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Introduction: Chronic pain is a multifaceted condition that has yet to be fully 
comprehended. It is frequently linked with a range of disorders, particularly 
osteoarthritis (OA), which arises from the progressive deterioration of the 
protective cartilage that cushions the bone endings over time.

Methods: In this paper, we examine the impact of chronic pain on the brain using 
advanced deep learning (DL) algorithms that leverage resting-state functional 
magnetic resonance imaging (fMRI) data from both OA pain patients and healthy 
controls. Our study encompasses fMRI data from 51 pain patients and 20 healthy 
subjects. To differentiate chronic pain-affected OA patients from healthy controls, 
we introduce a DL-based computer-aided diagnosis framework that incorporates 
Multi-Layer Perceptron and Convolutional Neural Networks (CNN), separately.

Results: Among the examined algorithms, we discovered that CNN outperformed 
the others and achieved a notable accuracy rate of nearly 85%. In addition, 
our investigation scrutinized the brain regions affected by chronic pain and 
successfully identified several regions that have not been mentioned in previous 
literature, including the occipital lobe, the superior frontal gyrus, the cuneus, the 
middle occipital gyrus, and the culmen.

Discussion: This pioneering study explores the applicability of DL algorithms 
in pinpointing the differentiating brain regions in OA patients who experience 
chronic pain. The outcomes of our research could make a significant contribution 
to medical research on OA pain patients and facilitate fMRI-based pain recognition, 
ultimately leading to enhanced clinical intervention for chronic pain patients.
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1. Introduction

Chronic pain is a complicated phenomenon in the medical field, and its root cause remains 
poorly understood. It is characterized by constant pain that surpasses the typical healing time 
and lasts for at least three to 6 months. This type of pain occurs in various diseases, with arthritis 
being one of the most prominent. Arthritis is a broad term that refers to inflammation of the 
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joints, which can occur in acute or chronic forms. Inflammation is 
typically a response to irritants such as bacteria or foreign objects and 
leads to swelling and discomfort and can eventually result in chronic 
diseases. Among the various types of arthritis, Osteoarthritis (OA) is 
the most common. Normally, cartilage serves to protect joints between 
bones, but in OA, cartilage degenerates, causing bones to rub against 
each other, resulting in pain, stiffness, and reduced mobility. OA 
affects an estimated 20% of adults in the United States, and it is a 
leading cause of disability and lost productivity. According to data 
from the National Health Interview Survey (NHIS), OA affects over 
32.5 million adults in the USA alone, with the projected number of 
patients to rise to nearly 67 million by 2030 (1, 2). For several reasons, 
studying and conducting research on OA is decisive. OA is a common 
and debilitating disease that affects a large number of people, 
particularly older adults. It can also decrease the quality of life, 
imposing a significant economic and social burden on individuals and 
society. According to the Centers for Disease Control and Prevention, 
the total annual costs of OA in the United States alone in 2015 were 
estimated to be $65 billion (3).

While the specific root cause of OA is unknown, researchers have 
identified several modifiable risk factors, such as obesity, joint injury, 
and physical inactivity, that can be  used to inform prevention and 
treatment strategies (4). Additionally, studies (5, 6) on the neural 
mechanisms underlying pain in OA patients can help us understand the 
disease and develop more effective treatments. Researchers may be able 
to develop more targeted and effective treatments for chronic pain by 
identifying specific brain regions and networks involved in pain 
processing in OA patients, including non-pharmacological interventions 
such as cognitive-behavioral therapy and novel pharmacological 
approaches (7) targeting the central nervous system. In addition, studies 
into the neural mechanisms underlying chronic pain in OA may have 
broader implications for other chronic pain conditions like fibromyalgia, 
chronic back pain, and neuropathic pain, which share some 
characteristics with OA. As a result, studying OA has the potential to 
not only improve the lives of people with OA but also to advance our 
understanding of chronic pain in general. The high prevalence and 
significant impact of OA on public health highlight the critical need for 
ongoing research efforts aimed at advancing our understanding of the 
disease’s underlying mechanisms and developing effective diagnostic 
and treatment strategies. Although current treatments for chronic pain 
and OA are available, they can be ineffective or associated with side 
effects, such as addiction or dependency on pain medication, making it 
difficult to manage these conditions effectively (8).

Incorporating neuroimaging studies to understand the 
neurobiological basis of chronic pain can lead to the development of 
more targeted and effective pain management strategies. By identifying 
the brain regions involved in chronic pain and developing deep 
learning (DL) frameworks for pain diagnosis and treatment, this study 
has significant implications for improving the quality of life of 
individuals with chronic pain and OA. Functional magnetic resonance 
imaging (fMRI) is one of the preferred neuroimaging tools for 
capturing brain activity related to pain sensation (9). Resting-state (rs) 
fMRI is a technique used to measure intrinsic brain activity in the 
absence of any specific task or stimulus, by detecting the low-frequency 
fluctuations in BOLD signals that reflect functional connectivity 
between different brain regions (10). The fMRI identifies the brain’s 
functional activity by measuring blood oxygenation level-dependent 
changes (BOLD) using the hemodynamic response function. Regions 

of the brain that exhibit stronger functional connectivity show 
stronger correlations in the BOLD signal fluctuations detected by 
rs-fMRI, whereas regions with weaker functional connectivity exhibit 
weaker correlations. In rs-fMRI, functional connectivity is measured 
by assessing the temporal correlation of BOLD signal fluctuations 
between different brain regions, without the need for external 
stimulation (11).

Several ML and DL techniques have been successfully used in 
brain research studies using fMRI data. Despite breakthroughs in the 
use of rs-fMRI and ML and DL architectures in brain research, little 
work has been done to examine chronic pain using these approaches. 
This study aims to contribute to the understanding of the 
neurobiological basis of chronic pain and OA by analyzing rs-fMRI 
data of chronic pain patients. Specifically, the hypothesis for this study 
is that DL frameworks can be developed to analyze rs-fMRI data of 
chronic pain patients and identify potential brain regions responsible 
for pain sensation in OA. Despite contemporary treatments for 
chronic pain and osteoarthritis, effective management remains 
difficult, with pain medicines frequently causing side effects and 
addiction (12). Therefore, by identifying potential brain regions 
responsible for pain sensation, the study aims to develop a computer-
aided diagnosis tool that could potentially lead to more effective 
management of chronic pain and OA.

To achieve these objectives, the study proposes a novel two-stage 
classification approach that consists of a general linear model and 
parameter-optimized neural network-based algorithms. This approach 
is unique and innovative, as it employs DL architectures in the domain 
of chronic pain study of OA patients using rs-fMRI data for the first 
time. The proposed approach also evaluates the brain activity pattern 
in chronic pain by identifying probable brain areas that trigger pain 
feeling. The successful development of such a tool would have 
significant implications for improving the quality of life of individuals 
with chronic pain and OA by enabling more targeted and effective 
pain management strategies.

2. Investigating chronic pain in OA 
patients: insights from fMRI and ML 
studies

In recent years, there has been a growing interest in utilizing fMRI 
to investigate brain activity changes in individuals with chronic pain 
conditions, particularly those with OA. Several research studies have 
examined brain regions associated with pain within OA. For instance, 
Baliki et al. (13) conducted an fMRI study on analgesic treatment in 
chronic back pain and knee OA, which reported several brain regions 
associated with pain within OA, such as the thalamus, secondary 
somatosensory, insular, and cingulate cortices, with unilateral activity 
in the putamen and amygdala. Similarly, Sofat et al. (14) found that OA 
patients who experience pain may have particular brain activation 
components to explain their symptoms. Gwilym et al. (15) used fMRI 
to analyze pain perception in OA patients and compared the results to 
healthy controls. The study revealed that patients with OA had a lower 
threshold perception for feeling pain and displayed a higher activation 
in the brainstem.

While these fMRI studies have provided insight into the brain 
regions associated with pain perception in OA patients, there is a need 
to explore the potential of ML and DL algorithms in discovering 
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additional brain regions involved in chronic pain suffering. Although 
previous research has employed DL architectures on OA data, the 
focus was not on pain as a symptom but rather on OA in general. For 
instance, Tiulpin et al. (16) used a Deep Siamese convolutional neural 
network (CNN) to score knee OA severity automatically using plain 
radiographs, while Xue et al. (17) trained a deep CNN to diagnose hip 
OA automatically from X-ray images.

On the other hand, several studies have investigated the application 
of DL algorithms on neuroimaging data for analyzing state-of-the-art 
methodologies. Wang et al. (18) explored 3D CNNs with embedded 
dilated convolutional layers for 3D brain MRI data classification, while 
El Gazzar et al. (19) used 1D-CNNs for rs-fMRI data to classify autism 
using the ABIDE I + II dataset. Although most of the studies applied 
DL algorithms to various data-capturing cognitive impairment 
problems, such as ADHD or autism, only a few studies investigated the 
brain activity caused by pain based on fMRI data.

Santana et al. (20) used rs-fMRI data using ML and DL methods 
to study the functional connectivity patterns in the brains of chronic 
pain patients and healthy controls. The study included 98 healthy 
volunteers and 60 chronic pain patients, including those with 
fibromyalgia and back pain. Santana et  al. calculated functional 
connectivity inside the brains using time series from fMRI data and 
used correlation and dynamic time warping distance (DTW) to 
evaluate these connectivity values. Following the computation of the 
connection matrix, the authors utilized z-score normalization and 
four distinct classifiers, notably BrainNetCNN and TPOT4, on the 
data. The study demonstrated that rs-fMRI data can be used to find a 
potential biomarker of chronic pain conditions, which could aid in 
better understanding the neural mechanisms underlying chronic pain 
in osteoarthritis patients.

Recent studies have shown that imagery-based interventions hold 
promise for managing chronic pain in various populations. The 
potential of mental and motor imagery (MI) in managing central 
neuropathic pain (CNP), complex regional pain syndrome type 1 
(CRPS-1), and central neuropathic pain in people with spinal cord 
injury (SCI) have been demonstrated by Kaur et al. (21), another study 
(22), and a third study (23), respectively. These findings suggest that 
imagery-based interventions could be effective for managing chronic 
pain in diverse populations, including OA patients.

Although fMRI has been utilized to identify brain regions 
associated with pain perception in OA patients, there is a need to 
explore the potential of ML and DL algorithms to discover additional 
brain regions involved in chronic pain suffering. The application of DL 
algorithms on neuroimaging data for analyzing state-of-the-art 
methodologies has shown promising results. While only a few 
comparable studies have been found, more research is needed to 
investigate the classification of pain patients using fMRI data based on 
DL algorithms. In this work, we propose that ML and DL algorithms 
could play a significant role in better understanding the neural 
mechanisms underlying chronic pain in osteoarthritis patients.

3. Dataset

3.1. Dataset details

The fMRI data for this study on OA patients with chronic pain 
were obtained from OpenFMRI (24) and have been assigned the 

accession number ds000208. This dataset comprises resting-state 
BOLD fMRI data from 76 subjects, including 20 healthy controls and 
56 OA chronic pain patients. The data was initially collected for 
Tetreault et al.’s (24) study, and Table 1 provides an overview of the 
subjects’ demographics. The patients were divided into three different 
groups to analyze the effect of pain treatment with drugs compared to 
placebo. However, the fMRI data used in this study was acquired 
before the treatment and may have two groups instead of four, namely 
healthy controls and OA pain patients. Table 2 provides an overview 
of the patients after treatment.

3.2. Imaging parameters

The fMRI data were obtained using a 3T Siemens Trio whole-body 
scanner with echo-planar imaging (EPI) capability and were delivered 
as 4-D NIFTI files. The data consists of voxels with dimensions of 
3.438 × 3.438 × 3 millimeters and 300 volumes. The other imaging 
parameters include a repetition time (TR) of 2.5 s, echo time (TE) of 
30 ms, flip angle of 90 degrees, number of slices of 40, slice thickness 
of 3 mm, and in-plane resolution of 64 × 64.

3.3. Preprocessing

To fully utilize the potential of the brain images in the dataset, 
state-of-the-art preprocessing techniques were applied using the 
CONN toolbox (25). This pipeline consists of several steps, including 
functional realignment and unwarp, slice-timing, outlier 
identification, direct segmentation, normalization, and smoothing 
(26), which were implemented to ensure high-quality data.

Firstly, the CONN toolbox uses SPM’s realign and unwarp 
functions to co-register and resample all scans of one subject to a 
reference image. This reference image is the first scan of the session, 
ensuring that the samples are well-aligned concerning distortion-by-
motion artifacts, such as head movements. Following this, slice-timing 
correction is applied for temporal correction (25).

The outlier identification step identifies outlier scans by estimating 
the global BOLD signal. The framewise displacement is calculated by 
applying a bounding box around the brain with the size of 
140 × 180 × 115 mm, and the global BOLD signal change is calculated 
by computing the average change at each time point. This results in a 
list of potential outliers, a list of global BOLD change and head-
motion measures, and a new reference image, excluding the 
outlier scans.

TABLE 1 Demographic details of the subjects within the study of 
Tetreault et al. (24).

Participants No. of 
subjects

Male/
female

Age 
(Mean ± Std 

Dev)

Healthy control 20 10/10 57.9 ± 6.66

2W-Placebo patient 17 8/9 56.88 ± 5.68

3M-Placebo patients 20 9/11 57.6 ± 9.51

3M-Duloxetine 

patients

19 9/10 59.16 ± 4.61
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During the direct segmentation and normalization step, the data 
is normalized into a standard MNI (Montreal Neurological Institute) 
space. This procedure uses the mean BOLD signal reference image for 
segmentation and normalization, resulting in resampled data with a 
bounding box size of 180 × 216 × 180 mm, with [2 × 2 × 2] isotropic 
voxels (25).

Lastly, the data undergoes functional smoothing, where spatial 
convolution with a Gaussian kernel of 8 mm full-width half maximum 
(FWHM) is applied to reduce the influence of inter-subject variations 
in anatomy and to increase the BOLD signal-to-noise ratio. The final 
output yields an image size of (91 × 109 × 91), ensuring a high-quality 
dataset for further analysis (25).

3.4. First-level analysis (GLM)

Upon completion of the preprocessing steps, statistical analysis is 
performed using the Statistical Parametric Mapping (SPM12) toolbox, 
which employs correlation analysis or advanced modeling methods to 
identify voxels with high activation (27). The result of this analysis is 
a statistical map, commonly referred to as an activation map, that 
indicates the voxels with high activation during the scan.

The most widely used method for independently analyzing the 
voxel’s time series is the standard General Linear Model (GLM) 
analysis, which is a univariate analysis technique (11). Since this 
method fits a model to each voxel over time, the data for each voxel 
comprises a 1-D vector of intensity values, one for each time point 
(28). In the GLM analysis, the output data is denoted as y t( ), which 
represents the predicted variable, while the model is represented by 
x t( ). The slope or coefficient is denoted as β, and c is the intercept or 
constant, which represents the baseline intensity value. Lastly, e 
represents the error in the fitting of the model. The linear modeling 
can be  expressed as y t x t c e t( ) = × ( ) + + ( )β . The model fitting 
process involves adjusting the baseline and height of the square wave 
to fit the data, while the error term accounts for the residual error 
between the data and the fitted model.

The output data of this processing step is an activation map of 
brain areas over the volumes, which cannot be considered a standard 
image anymore. Therefore, the activation map provides information 
about the functional activity in various brain areas and is an essential 
tool for understanding brain function and identifying 
abnormalities (27).

3.5. Data preparation

Following preprocessing and GLM analysis, the data were 
manually inspected for cleanliness and accurate identification of brain 
areas. Five subjects had to be excluded from the total dataset due to 

the presence of excessive noise. Consequently, the preprocessed 
dataset includes 51 chronic pain patients and 20 healthy controls. A 
summary of the demographics of the dataset is presented in Table 2.

The inspection of the preprocessed data is crucial to ensure the 
quality of the dataset and eliminate any potential errors. Furthermore, 
the exclusion of subjects with excessive noise is necessary to ensure 
accurate and reliable analysis results. The resulting dataset comprises 
a sample size that is considered sufficient to produce valid and 
meaningful statistical inferences (29). The demographic information 
provided in Table 2 enables the reader to understand the characteristics 
of the study population and assess the generalizability of the findings.

The sample size in our study is uneven between the healthy 
control (HC) and osteoarthritis (OA) groups, with 20 HCs and 51 OA 
patients. The sample size, however, was determined by the availability 
of data that fulfilled our inclusion criteria, which needed matching 
imaging parameters and acquisition properties. Data that did not 
fulfill these criteria were eliminated, resulting in an unequal sample 
size. It is often challenging to obtain a perfectly balanced dataset in 
this type of research, given the limited availability of human subjects 
and the need to match subjects based on various demographic and 
clinical variables. Indeed, prior chronic pain studies have shown 
uneven sample sizes, with a greater number of patients than healthy 
controls (30, 31).

We used robust statistical procedures that can handle imbalanced 
data to address the issue of an unbalanced sample size. We  used 
Welch’s t-test, which can handle varying variances and sample sizes 
(32). Permutation tests were also used, which produce accurate 
p-values even with unbalanced samples (33). We were able to obtain 
reliable statistical results and draw meaningful conclusions from our 
analysis thanks to these methods.

4. Experimental setup

In this section, we will describe the experimental setup used in 
our research, which involves the use of multi-layer perceptron (MLP) 
and CNN techniques. Figure 1 provides an overview of the working 
pipeline that we used in this study.

4.1. Theoretical background

4.1.1. Multi-layer perceptron (MLP)
The MLP is a feed-forward neural network that can be used for 

classification and regression tasks. In contrast to recurrent networks, 
a feed-forward network has no feedback loops or internal state, and 
the network’s output is calculated based on the current input (34–36). 
The MLP is composed of an input layer, an output layer, and a specified 
number of hidden layers, each containing neural units modeled after 
human brain neurons. Each neuron in a layer receives input and 
generates output using an activation function that must be chosen 
based on the problem, the learning algorithm, and the 
network architecture.

In MLPs, the outputs produced by neurons in each layer are 
connected to all neurons in the subsequent layer, except for the last 
layer, which produces the final output. In this study, the problem at 
hand involves distinguishing between chronic pain patients and 
healthy controls, which is a binary classification problem.

TABLE 2 Chosen data for a balanced dataset for the second experiment 
training ML and DL algorithms.

Participants No. of 
subjects

Male/
female

Age 
(Mean ± Std 
Dev)

Healthy control 20 10/10 57.9 ± 6.66

Patients 51 25/26 57.8 ± 6.98
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4.1.2. Convolutional neural network (CNN)
In this study, we have utilized CNN, which is a form of deep 

neural network architecture. CNN differs from ordinary neural 
networks, such as MLPs, in several ways (37). MLPs consist of fully 
connected layers where each neuron in one layer is connected to every 
unit in the next layer. This results in a large number of free parameters, 
and as the number of free parameters increases, so does the number 
of required training samples. To address this issue, CNNs limit the 
connections between neurons in one layer to a specific set of units in 
the next layer. This architecture enables filtered feature learning and 
allows certain neurons within the layers to be connected, depending 
on the domain.

The two primary components of CNNs are convolutional layers 
and max-pooling layers (38). Convolution is applied within the 
convolutional layers, which can be  visualized using an image-
processing example. The filter size a d;( ), where a  is the number of 
rows and d is the number of pixels per row in the filter, is an essential 
parameter for calculating the convolution. The input image I  with r  
rows and e pixels per row is convolved by shifting the filter with size 
a d;( ) for a particular feature f over all subregion positions within the 

input image I , where each subregion’s size equals the filter’s size a d;( )
. The number of possible positions is r a e d− +( ) − +( )1 1· . The filter 
output at a subregion position calculates the scalar product between 
the filter’s coefficients and the values within the subregion.

The output of the hidden neurons is calculated with 

h g W x bi
k k

i
k= ⋅ +( ) , where hik is the ith output of the feature maps 

in layer k , and xi is the subregion of the input that constitutes the local 
receptive field of hik . The filter coefficients of feature f within layer k  
are the weights Wk  between one neuron in the hidden layer and its 

local receptive field. Each feature fk in the hidden layer has a feature 
map containing as many hidden neurons as possible and shifts the 
filter across the input. All neurons in a feature map have the same 
weight matrix Wk , which results in CNNs having a low number of 
free parameters.

In the pooling layer, the region of A neurons in a feature map is 
partitioned into a small set of subregions, each consisting of B 
neurons. One value is calculated from the B neurons for each 
subregion during subsampling. There are three different types of 
subsampling methods: max-pooling, which computes the maximum 
of the subregion; min-pooling, which calculates the minimum; and 
mean-pooling, which calculates the mean value in the given 
subregion. CNNs can be trained using a gradient descent method, 
such as backpropagation. Although CNNs can be used for various 
problems, they are primarily used for image processing 
or classification.

4.2. Experimental setup

4.2.1. Z-score normalization
Before proceeding with the training of the proposed DL 

algorithms, we undertook a critical pre-processing step using z-score 
normalization, commonly known as standardization. This 
normalization technique is widely used in ML to ensure that the data 
is on a standardized scale, which is crucial for the optimal performance 
of DL algorithms. Standardization aims to re-scale the values of the 
features such that they have a standard deviation of 1 and a mean of 
0. We achieved this by applying the formula x value= −( )µ σ/ , where 
∝ represents the mean value of the features and σ represents the 

FIGURE 1

Overview of the workflow diagram showing the steps performed in this study.
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standard deviation across the feature. This crucial step enhances the 
efficiency of the training process by preventing features with larger 
values from having a dominant effect on the learning process.

For our study, we conducted experiments using preprocessed data 
from 51 patients with OA chronic pain and 20 healthy patients. The 
goal was to carry out a binary classification task, differentiating 
between healthy controls and pain patients. To achieve this, 
we  implemented the code using Keras and TensorFlow. These are 
widely used and effective libraries in DL.

To optimize the training process and improve the accuracy of the 
binary classification task, we  fine-tuned several configurations of 
hyperparameters. These included the number of layers, the number of 
filters within the layers, the learning rate, the optimizer, and the 
number of iterations. Hyperparameter optimization is a crucial step 
in training DL algorithms and ensures that the model performs 
optimally. We carefully selected the best configurations to achieve the 
highest possible accuracy in our binary classification task.

4.2.2. MLP configurations
The parameter tuning of the MLP was performed using a 

comprehensive approach, where we experimented with different 
configurations of hidden layers and activation functions to achieve 
the best possible performance. We  tested various numbers of 
hidden layers, including 3, 5, 7, and 10, and explored different 
activation functions, such as identity, logistic, and Rectified Linear 
Unit (ReLu) activation functions. Furthermore, we varied the batch 
sizes to 16, 32, and 64, and applied different optimization 
algorithms, such as Adam and Stochastic Gradient Descent (SGD). 
We also experimented with various learning rates, including 0.01, 
0.001, and 0.0001.

Following rigorous experimentation, we  obtained the most 
accurate configuration that yielded the best results so far. Specifically, 
we  utilized five hidden layers, with the ReLu activation function 
applied within the layers. For training, we used a batch size of 32 and 
a learning rate of 0.0001. To optimize the training process, we used the 
SGD optimization algorithm, which is known to perform well in 
similar scenarios. Moreover, we  conducted five cross-validation 
rounds, and each round consisted of 300 iterations. This approach was 
designed to systematically explore the parameter space of the MLP, 
ensuring that we identified the most effective configuration for our 
specific classification task.

4.2.3. CNN configurations
The CNN training process was meticulously optimized by 

conducting a comprehensive search for the optimal values of 
various parameters. Specifically, the number of layers was varied 
and tested with values of 18, 32, and 51. Additionally, the filter size 
was fine-tuned using different configurations such as 128, 64, 32, 
and 16 filters applied within the architecture, with their respective 
value and max-pooling layers. Furthermore, a different number of 
dropout layers were experimented with. Various learning rates, 
ranging from 0.01 to 1e-7, were explored to identify the optimal rate 
for the training process. Different optimization algorithms such as 
SGD and Adam were also employed, and iterations ranging from 50 
to 200 were tested.

Ultimately, the CNN architecture that exhibited the best 
performance was identified, consisting of five convolutional layers 

and two dense layers. The first three convolutional layers consisted 
of 16 filters, while the last two consisted of 32 filters. All convolutional 
layers were configured with a kernel size of 3 and the ReLu activation 
function. Max-pooling layers were added after each convolutional 
layer with a pool size of 2 and a stride of 1. Additionally, dropout 
layers were added after the third, fourth, and fifth max-pooling 
layers, with a dropout value of 0.5 in the first dropout layer and a 
value of 0.25 in the last two dropout layers. The first of the last two 
dense layers had 10 units with a ReLU activation function, and the 
last dense layer had one unit, providing the decision output with the 
Sigmoid activation function. The optimization algorithm chosen was 
SGD with a learning rate of 0.0000001. Finally, the training was 
performed with 150 epochs for each of the five rounds of cross-
validation folds.

4.2.4. Evaluation methods
All of the experiments in this study were evaluated using a 5-Fold 

Cross Validation (CV) technique and visualized using Receiver 
Operating Characteristic (ROC) Curve (34). When working with a 
relatively small dataset, the K-Fold CV technique can be  used to 
improve the model evaluation by dividing the original dataset into sl  
partitions, where l  is the index of one partition and one partition, sl , 
is used as a validation or test set, while all other partitions are used as 
a training set. After training and testing on all possible combinations 
of training and test data, the mean accuracy of overall iterations can 
be calculated, leading to the selection of a combination with the lowest 
error rate.

In addition to the ROC curve, the Area Under the Curve (AUC) 
is also measured. The AUC value ranges from 0 to 1, and a model that 
predicts everything correctly has an AUC of 1.0. The advantage of 
using AUC is that it measures how well predictions are ranked, rather 
than the absolute values. It measures the quality of the model’s 
prediction regardless of the classification threshold.

In terms of model efficacy, we have also measured the model’s 
classification accuracy using the standard calculation of accuracy. 
However, since this study trained the neural networks on an 
imbalanced dataset, the numbers of true positives (TP), true negatives 
(TN), false positives (FP), and false negatives (FN) are important to 
evaluate the true performance of the algorithms, along with finding 
the Precision, Recall, and F1-score (34). These measures help to 
understand the performance of the model, especially when working 
with imbalanced datasets.

4.2.5. Brain regions backtracking
Following the classification process, we selected features or voxels 

that demonstrated a high level of accuracy. To filter out irrelevant 
features and pinpoint the most informative voxels that can differentiate 
differences in functional activations, we  utilized methods like 
GLM. To determine the corresponding brain regions of the chosen 
voxels, we employed brain backtracking. This entailed transforming 
the indexes of the selected voxels into Cartesian coordinates, which 
were then converted into MNI space via the EPI template. We then 
used the Talairach Daemon toolbox to convert all MNI coordinates 
into Talairach space coordinates. To visualize and identify the brain 
regions, we created a mask of the positions of the selected voxels using 
the MANGO tool, overlaying it onto a normalized template fMRI 
image. Finally, our proposed approach was applied to each subset of 
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data for all analyzed symptoms, revealing the names of the affected 
brain areas.

5. Results

The CNN experiments using the configurations described in 
Section 4 produced the best results, with a mean accuracy of 85.20% 
and a standard deviation of 0.08. The average AUC was 0.85, as 
indicated in Table  3. The charts for all the calculated metrics are 
shown in Figures 2A,B for MLP and CNN, respectively. These line 
charts depict accuracy, AUC, precision, recall, and F1-Score values for 
the experiments. The CNN’s performance is illustrated with a ROC 
curve in Figure 3B.

The results obtained from the MLP showed an accuracy of 80% 
with a standard deviation of 0.09 and an average AUC of 0.78 using 
the parameters described in Section 4. The performance of the MLP 
is illustrated in Figure 3A. Table 3 shows an overview of the evaluation 
parameters, such as precision, recall, and F1-score, for each round of 
the 5-fold CV. It can be  observed that in all 5 rounds of cross-
validation with a dataset of 20 healthy controls and 51 pain patients, 
all 51 pain patients were correctly classified as pain patients, 6 healthy 
controls were correctly classified as healthy, and 14 healthy controls 
were misclassified as pain patients. Interestingly, no pain patient was 
misclassified as a healthy control.

On the other hand, the CNN achieved a mean accuracy of 85.2% 
with a standard deviation of 0.08 and an average AUC of 0.85, as 
reported in Table 3. The performance of the CNN is illustrated in 
Figures  2B, 3B, which show the line charts for accuracy, AUC, 
precision, recall, and F1-score values. The CNN was trained over 5 
cross-validation rounds, and the results showed that 48 pain patients 
were correctly classified, along with 12 healthy controls. However, 8 
healthy controls were misclassified as pain patients, and only 3 pain 
patients were wrongly classified as healthy controls, indicating a 
relatively low error rate in comparison to the correctly classified 
pain patients.

The identified brain regions and their involvement in chronic pain 
in OA patients can provide important insights into the underlying 
mechanisms of pain perception and can help develop new treatment 
strategies. The frontal lobe’s involvement suggests that pain processing 
and perception involve higher cognitive functions, such as attention 
and decision-making. The temporal lobe’s involvement suggests that 
pain perception involves the processing of sensory information, such 
as auditory and visual stimuli. The parietal lobe’s involvement suggests 
that pain perception involves the integration of sensory information 

from multiple modalities. The limbic lobe’s involvement suggests that 
pain perception is related to emotional and motivational processes.

The identified affected areas on the gyrus level, such as the middle 
frontal gyrus and superior temporal gyrus, are consistent with 
previous studies on chronic pain. These regions are involved in the 
processing of pain-related cognitive and emotional aspects. The 
involvement of the precuneus gyrus and precentral gyrus suggests that 
pain perception involves self-referential and motor-related processes. 
The involvement of the cingulate gyrus and insula is consistent with 
their known roles in pain processing and modulation.

Figure 4 provides an overview of the brain areas affected in terms 
of lobe and gyrus levels. The identified features were initially traced 
back to the Cartesian coordinate, followed by MNI space, and finally 
to the Talairach space. They were then overlaid onto a functional brain 
image. The visualization of brain regions potentially responsible for 
pain sensation in chronic pain in OA patients is shown in Figure 5. 
These results provide valuable insights into the neurological basis of 
chronic pain and could potentially lead to more effective treatments 
for OA patients.

6. Discussion

Our investigation revealed that no previous research has employed 
CNN to study rs-fMRI data of OA patients experiencing chronic pain. 
As such, this study sought to explore the potential of DL algorithms 
in this field, utilizing both MLP and CNN architectures without any 
feature selection methods.

Importantly, neither of these DL architectures employed 
pre-trained weights or transfer learning, and as such, achieved 
their best performance based on training exclusively on this fMRI 
dataset. Of these two approaches, the proposed CNN architecture 
achieved the most promising results, demonstrating a 
classification accuracy of 85.2% and an AUC value of 0.85. Our 
findings also showed that the CNN outperformed the MLP in 
terms of classification accuracy and was better able to identify 
healthy controls. Furthermore, this high accuracy was achieved 
without reducing the total number of voxels in the dataset, which 
adds to the significance of our findings.

As the first study of its kind to employ a CNN-based model for 
automated diagnosis of OA patients, no comparable research exists for 
direct comparison. However, we did identify a few CNN-based fMRI 
studies in other illness domains, where our study’s classification 
accuracy outperformed previous works (18, 19). This achievement 
demonstrates the efficacy of our study and contributes to the field with 
a DL-based computer-aided tool for classifying healthy controls and 
chronic pain patients.

Furthermore, our study was able to identify the brain regions 
responsible for chronic pain in OA patients. We found that a few brain 
regions identified in this study, such as the frontal lobe (29, 39) and 
the parietal lobe (29, 39), have been previously associated with OA 
patients at the lobe level. Our findings also identified additional brain 
regions that have been previously linked to OA patients at the gyrus 
level, such as the middle frontal gyrus (40, 41) and the superior 
temporal gyrus (41), thus strengthening the efficacy of our study. 
Additionally, our study identified the cingulate gyrus, a region that has 
been previously investigated in OA pain patients (41) but has also 
been shown to be involved in general pain sensation.

TABLE 3 Results showing all the metrics of the experiments.

CNN MLP

Mean Std Dev 
(+/−)

Mean Std Dev 
(+/−)

Accuracy 85.20% 0.08 80% 0.09

AUC 0.85 0.11 0.78 0.07

Precision 0.83 0.06 0.79 0.08

Recall 0.98 0.04 1 0

F1-Score 0.9 0.05 0.88 0.05
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Importantly, our study also identified several brain regions that 
have not been previously associated with OA pain, such as the 
superior frontal gyrus, cuneus, middle occipital gyrus, and culmen. 
These novel findings have the potential to lead to improved 
treatments and clinical interventions for chronic pain patients in 
the future. Our study’s novel insights suggest that these brain 
regions may be potentially responsible for pain sensation in chronic 
OA patients, and additional research in this direction may lead to 
new therapeutic targets and approaches.

The findings of our study have important implications for the 
diagnosis and treatment of chronic pain in OA patients. In addition 
to developing a DL-based classification model, our study has also 
identified new brain regions that were never identified in previous 
studies. These regions, including the superior frontal gyrus, cuneus, 
middle occipital gyrus, and culmen, are potentially responsible for 
pain sensation in chronic OA patients.

Chronic pain and OA have been associated with structural and 
functional changes in the brain. Neuroimaging studies have shown 
alterations in brain regions involved in pain processing, such as the 
anterior cingulate cortex, insula, thalamus, and prefrontal cortex (42, 
43). In addition, studies have suggested that the brain’s default mode 
network, which is involved in self-referential processing and mind-
wandering, is also involved in chronic pain (44).

In the context of the brain regions identified in our study, the occipital 
lobe is involved in visual processing and has been implicated in the 
perception of pain-related visual cues (45). The superior frontal gyrus, 
located in the frontal lobe, is known to play a role in the modulation of 
pain perception and the processing of emotional and cognitive aspects of 
pain. It has been associated with cognitive control and decision-making 
processes, which may be involved in pain coping strategies (46). The 
cuneus, located in the occipital lobe, is involved in visual processing and 

FIGURE 2

(A,B) Metric chart for accuracy, AUC, precision, recall, and F1-score values for (A) MLP results; (B) CNN results.

FIGURE 3

Performance visualization of MLP and CNN using ROC and AUC. 
(A) ROC and AUC performance of MLP. (B) ROC and AUC 
performance of CNN.

https://doi.org/10.3389/fneur.2023.1195923
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org


Chatterjee et al. 10.3389/fneur.2023.1195923

Frontiers in Neurology 09 frontiersin.org

has been linked to the processing of pain-related stimuli. The middle 
occipital gyrus, also located in the occipital lobe, is involved in visual 
perception and has been implicated in the processing of painful stimuli. 
The culmen, located in the cerebellum, is involved in sensorimotor 
integration and proprioception and has been linked to the perception of 
pain intensity. It has also been implicated in the modulation of pain 
perception and the processing of pain-related emotions (47).

Understanding the functional changes that occur in the brain in 
response to chronic pain and OA is crucial in shedding light on the 
underlying mechanisms of these conditions. Consequently, it is 
important to explore the specific brain regions involved in pain 
processing as this knowledge can aid in the development of targeted 
treatments to improve pain management and the quality of life for 
individuals living with these conditions (48).

FIGURE 4

(A) The brain regions showing the significant brain activities on the lobe level. (B) The brain regions showing the significant brain activities on the gyrus 
level.
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Furthermore, the identification of novel brain regions in this study 
adds to the existing literature and provides a more comprehensive 
understanding of the neurological basis of chronic pain in OA patients. 
This expands the current knowledge in the field and provides a foundation 
for future research to investigate the neural mechanisms underlying 
chronic pain in this patient population. This study’s results, which identify 
multiple brain regions involved in chronic pain in OA patients, are of 
significant clinical importance. The outcomes of this study could lead to 
the development of new and innovative treatment approaches and 
interventions for chronic pain management. Such advances in the field 
are critical in improving patient outcomes and quality of life.

Our study primarily focused on chronic pain in patients with OA; 
however, the DL framework we  developed has the potential to 
be  applied to other chronic pain conditions. The brain regions 
identified in our study, including the occipital lobe, superior frontal 
gyrus, cuneus, middle occipital gyrus, and culmen, have been 
previously implicated in chronic pain conditions beyond OA (49, 50). 
For example, studies have shown altered activity in the anterior 
cingulate cortex and insula, two brain regions involved in pain 
processing that were also identified in our study, in patients with 
fibromyalgia and neuropathic pain (51, 52). Moreover, the DL 
framework we developed has the potential to improve the accuracy of 

pain diagnosis and the development  of targeted pain therapies for a 
variety of chronic pain conditions  (53). Therefore, we strongly believe 
that our study has important implications beyond OA and can 
contribute to a deeper understanding of the neurobiological basis of 
chronic pain.

Our findings shed light on the neural mechanisms underlying 
chronic pain in OA patients. However, we  acknowledge certain 
limitations. The small sample size reduces the statistical power of our 
findings. Furthermore, our sample contains a higher proportion of OA 
patients than healthy controls. To address the problem of unbalanced 
sample size, we used powerful statistical techniques that can handle 
imbalanced data. Welch’s t-test, which can accommodate different 
variances and sample sizes, was used. Additionally, permutation tests 
were used, which even with unbalanced samples yield accurate 
p-values. These techniques allowed us to obtain valid statistical results 
and derive meaningful conclusions from our analysis. Despite these 
limitations, our findings highlight the promise of ML and DL 
approaches for better understanding the neural correlates of chronic 
pain in OA patients. To validate our findings, we encourage future 
researchers to use larger and more balanced datasets.

Finally, utilizing DL-based approaches in this study highlights the 
potential of this methodology to advance our understanding of 
chronic pain and develop more effective treatment approaches. 
Therefore, this study underscores the importance of further research 
in this area, as it may help reduce the stigma associated with chronic 
pain and provide a better understanding of the biological basis of this 
condition. Overall, this study’s findings contribute to the growing 
body of literature on chronic pain and provide a valuable foundation 
for future research in this field.

7. Conclusion

Our study provides novel insight into the ability of DL 
algorithms in analyzing rs-data of OA patients experiencing 
chronic pain. Our proposed CNN architecture achieved the most 
promising results, marking a significant milestone in the field of 
chronic pain research. It is worth noting that our study achieved 
high accuracy without reducing the total number of voxels in the 
dataset, indicating the robustness of our findings. Our research 
also identified several brain regions, including the superior 
frontal gyrus, cuneus, middle occipital gyrus, and culmen, that 
were not previously associated with OA pain. These novel 
findings provide a deeper understanding of the neurobiological 
basis of chronic pain in OA patients and open up new avenues for 
further research. By identifying these previously unknown brain 
regions, our study has the potential to aid in the development of 
targeted and effective pain therapies and interventions, ultimately 
improving the quality of life for chronic pain patients. 
Incorporating neuroimaging techniques, in conjunction with our 
CNN architecture, into clinical practice could be a game-changer 
in the field of pain management.
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