function (GOS-E Peds categories; severe 
disability, moderate disability, and good recovery). In addition, 
regression analyses investigating the association between early vs. late 
insults and IQ and EFs were stratified by global function (disability 
level). All test scores presented are age-corrected standardized scores 
(scaled scores or T-scores) with norms from test providers. All 
statistical testing employed an alpha of 0.05 (two-tailed). Due to the 
explorative nature of the study, no adjustments for multiple 
comparisons were made (139), and p-values between 0.01 and 0.05 
should be interpreted with caution. IBM-SPSS Statistics version 27 
and Stata 16 were used for data analyses.

3 Results

3.1 Sample characteristics

In total, 76 children and adolescents with a median age of 13 years 
(IQR; 11 to 15) were included. A slight majority of the participants 
were females (57%) and two-thirds lived in intact family units. 
Sixty-one percent of the mothers had a university or college degree. 
The median age at insult was 8 years (IQR; 5.5 to 10.5). Thirty-three 
participants (43%) were categorized with an early insult (EI; ≤ 7 years) 
and 43 participants (57%) with a late insult (LI; > 7 years). Median 
post-insult time was 5 years (IQR; 3 to 7) in the whole sample, 6 (IQR; 
5 to 8) in EI, and 3 (IQR; 1 to 5) in LI. Brain tumor was the dominant 
cause of insult, diagnosed in 29 participants (38%). Approximately 
two-thirds had received critical care at the time of insult, with a 
median of 2 days at an intensive care unit (IRQ; 1 to 7), the proportions 
of participants that had been admitted to intensive care at the time of 
insult were evenly distributed between EI and LI. All participants had 
completed either computed tomography (CT), and/or magnetic 
resonance imaging (MRI) at some point, and 67 (88%) had abnormal 
findings. Thirty-five (46% of the entire sample) underwent brain 
surgery, 25 (86%) in the tumor group, either as the sole procedure or 
in combination with chemotherapy and/or radiation. Importantly, EI 
and LI groups were similar with regard to demographics, background, 
and insult characteristics (Table 1).

Seventy-three participants completed the GOS-E Peds, and out of 
these 17 (23%) were categorized with severe disability, 38 (52%) with 
moderate disability, and 18 (25%) with good recovery (Table 1). The 
proportion categorized with severe disability was twice as high in EI 
(32%) compared to LI (17%). Moreover, 33 participants (45%) had 
neurological deficits, 55% in EI, and 37% in LI. Concerning etiology, 
17 (61%) in the tumor group had neurological deficits, 4 (24%) with 
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TABLE 1 Demographics, injury characteristics and baseline characteristics according to age at insult.

Early insult (EI) a n  =  33 Late insult (LI) b n  =  43 Total n  =  76

Demographic variables

Age at assessment, median (IQR), yrs. 11 (10, 13) 15 (13, 16) 13 (11, 15) ***

Sex, girls, n (%) 17 (52) 26 (60) 43 (57)

Intact family unit, n (%) c 22 (67) 28 (65) 50 (66)

Maternal educational level, n (%) d

Primary or high school 12 (36) 15 (35) 27 (36)

University/ college 19 (58) 27 (63) 46 (61)

Insult characteristics

Age at insult, median (IQR), yrs. 5 (4, 6) 10 (8, 13) 8 (5.5, 10.5)***

Time post-insult, median (IQR), yrs. 6 (5, 8) 3 (1, 5) 5 (3, 7) ***

Primary injury, n (%)

Brain tumor 12 (36) 17 (40) 29 (38)

Traumatic brain injury 5 (15) 13 (30) 18 (24)

Other 16 (48) 13 (30) 29 (38)

Stroke 11 (33) 6 (14) 17 (22)

Inflammation 3 (9) 4 (9) 7 (9)

Anoxia 2 (6) 3 (7) 5 (7)

Admitted to intensive care unit, n (%) 22 (69) 27 (65) 49 (65)

Admitted intensive care unit, median 

(IQR), days

3 (1, 7) 2 (1, 6) 2 (1, 7)

Confirmatory cerebral imaging, n (%) e 31 (94) 36 (84) 67 (88)

RH / LH 11 (33) /13 (39) 17 (40) /15 (35) 28 (37) /28 (37)

Bilateral 8 (24) 9 (21) 17 (22)

Cerebellum 14 (42) 12 (28) 26 (34)

Subcortical white matter 11 (33) 9 (21) 20 (26)

Brainstem 8 (24) 10 (23) 18 (24)

Brain surgery f 16 (48) 19 (44) 35 (46)

Brain surgery in the tumor group 10 (83) 15 (88) 25 (86)

Chemotherapy 4 (12) 7 (16) 11 (14)

Radiation therapy 3 (9) 5 (12) 8 (11)

Received rehabilitation, n (%) g 25 (83) 36 (86) 61 (85)

Rehabilitation initiation post insult, 

median (IQR), days

3.5 (1, 7) 4 (2, 7) 4 (2, 7)

Medical examination and survey at baseline h

Disability; Severe/moderate/good 

recovery, n (%)

10 (32) / 13 (42) / 8 (26) 7 (17)/ 25 (60) / 10 (24) 17 (23) / 38 (52) / n (25)

Neurological deficits (yes), n (%) 17 (55) 16 (37) 33 (45)

Paralysis, n (%) 19 (58) 8 (19) 27 (36) ***

Epilepsy, n (%) 5 (15) 0 (0) 5 (7) **

Fatigue, total score, median (IQR) i 57 (50, 72) 53 (35, 68) 56 (40, 70)

Clinical fatigue, n (%) i 22 (67) 35 (81) 57 (75)

Aid from the Educational Psychological 

Service (EPS) in school, n (%) j

21 (68) 21 (50) 42 (58)

(Continued)
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TBI, and 12 (41%) with other etiologies. Twenty-seven participants 
(36%) reported having paralysis and five participants reported 
epilepsy, all with epilepsy were in the EI group. Fifty-seven (75%) of 
the participants obtained scores indicating clinical fatigue (<70), 22 
(67%) in EI, and 35 (81%) in LI. Forty-two (58%) participants received 
aid from the Educational Psychological Service in the school setting, 
21 (68%) in EI, and 21 (50%) in LI.

3.2 Associations between age at insult and 
IQ and EFs

The mean standardized IQ score among participants was 88 in the 
EI group and 96 in the LI group. Adjusted for maternal education, 
family unit, sex, and etiology, the estimated mean difference was 7.9 
(95% Confidence Interval, CI: 1.4, 14.4) (Figure  1) 
(Supplementary Table 1 for the unadjusted analyses).

A total of 23 (32%) participants scored one standard deviation (15 
IQ points) or more below the normative mean (100 IQ points), 16 
(52%) in EI compared to 7 (17%) in LI. Regarding IQ subtests, the 
difference between EI and LI was most prominent in the nonverbal 
tests (Supplementary Table 2).

As with IQ, the adjusted analyses demonstrated better 
performance with greater age at insult for EFs shifting (mean 
difference 2.5: 95% CI 0.7, 4.2) and EFs executive attention (mean 
difference 1.7: 95% CI 0.0, 3.4), but not for updating (mean difference 
1.0: 95% CI −0.4, 2.5) and inhibition (mean difference 3.0: 95% CI 
−1.1, 7.1) (Figure 1).

3.3 Associations between time post-insult 
and IQ and EFs

Compared to 1-2-years post insult, 3-4-years (mean difference 
−11.1: 95% CI −20.4, −1.7), and 5-12-years (mean difference −8.4: 
95% CI −16.7, −0.1) were associated with poorer IQ in adjusted 
analyses (Figure 2).

Best performance for all EFs was seen in the group with insult 
within the last 1–2 years. Compared to this group, other time-bands 
demonstrated poorer performances for EF updating (3–4 –years, 
mean difference −2.6: 95% CI −4.4, −0.7) and (5-12-years, mean 
difference −2.9: 95% CI −4.5, −1.2), EF shifting (3-4-years, mean 

difference −3.8: 95% CI −6.4, −1.3) and (5-12-years, mean difference 
−2.6: 95% CI −5.0, −0.3) and EF executive attention (3–4 –years, 
mean difference −3.2, 95% CI −5.7, −0.8) (Figure  2) 
(Supplementary Table 3 for unadjusted analyses).

Supplementary analyses of mutual adjustments including both age 
at insult and time post-insult in multivariable regression models 
demonstrated lower precision, but a largely similar estimate for the age 
and time effect (Supplementary Table 4).

3.4 Cognitive performance at different 
levels of global functioning in daily life

Participants categorized with good recovery had a mean IQ of 100 
(SD = 11.62). This was significantly better than moderate disability 
with a mean IQ of 92.95 (SD = 13) and severe disability with a mean 
IQ of 81.79 (SD = 10.62) (Table 2). Controlling for age at insult and 
time post-insult did not change the levels of significance.

For all EFs except inhibition, participants with severe 
disability had a poorer performance compared to those with good 
recovery (Table  2). In EFs; updating and executive attention, 
severe disability remained significantly poorer to good recovery, 
even when adjusting for age at insult, time post-insult or both age 
and time. For shifting, severe disability remained significantly 
poorer (compared to good recovery) when adjusting for time 
post-insult. For inhibition, none of the adjustments resulted in 
significant differences.

4 Discussion

The current study report on brain injury symptoms, 
neuropsychological functioning, and level of global disability in a 
heterogeneous chronic pABI sample. The main aim was to examine how 
developmental factors relevant for long-term outcomes, including age 
at insult and time post insult, are associated with IQ and EFs. Moreover, 
we provide novel insight into cognitive performance at different levels 
of global functioning in daily life using the developmentally appropriate 
version of GOS-E (GOS-E peds). Our results largely support previous 
findings with poorer cognitive performance related to early insults (EI: 

TABLE 1 (Continued)

Early insult (EI) a n  =  33 Late insult (LI) b n  =  43 Total n  =  76

Academic performance, teacher, T score, 

mean (SD) (n = 69) k

42 (6.3) 46 (6.5) 44 (6.7) *

IQR, interquartile range; RH, right hemisphere; LH, left hemisphere; SD, standard deviation; EPS, Aid from the Educational Psychological Service, Intergroup differences in significance level: 
*0.05, **0.01, ***0.001.
aSustaining pABI ≤ 7 years: early insult, EI. b Sustaining pABI > 7 years: late insult, LI. c Children living with both parents. d 73 out of 76 mothers (96%) stated their level of education. e 
Computed tomography (CT) and/or Magnetic resonance imaging (MRI) was conducted as part of routine clinical treatments. f In addition to participants with brain tumor, 3 with TBI and 7 
with stroke had received brain surgery. g Rehabilitation defined as any in-patient rehabilitation (e.g., physiotherapy, occupational therapy) post-insult, related to the current diagnosis. h Medical 
examination at baseline was conducted as a standard clinical and neurological examination by a physician. i Fatigue was measured with the Pediatric Quality of Life Inventory-
Multidimensional Fatigue Scale (PedsQL MFS, parent report) (140). Parents rated each item according to their child’s function the prior month (e.g., “Feels too tired to spend time with his/her 
friends”). Presented are reversed total score, linearly transformed to a 0–100 scale, with a clinical cut-off < 70 (141), where higher scores indicate less fatigue. j Aid from the Educational 
Psychological Service in the school setting was informed by the primary caregiver. k Academic performance was provided by the average score of teacher ratings from the Child Behavior 
Checklist- Teacher’s Report Form (142). The TRF provides scores of children’s performance in academic subjects using a 5-point scale ranging from Ratings: 1 = Far below average, 2 = Below 
average, 3 = Average, 4 = Above average, and 5 = Far above average. The TRF scores were converted into T-scores, M = 50, SD = 10.
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≤7 years) when compared to later (LI: >7 years) even when adjusting for 
maternal education, family unit, sex and etiology, thus substantiating 
this categorization as clinically relevant. Consistent with previous 
research, our findings demonstrate the best cognitive performances in 
participants 1–2 years post insult and subsequent poorer performance 
in those with time post-insult exceeding this. These associations also 
largely remained significant after controlling for variables such as 

maternal education, family unit, sex, and etiology. Finally, as one of the 
first studies, we have examined cognitive performance at different levels 
of global functioning in daily life. Overall, we found strong associations 
between cognitive performance and global functioning, with 
age-expected performances in good recovery and the poorest 
performance in severe disability level. These associations remained 
significant after controlling for age at insult and time post injury.

FIGURE 1

IQ and EFs comparing late insult to early insult with estimated mean difference and 95% confidence intervals. EI, early insult; LI, late insult; CI, 
Confidence interval. Mean difference of standardized scores, adjusted for demographic variables; maternal education, family unit, sex, and type of 
insult (etiology) and each endpoint presented according to specified scales.

FIGURE 2

IQ and EFs according to time post-insult when comparing time-bands to 1-2-years post-insult and 95% confidence intervals. CI, Confidence interval. 
Mean difference of standardized scores, adjusted for demographic variables; maternal education, family unit, sex, and type of insult (etiology) and each 
endpoint presented according to specified scales.
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4.1 Early insult is associated with poorer IQ 
and EFs when compared to late insult

4.1.1 General intellectual ability
Our results support an association between EI and poorer IQ as 

previously shown (8, 14, 18–20, 25, 76, 77, 143, 144). This association 
withstood adjustment for potential confounding factors such as social 
status, family unit, sex, and etiology (103, 104, 145). Whereas most 
past studies have only studied single etiologies, the present study 
demonstrated associations across different etiologies of 
pABI. Interestingly, the differences in IQ were primarily due to poorer 
nonverbal (fluid) skills, as previously shown (24, 25). This is consistent 
with the assumption of nonverbal IQ as a more sensitive indicator of 
brain malfunction (146), whereas verbal IQ generally is viewed as 
more resistant to change and impairment (17).

4.1.2 Executive functions
Our results show that EI is associated with significantly poorer 

performance on EFs; shifting and executive attention. Since EFs are 
known to have different developmental trajectories (38, 147) this 
pattern of results is consistent with the aforementioned EFs having 
developmental spurts during preschool years (41, 42) and thus, 

particular vulnerability to insult during such developmental phases 
(50, 51). Contrary to the other EFs, updating is believed to have a 
more prolonged developmental trajectory (48) and therefore may 
be less vulnerable to the influence of early insults. The literature on the 
effect of age at insult concerning updating (or working memory, WM) 
is, however, not consistent (148, 149). A meta-analysis suggests that 
various components of WM may have different degrees of vulnerability 
to pABI (150). In the current study, we only used a test with resonance 
to verbal WM (i.e., Digit Span). Gorman et al. (148) investigated both 
verbal and visual–spatial WM, and even though they found that both 
modalities of WM were impacted by TBI, younger age at injury was 
only a significant predictor of poorer performance in visual–spatial 
WM, thus consistent with our findings. This highlights that there may 
be modality-specific effects of age at insult concerning updating.

Our results support previous findings that early age at insult 
serves as a significant risk factor in relation to poorer long-term IQ 
and most EFs (18, 20, 23, 25, 75–77, 98). Thus, the categorical cut-off 
(at 7 years) seems to have clinical relevance. Our results are consistent 
with previous findings of diverse susceptibility to the influence of 
pABI at different ages (151), believed to reflect the degree of 
vulnerability in critical stages of neural and cognitive maturation 
(152). In healthy development, plasticity is considered highly 

TABLE 2 General intellectual ability and executive functions according to disability level with estimated mean difference and 95% confidence intervals.

Disability level

Good recovery ref. (n  =  18) Moderate compared to ref. 
(n  =  38) a

Severe compared to ref. 
(n  =  17) b

Mean (SD) Estimated mean difference 
(95% CI)

Estimated mean difference 
(95% CI)

IQ 100 (11.62) −7.05 (−14.1, −0.44)* −18.2 (−26.9, −9.52)***

IQ c −7.68 (−14.5, −0.86)* −17.4 (−25.8, −8.90)***

IQ d −7.99 (−15.1, −0.87)* −17.7 (−26.4, −9.07)***

IQ e −7.64 (−14.7, −0.60)* −16.7 (−25.3, −8.06)***

Executive functions

Updating, scaled score 10.1 (2.51) −1.06 (−2.65, 0.54) −2.72 (−4.67, −0.78)**

Updating, scaled score c −1.15 (−2.73, 0.44) −2.64 (−4.57, −0.71)**

Updating, scaled score d −1.09 (−2.59, 0.41) −2.30 (−4.09, −0.50)*

Updating, scaled score e −1.08 (−2.59, 0.44) −2.26 (−4.08, −0.43)*

Shifting, scaled score 8.7 (2.47) −0.09 (−2.17, 1.99) −2.55 (−5.01, −0.09)*

Shifting, scaled score c −0.27 (−2.31, 1.76) −2.29 (−4.70, 0.12)

Shifting, scaled score d −0.55 (−2.61, 1.52) −2.44 (−4.86, −0.03)*

Shifting, scaled score e −0.49 (−2.55, 1.56) −2.17 (−4.60, 0.26)

Inhibition, T-score 49.6 (8.85) −2.58 (−7.09, 1.93) −3.61 (−8.94, 1.72)

Inhibition, T-score c −3.03 (−7.41, 1.36) −2.99 (−8.18, 2.21)

Inhibition, T-score d −2.48 (−7.17, 2.21) −2.90 (−8.38, 2.59)

Inhibition, T-score e −2.27 (−6.79, 2.26) −1.81 (−7.17, 3.55)

Executive attention, scaled score 9.6 (2.15) −1.21 (−2.97, 0.54) −5.38 (−7.45, −3.31)***

Executive attention, scaled score c −1.37 (−3.09, 0.35) −5.16 (−7.20, −3.13)***

Executive attention, scaled score d −1.49 (−3.28, 0.29) −5.27 (−7.36, −3.18)***

Executive attention, scaled score e −1.45 (−3.23, 0.33) −5.05 (−7.16, −2.94)***

Between group difference; significance level: *0.05, **0.01, ***0.001, a In moderate disability 37 completed measures of IQ and updating, b In severe disability 14 completed IQ measures and 
15 updating, c adjusted for age at insult, d adjusted for time post-insult, and e adjusted for age at insult and time post-insult.
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beneficial (i.e., less functional specificity in the immature brain allows 
transference of functions). However, in the context of brain insults, 
plasticity may represent a “vulnerability” as predetermined 
developmental processes are derailed and neural resources are 
exhausted (153–155). An early insult may diminish cognitive reserve 
to a greater extent than a later insult, restricting the capacity to support 
subsequent recovery and development. Insults early in life also 
influence a less specialized brain and thus have more diffuse and 
widespread consequences (55, 56) and more persistent impairments 
(18, 57).

As previously documented, poorer cognitive performances entail 
long-lasting and global consequences for the acquisition of knowledge, 
education, and future work as well as independence and function in 
daily life (13, 109, 126, 129, 130). Based on our findings there is reason 
to encourage clinicians to be more attentive to children with early 
pABI and future guidelines should consider age-specific 
recommendations for follow-up (156).

4.2 Time post-insult

4.2.1 General intellectual ability
The highest IQ scores were observed in participants 1–2 years post 

insult. This finding supports the notion that most recovery occurs 
during the first 2 years post-insult (87–89), followed by a consistent 
lag over time in intellectual abilities compared to healthy controls (95). 
Results indicating poorer IQ at later time points, relative to peers, are 
consistent with research concerning children following brain tumor 
and cancer therapy (14, 93, 157). In this group, this decline starts in 
the first years following the completion of treatment (144). A 
longitudinal study demonstrated a decline in IQ up to 17.4 IQ points 
4 years after ended treatment (98, 158). Another study that included 
survivors of brain tumor (medulloblastoma) showed that they only 
attained 49–62% of healthy same-age peers’ achievements (157). The 
decrease in IQ has been attributed to failure to make age-appropriate 
gains over time partly due to slower acquisition of knowledge (157), 
as opposed to actual loss of skills (93). Even though more recent 
studies have demonstrated that radiotherapy-associated cognitive 
effects appear to be  less attenuated after proton therapies (159), 
treatment factors in addition to tumor size (160) and tumor pathology 
(e.g., medulloblastoma) have been associated with lower 
IQ. Interestingly, a meta-analysis found time since treatment more 
predictive of IQ than treatment modality (161). In the current study, 
we did not only demonstrate poorer IQ beyond 1–2 years post insult 
in those diagnosed with brain tumor, but across pABI etiologies. The 
results are in agreement with Anderson et al. (95) who demonstrated 
poorer IQ measured up to 10 years after TBI for both severe and 
moderate severity compared to healthy controls. These mechanisms 
are instrumental to the explanation of differential outcomes 
post-insult.

4.2.2 Executive functions
EF has proven to be one of the last cognitive functions to recover 

after ABI (52). However, as with IQ, our data point to best 
performances at 1–2 years post-insult for all EFs, coinciding with the 
peak in spontaneous recovery (87, 88). Time post-insult exceeding 
2 years showed poorer performances, in accordance with previous 
findings (88, 162, 163). A greater distance to the age norm at later time 

points may be  attributed to increased demands by increasing age 
(164), perhaps most evident in the school setting. However, the 
observed distance may depend on the cognitive function being 
examined and the developmental trajectory of that skill. We found 
EF-specific patterns, where inhibition seemed less affected by time 
post-insult with only small differences between time bands compared 
to the other EFs. As previously noted, updating did not seem as 
vulnerable to early insults as the other EFs, nonetheless more 
associated with time post-insult. Our results are in accordance with 
previous research, indicating inconsistent results concerning the 
impact of time post-insult on EFs (165). The inconsistency may result 
from variations concerning different EFs in relation to time post insult 
and timing of neural development (23). However, larger prospective 
studies are needed to establish the true significance of time post-insult 
as difficulties may not be evident until the age at which the skills come 
“on line” (41).

Finally, the current study has expanded on existing knowledge, 
exploring associations with IQ and EFs in a mutual adjustment model 
including both age at insult and time post-insult. These analyses 
demonstrated lower precision, but a largely similar estimate for the age 
and time effect. The association between early age at insult and IQ 
remained relatively unchanged when adjusting for time post-insult. In 
contrast, the associations between IQ and time post-insult decreased 
in the same model. This is consistent with TBI studies showing little 
improvement in performance across time in participants with early 
injuries (pre-school), compared to older children (18, 166). EFs have 
shown good predictive power of academic performance in a meta-
analysis (167) and the combined impact of lower IQ and impaired 
learning efficiency may result in poorer academic skills (81). Data 
from the current study supported poorer teacher-rated performance 
in EI compared to LI. Further, the association between age at insult 
and executive attention remained relatively unchanged after 
controlling for time post insult, while the association between age and 
inhibition slightly increased after controlling for time. The importance 
of age is supported by studies that have demonstrated that age at insult 
predicted performance better than time post-insult (168). However, 
updating seemed more associated with time post-insult, which the 
mutual adjustments confirmed. When examining shifting, reductions 
in all associations was seen when including both age at insult and time 
post-insult in the model. This may indicate a significant overlap, and 
an indication of both age and time being relevant for shifting. The 
association between time and shifting, however, remained statistically 
significant after controlling for age, and a recent study found evidence 
for shifting emerging as a more central component in adolescence and 
adulthood versus childhood (169). It could be  that shifting then 
undertakes a mediational role between inhibition and updating. This 
information conveys a new insight into the property and the dynamics 
of EFs, and based on this information it is likely to assume that shifting 
not only is particularly vulnerable to insult during early years but also 
during adolescence.

4.3 IQ and EFs at different levels of global 
functioning in daily life

Our findings support a strong association between global 
functioning in daily life (measured by GOS-E Peds) and IQ (117), with 
statistically significant poorer IQ in participants both characterized 
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with severe and moderate disability compared to good recovery. The 
participants categorized with severe disability displayed the clearest 
evidence of poor EFs, while age-average performance was 
demonstrated in good recovery. GOS-E Peds has proven sensitive to 
injury severity in TBI (137) and our results correspond with the results 
from previous research. Slower recovery and failure to make 
developmental gains have been demonstrated in severe insults (18, 51, 
80, 170, 171). Previous studies on long-term outcome for children 
with moderate insults have been mixed, demonstrating both decline 
with increased time post-insult as in severe insults (88) and 
age-expected performances as in mild insults (94). Even though 
moderate disability indicates less need for assistance compared to 
severe, it entails the inability to participate in one or more major areas 
of activity (i.e., school, leisure, or social activities), thus may have a 
widespread negative impact (172). Individuals who performed at the 
higher end on the measures of EF generally tend to require less 
assistance to be independent (173). However, even in those categorized 
with good recovery, our results demonstrated large variability in 
performances. It is possible that subtle changes in adaptive function 
are not captured that well (174). Additionally, adequate function in 
daily life despite cognitive impairments may be  ensured by the 
moderation of cognitive reserve (175) or active compensatory 
strategies (176). Additionally, only looking at group averages from 
neuropsychological testing may have limitations. Alternative 
approaches may be  the utilization of an impairment index and 
considering intra-individual performance variability (177).

Previous research has shown an increase in odds for good 
recovery from 6 to 12 months after pTBI, but not 1 to 5 years post-
insult (116). Moreover, functional impairment at 1 year predicted 
long-term disability up to 7 years post-TBI (122). Both studies suggest 
a certain stability in functional impairment during the chronic phase 
(<1-year post-insult) of pABI. Our data do not allow inferences about 
the stability in disability levels; this should be investigated in future 
longitudinal studies.

Considering the potential limitations of relying on caregiver 
report of EF (178), the current study used neuropsychological tests to 
assess cognitive performance. However, unlike adults, the ongoing 
developmental processes represent a challenge when investigating 
cognitive performance in the pediatric population. Although adult 
intelligence is viewed as a stable trait, intelligence research has 
profoundly advanced in recent times, pointing to more dynamic 
mechanisms undergoing extensive developmental changes (179). 
There are age differences in the development of fluid and crystallized 
intelligence, with fluid peaking earlier in life than crystallized (146, 
180) and young children possess less established skills and knowledge. 
Further, measuring EFs is associated with several challenges (29, 178, 
181, 182). The notion of “task impurity” indicates difficulty when 
investigating separated EFs, as most tasks require more than one EF 
process, in addition to non-executive processes (183). Moreover, the 
EFs described in this study are interdependent and co-occurring (30). 
Consequently, insults affecting one EF may indeed influence the 
others as well. Additionally, the ecological validity of performance-
based tests has been questioned (41). It has been proposed that tests 
do not reflect the complexity and demands in real life situations. This 
can be attributed to the inherently structured and well-defined test 
situation. Thus, potential dysfunctions may go undetected and 
discrepancies between test performances and behavior in home and/
or school are common (54, 184). The assessment of function in daily 

living is also difficult. Even though GOS-E Peds has been endorsed for 
use in clinical research on pABI (117), it measures adaptive abilities 
and functional outcome in a very broad sense. Unlike the ability to 
return to work after insult, which has been seen as a success measure 
in adults, return to school in children does not entail the same 
significance, as legal mandates require schools to provide education 
for all children. Tasks that measure actual coping with everyday 
challenges can be a more valuable tool for a more objective measure 
of global functioning in further research.

Cognitive functions, and in particular EFs, play a critical role in 
various daily life activities (185), thus providing sufficient assessments 
of cognition may be crucial when considering how children actually 
function in their daily lives after pABI. In fact, cognitive performance 
may provide a more accurate representation of functional outcome 
compared to demographic and injury severity variables (186). In 
adults, cognitive assessments have identified barriers to functional 
recovery and consequently helped guide cognitive rehabilitation (111, 
187). Despite the documented consequences of pABI, many children 
experience unmet clinical needs (66, 67). As with many previous 
studies, the current study has shown, that early brain insults have a 
lasting impact on young lives, and indicate long-term follow-up to 
detect deficits and provide a contextual understanding of deficits. 
Moreover, the costs of pABI are greatly affecting patients, families, and 
healthcare systems (188). Nevertheless, cognitive rehabilitation 
programs after pABI are still scarce (189–191). This warrant more 
RCTs in the future aiming at remediating EFs, and providing more 
equal rehabilitation offers to children and adolescents.

4.4 Strengths and limitations

The current study is one of few studies to report on brain injury 
symptoms, neuropsychological functioning, and level of global 
disability in a heterogeneous chronic pABI sample. Moreover, 
we propose novel insight into cognitive performance at different levels 
of global functioning in daily life using the developmentally 
appropriate GOS-E peds. The use of standardized testing is considered 
a strength, and since we utilized baseline data, practice effects were 
not an issue in this study. Moreover, as all the participants exceeded 
12 months post-insult and with a wide range of years post insult, the 
study presents a broad range of long-term consequences of pABI.

There are also limitations that need to be considered. Since this 
study analyzed data from a RCT (133), power estimations were not 
conducted with this study in mind. Further, the cross-sectional design 
limits inferences of associational directionality and change or 
developmental trajectories over time. This will be better addressed in 
longitudinal studies. Additionally, isolating the influence of any one 
predictor among various confounding and interacting variables 
represent a known challenge (93). As we have considered both age at 
insult and time post-insult, which may be confounded to some extent, 
we  have tried to address this analytically by including them in a 
mutual adjustment model to investigate one while controlling for the 
other. Further, the study employed categorical quantification of age at 
insult, time post-insult and disability. Even though the categories in 
our study build on previous studies and theories reflecting central 
nervous system growth, they are inevitably inexact and may mask 
critical developmental periods. Additionally, the categorization of 
variables may also reduce statistical power (192). The use of population 
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norms as comparisons may also underestimate impairments 
contrasted to using healthy controls (193). The current study should 
be viewed as explorative, and our data pointed to consistency in the 
findings conducting multiple analyses. However, this may inflate the 
risk of Type 1 errors, thus findings require larger studies to 
be  confirmed. As EFs have shown protracted maturation across 
development, it is not certain that measures of EFs tap into the same 
underlying construct across developmental stages (194). Since our 
study is not prospective, we cannot be certain that the presented data 
on measurements on EFs tap into the same constructs when 
individuals are being measured at different ages.

As daily-life executive dysfunction was an inclusion criterion for 
the RCT, this represents a selection bias. Additionally, a small sample 
can produce unreliable results. Hence, our results may not 
be representative of the entire pABI population. Similarly, the study 
had a slight overweight of female participants, a predominance of 
non-traumatic injuries, three out of four participants obtained scores 
indicating clinical fatigue, and the maternal education levels were 
high, all factors that could influence the representativeness. 
Interestingly, a relatively small proportion of the participants with 
brain tumors reported having received chemotherapy and radiation 
therapy. The eligibility criteria of the RCT which the data was collected 
from (132, 133) may have contributed to this (i.e., soliciting 
performance level corresponding to the ability to participate in a 
metacognitive intervention). This may also indicate a selection bias 
toward more preserved cognitive function (195–198). On the other 
side, 65% did receive critical care at an intensive care unit and 88% had 
pathological imaging indicating more insult severity consistent with 
the categorization of 75% having moderate or severe disability.

Further, as participants were recruited from the age of 10, those 
who had experienced an early insult (before the age of 7), had a 
minimum of 3 years post-insult. Subsequently, this prevented any of 
the participants with early insults to be in the 1-2-years post-insult 
group, which may have influenced the results. In addition, insult 
severity has been established as a well-known predictor of outcome of 
pTBI (18, 170), but there is no uniform categorization of severity 
across pABI etiologies. GOS-E Peds have shown sensitivity to injury 
severity (137), but it is important to bear in mind that it initially was 
developed to measure outcome after TBI. Accordingly, it may not 
be as sensitive to non-traumatic insults. As future research would 
benefit from studying pABI consequences generically (52) there is a 
need for integration of a uniform categorization of severity in future 
pABI research. Specifically, brain tumors differ from other pABI 
etiologies in key areas. Unlike TBI and stroke, tumors often have a 
more gradual development, more prolonged therapy, the risk of tumor 
relapse, and the need to restart treatment. Issues as described often 
exclude children with brain tumor from pABI research (199). The 
inclusion of various pABI etiologies in the present study may have 
masked factors specific to one ABI group. Finally, we had a more 
exploratory approach to the analyses in this study and we have not 
corrected for multiple comparisons. Therefore, our results must 
be  interpreted with caution and treated as suggestive of 
possible associations.

5 Conclusion

Our findings suggest that early brain insults are associated with 
poorer performances on IQ and EFs across different pABI etiologies. 

While confirmation through larger studies is needed, these findings 
carry clinical implications, underscoring the importance of particular 
vigilance in diagonstics and rehabilitation of early insults. Moreover, 
they dispel the notion that children fully recover from pABI; instead, 
they adcocate for equitable rehabilitation offerings for children and 
adolescents, tailored to address the cognitive functions most affected, 
recognizing their pivotal role in achieving independence and 
participation in society. Finally, we  found associations between 
cognitive performances and level of global functioning, showing 
age-expected performances in children with good recovery, poorer in 
moderate and the poorest performance in those with severe disability. 
Severe disability and in some cases moderate disability, is indicative 
for rehabilitation needs regarding IQ and most EFs. Disability 
screening may be  a useful tool for identifying those in need of 
cognitive rehabilitation in the chronic phase of pABI.
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