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Muscular dystrophies (MD) are a class of rare genetic diseases resulting in

progressive muscle weakness a�ecting specific muscle groups, depending on the

type of disease. Disease progression is characterized by the gradual replacement

of muscle tissue by fat, which can be assessed with fat-sensitive magnetic

resonance imaging (MRI) and objectively evaluated by quantifying the fat fraction

percentage (FF%) per muscle. Volumetric quantification of fat replacement over

the full 3D extent of each muscle is more precise and potentially more sensitive

than 2D quantification in few selected slices only, but it requires an accurate 3D

segmentation of each muscle individually, which is time consuming when this

has to be performed manually for a large number of muscles. A reliable, largely

automated approach for 3D muscle segmentation is thus needed to facilitate the

adoption of fat fraction quantification as a measure of MD disease progression in

clinical routine practice, but this is challenging due to the variable appearance of

the images and the ambiguity in the discrimination of the contours of adjacent

muscles, especially when the normal image contrast is a�ected and diminished

by the fat replacement. To deal with these challenges, we used deep learning to

train AI-models to segment the muscles in the proximal leg from knee to hip in

Dixon MRI images of healthy subjects as well as patients with MD. We demonstrate

state-of-the-art segmentation results of all 18 muscles individually in terms of

overlap (Dice score, DSC) with the manual ground truth delineation for images

of cases with low fat infiltration (mean overall FF%: 11.3%; mean DSC: 95.3% per

image, 84.4–97.3% per muscle) as well as with medium and high fat infiltration

(mean overall FF%: 44.3%; mean DSC: 89.0% per image, 70.8–94.5% per muscle).

In addition, we demonstrate that the segmentation performance is largely invariant

to the field of view of the MRI scan, is generalizable to patients with di�erent types

of MD and that the manual delineation e�ort to create the training set can be

drastically reduced without significant loss of segmentation quality by delineating

only a subset of the slices.
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1. Introduction

Limb-girdle muscular dystrophies (LGMD) are a group of

rare genetic muscle diseases that mainly manifest in the proximal

muscles around the hips and shoulders and that result in a gradual

decline in muscle strength due to necrosis of muscle fibers and

the replacement of muscle tissue by fat. Disease progression of

patients with LGMD can be evaluated by assessing the degree

of fat replacement in the muscles using fat-sensitive magnetic

resonance imaging (MRI) of the proximal leg as illustrated in

Figure 1, which can be objectively quantified by calculating the

fat fraction percentage (FF%) within the muscles from these

images (1). However, the FF% obtained by analysis of a single

2D slice is not reliable for assessment of disease progression as

this implies the assumption of a homogeneous pattern of fat

replacement along the proximodistal axis of the muscles, which

is not the case for LGMD patients (1). Moreover, the degree of

fat replacement may be different for different muscles. Hence,

volumetric quantification of FF% for each muscle separately is

to be preferred, for which an accurate 3D segmentation of each

muscle individually in the MRI image volume is needed. As

manual slice-by-slice delineation by a human expert is tedious and

time consuming, in order to make volumetric quantification of

FF% of individual muscles feasible in clinical practice, a reliable

automated 3D muscle segmentation approach is required that

is not only applicable to images of healthy subjects but it also

sufficiently robust to perform accurately for images of patients

with mild to severe fat replacement with large variation in

image appearance.

The current state-of-the-art approaches for muscle

segmentation still fall short of this requirement. Several approaches

have been presented that consider the entire muscle region in the

proximal leg as a whole, discriminating between healthy muscle

tissue, inter-muscular and subcutaneous adipose tissue (2–6),

or that segment entire muscle groups as a whole (7) instead

of each muscle individually. These approaches only allow for

global fat fraction analysis and the results are biased as not only

inter-muscular fat but also fascia and blood vessels are included

in the segmentation (8). While several approaches have also been

presented for segmentation of individual muscles (9–15), most of

these segment only part of the muscle in a limited field of view

and not the entire muscle as in (12). Although promising results

have been reported for muscle segmentation in healthy subjects,

only few approaches were developed to be applied in patients with

neuromuscular diseases (16). None of the mentioned approaches

report segmentation performance for severely affected muscles

except for (13), which reports good performance on mild and

severely affected cases but uses a 2D approach that is trained on a

limited amount of slices per patient. The interactive segmentation

tool Dafne (15) is based on this work and uses a federated learning

approach instead of the traditional training-validation-deployment

technique which is used in this research.

This study presents and evaluates a clinically relevant approach

for the automated 3D segmentation of 18 individual muscles of

the proximal leg from knee to hip in healthy subjects and in

subjects with MD and mild to severe fat infiltration, using deep

learning models based on a 3D convolutional neural network

(CNN) with U-Net architecture (17), which is currently the

state-of-the-art for biomedical image segmentation (18). To deal

with pathology, a separate model was first trained for healthy and

mildly affected subjects and subsequently retrained and finetuned

for more severe cases. We demonstrate the feasibility of quantifying

FF% automatically in 3D in individual muscles over a broad

range of per-muscle FF% values (4–92%) with clinically acceptable

accuracy compared to manual analysis.

2. Materials and methods

2.1. Datasets

Two datasets of MRI scans of the proximal legs of patients

with MD and of healthy controls were used in this work, acquired

in two clinical studies. Written informed consent was obtained

from all participants and the studies were approved by the Ethics

Committee Research UZ/KU Leuven and performed in accordance

with the relevant guidelines and regulations. The first dataset

(LGMD dataset) consisted of scans of 29 LGMDR12 patients

(19–70y) and 35 healthy control subjects (22–69y), acquired as

part of a recently published study on LGMD characterization (1).

The patients included 14 early-stage patients [total thigh FF%

< 20, corresponding roughly to Mercuri score (19) 0–1], and

15 intermediate- or end-stage patients (total thigh FF% > 20,

corresponding roughly to Mercuri score 2–4). For most subjects,

two or three scans were available, acquired in different visits

with about 1 year in between, resulting in 172 scans in total.

The second dataset (BMD dataset) consisted of 42 scans of 21

Becker Muscular Dystrophy (BMD) patients, of which 7 early-

stage and 14 intermediate- or end-stage patients, and 21 healthy

control subjects. For each subject in this dataset, only a single scan

was available.

All MRI scans were acquired with the same 1.5T MRI

scanner (Philips Ingenia, Philips Medical Systems) using a

6-point Dixon 3D imaging sequence (20) with parameters:

TR/TE/δTE = 9.2/1.36/1.3 ms, flip angle 12◦, 140 slices, slice

thickness 2 mm, interslice gap 0 mm, field of view (FOV) 450

× 394 × 280 mm, acquisition matrix 320 × 280 × 140. The

images were reconstructed on a grid of 384 × 384 × 140 voxels

with a voxel size of 1.2 × 1.2 × 2 mm. Figure 1 shows in-phase

(IP), out-of-phase (OP), fat-only and water-only images of the

proximal leg as obtained with this sequence for patients in different

stages of muscle disease. The proton density fat fraction image

was calculated as the fat-only image divided by the sum of the

fat-only and water-only images and was used to quantify the FF%

per muscle.

Over the course of the LGMD study, the scan protocol changed

from scanning a single stack of 140 MRI slices in the center of the

proximal leg in visit 1 (V1), toward acquiring 2 and eventually 3

identical and partially overlapping such stacks in visit 2 (V2) and

visit 3 (V3), covering the entire proximal leg from hip to knee.

The stacks were stitched together to form one image volume. The

LGMD dataset thus consisted of images with a different number

of axial slices, covering a different inferior/superior extent of the

proximal leg as illustrated in Figure 2. The scans of the BMDdataset

were all acquired with 3 stacks, covering the entire proximal leg.
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FIGURE 1

Out-of-phase (A), in-phase (B), fat-only (C), and water-only (D) Dixon MRI images of the proximal leg of 3 LGMD patients in an early-stage (i), an

intermediate-stage (ii) and an end-stage (iii) of the disease, showing increased replacement of muscle tissue by fat.

2.2. CNN architecture, training, and
prediction

A 3D CNNwas trained to generate an automated segmentation

of each of the 18 different muscles of the proximal leg individually,

as listed in Table 1. The network architecture is depicted in Figure 3

and is based on the 3D U-Net presented in (21) with some minor

changes: for down-sampling and up-sampling, a filter size of 3

× 3 × 3 was used and the deepest layer consisted out of 4

convolutional layers. The code is written in Python and makes

use of the deepvoxnet2 package (https://github.com/JeroenBertels/

deepvoxnet2) which uses Tensorflow and Keras (22).

Both the OP and IP images were provided as input to the CNN.

The original images were split in two equal halves along their mid-

sagittal plane such that the left and right legs (and the left and right

parts of the hip if present in the image) were separated. Symmetry

between both legs was exploited by mirroring the left leg images

to be similar to the right leg images. This simplified the problem

to segmentation of the muscles in a single leg only as compared

to both legs combined and doubled the amount of data available

for training of the CNN. The input of the CNN consisted of a

patch of size 2 × (192 × 384 × 81) voxels, containing a slab

of 81 consecutive slices extracted from the single-leg OP and IP

images, randomly positioned along the inferior/superior direction.

By processing a patch instead of the entire volume at once, images

with different amount of slices could be handled by the same CNN.

The number of slices included in the patch was determined as a

trade-off between maximal axial coverage and increasing memory

requirements for training of the CNN.

During training, in every epoch 2 input patches were randomly

sampled from each image in the training set. Standard data

augmentation methods were applied to increase variation in the

input data, such as affine transformation and adding of Gaussian

noise. As 3D convolutions with a large patch size have a high

memory consumption, the batch size was set to 1 in all experiments.

Cross-entropy loss was used as loss function and Adam (23) was

used as optimizer with an initial learning rate of 10−4. The learning

rate was reduced with a factor of 2 when the validation loss did

not improve over the last 25 epochs. The training ended after a

fixed number of epochs or when the validation loss did no longer

improve, as specified further.

A segmentation for an entire single-leg image volume was

obtained by combining the output of the CNN for separate,

partially overlapping patches randomly extracted from the volume.

The prediction for the mirrored left leg input image was mirrored

again to correctly represent a left leg and was stitched to the
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FIGURE 2

Out-of-phase images of the same subject acquired in di�erent visits with 1, 2, or 3 overlapping 3D stacks of 140 slices with 2 mm slice spacing,

covering a di�erent inferior/superior extent of the proximal leg: (A) 1 stack, 140 slices; (B) 2 stacks, 270 slices; (C) 3 stacks, 355 slices.

TABLE 1 The 18 segmented muscles in the proximal leg.

Rectus femoris (RF) Biceps femoris caput brevis (BFB)

Vastus lateralis (VL) Semitendinosus (ST)

Vastus medialis (VM) Semimembranosus (SM)

Vastus intermedius (VI) Sartorius (SR)

Pectineus (PC) Tensor fascia lata (TFL)

Adductor brevis (AB) Gracilis (GC)

Adductor longus (AL) Gluteus maximus (Gma)

Adductor magnus (AM) Gluteus medius (Gme)

Biceps femoris caput longus

(BFL)

Gluteus minimus (Gmi)

prediction of the corresponding right leg image. Connected

component analysis was subsequently performed on the stitched

volume to retain only the two largest, left and right leg components

for each muscle, removing small blobs of incorrectly labeled

voxels. Holes present inside a segmented muscle volume were

filled subsequently.

2.3. Experimental setup

2.3.1. LGMD dataset
The LGMDdataset was used for training and testing of the deep

learningmodels, based on precise manual delineations by amedical

expert (BDW) of each muscle in both legs in every MRI slice of

the original OP images (2 mm slice spacing) created using ITK-

SNAP (24). To ensure that no fascia, intermuscular/subcutaneous

fat or blood vessels were included, the segmentations were first

checked by an experienced musculoskeletal radiologist and then a 1

pixel-wide layer was eroded from the boundary of every segmented

muscle (1). To deal with the varying presence of pathology in

the images, the dataset was split in a low-infiltration (LI) group,

containing all scans of the control subjects and early-stage patients

(49 subjects, 133 scans in total), and a high-infiltration (HI) group,

containing the scans of the intermediate- and end-stage patients (15

subjects, 39 scans in total), (see Figure 4). Mean overall FF% and

range of the scans in the LI and HI group was 11.3% [6.0–16.6%]

and 44.3% [18.6–82.1%], respectively. Different CNN models were

trained for the LI group and the HI group separately.

The scans of the LI group were randomly split in a

training/validation set (35 subjects, 95 scans) and a test set (14

subjects, 38 scans). Splitting of scans was always performed such

that all scans of the same patient were all included in the same

subset. While including similar scans of the same subjects in

the training set may increase the likelihood of overfitting, this is

counteracted by the different field of view of the scans, the patch-

based nature of the network and the use of a separate validation set

during training. A five-fold cross validation approach was used to

train 5 different CNN models on the training/validation set. The

training of the LI models was terminated after a fixed number of

160 epochs. Each of thesemodels was subsequently used to generate

a prediction for the test set cases. An ensemble model was also

created and evaluated on the test set by combining the outputs

of the 5 individual models using a majority voting strategy. The

best performing LI model, i.e., the model obtained in the fold that
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FIGURE 3

The 3D U-Net architecture of the trained CNN models.

FIGURE 4

Division of subjects (A) and scans (B) in a low-infiltration and high-infiltration group according to clinical disease stage.

performed best on the LI test set, was selected and subsequently

trained further on the images of the HI group to create a fine-tuned

HI model. Again five-fold cross validation was performed to obtain

different HI models, but no test set was separated due to the small

number of subjects in the HI group. The training of the HI models

was terminated after 500 epochs or when the validation loss did not

improve over the last 40 epochs.

The ground truth used to create the initial LI models was

based on manual delineation of each muscle on every MRI slice (2

mm slice spacing). This is a tedious and time consuming process

and especially complicated for muscles with high fat infiltration.

To investigate whether the manual delineation effort could be

reduced, two alternative ground truth segmentations were created

by retaining the expert delineation on every 5th (10 mm spacing)

or 10th (20 mm spacing) slice only and using nearest neighbor

interpolation to fill in the segmentation for the slices in-between, as

illustrated in Figure 5. Additional LI models were trained based on

these simplified ground truths (GT5, GT10), using identically the

same five-fold setup that was used for training the initial LI models

based on the full ground truth (GT1). The performance of these

different models was compared on the LI test set.

To investigate whether the different FOV of images acquired

in different visits (V1, V2, V3) had an impact on the performance

of the model, the segmentation accuracy of the LI GT1 ensemble

model was evaluated separately on the 40 most distal, the 40

central and the 40 most proximal slices of the V1 scan and on the
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FIGURE 5

Alternative ground truth segmentations created by manual delineation of every slice [GT1, (A)], every 5th [GT5, (B)] or 10th slice [GT10, (C)], every 5th

(GT5, B) or 10th slice (GT10, C), using nearest neighbor interpolation to fill in the intermediate slices.

FIGURE 6

Out-of-phase (A) image with ground truth GT1 segmentation (B, E) and the U-Net prediction (C, F) of 3 LGMD patients in an early-stage (i), an

intermediate-stage (ii) and end-stage (iii) of the disease. A comparison between the ground truth labels (green) and the predicted labels (red) is

presented in (D).

corresponding set of slices of the V2 and V3 scans of the same

subject in the test set. To this end, corresponding slices between

these different scans were identified manually by an expert (BDW).

This analysis could be performed for 9 out of 14 subjects of the LI

test set for which scans of all 3 visits were available and visually

accurate correspondences between all considered slices could be

established.

2.3.2. BMD dataset
The generalizability of the LI and HI models trained on the

LGMD dataset to images of other MD patients was examined

by evaluating them on the BMD dataset. The best performing

LI model was used to generate a segmentation for the images of

the 21 healthy control subjects and 7 early-stage patients of the

BMD dataset (mean FF%: 10.1%), while the best performing HI

model was used to generate a segmentation for the images of the

14 intermediate- or end-stage patients of the BMD dataset (mean

FF%: 58.4%). No independently obtained ground truth delineations

were available for this dataset to assess accuracy of the automated

segmentations. Instead, the segmentations generated by the model

were visually verified by a medical expert (BDW) and corrected as

needed. The accuracy of the LI and HI models on the BMD dataset

was assessed by comparing the automated segmentations generated

by the model with the manually corrected segmentations.

2.4. Evaluation

Agreement between the automated segmentations generated by

the LI and HI models and the reference segmentations (the manual

segmentations for the LGMD dataset, the corrected segmentations

for the BMD dataset) was assessed using the Dice Similarity

Coefficient (DSC) and the average symmetric surface distance
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TABLE 2 Validation and test set results (n = number of cases) obtained by five-fold cross-validation for the LI and HI models with ground truth

delineations defined on every slice (GT1), every 5th (GT5) or 10th slice (GT10).

LI model HI model

Validation set Test set Validation set

n GT1 n GT1 GT5 GT10 n GT1

Fold 1 20 93.83± 2.18 38 94.78± 0.81 94.73± 0.85 94.31± 0.84 9 87.60± 3.03

Fold 2 17 94.33± 1.61 38 94.87± 0.77 94.58± 0.79 94.05± 0.93 9 90.90± 2.38

Fold 3 20 94.40± 1.20 38 94.78± 0.80 94.51± 0.90 94.20± 0.80 7 89.88± 3.51

Fold 4 18 94.10± 1.50 38 94.81± 0.83 94.66± 0.89 94.25± 0.85 7 90.86± 3.26

Fold 5 20 94.46± 1.09 38 94.94± 0.79 94.64± 0.94 94.22± 0.93 8 85.98± 1.43

Ensemble - - 38 95.27± 0.76 95.20± 0.76 94.90± 0.78 - -

The ensemble test set results are obtained by combining the prediction outputs of the 5 individual models using a per voxel majority voting strategy.

FIGURE 7

Segmentation result for an end-stage patient generated by the LI model (A) and the HI model (B).

(ASSD). DSC (in %) measures the volumetric overlap of two

structures in an image by the ratio of the volume of their

intersection over the mean of their individual volumes, yielding

a value of 0% if there is no overlap between both and a value of

100% if there is perfect overlap. For a given image, DSC was either

computed for each muscle separately (left and right leg combined)

or for all muscles at once using the generalized DSC (25) to obtain

a single measure per image. ASSD (in mm) measures the surface

alignment of two structures by finding for each boundary point

of either structure the closest point on the boundary of the other

structure and averaging the distance between them over all such

pairs. ASSD was computed for each muscle separately (left and

right leg combined). Results are reported by the mean and standard

deviation of DSC or ASSD over the entire validation or test set,

and are calculated after the postprocessing step. The Wilcoxon

signed-rank test was used to assess the statistical significance

of differences in performance between different models (p-value

smaller than 0.05).

3. Results

3.1. LGMD dataset

Figure 6 shows representative segmentation results for images

of an early-stage patient obtained with the LI model, and of an

intermediate- and an end-stage patient obtained with the HImodel.

Table 2 summarizes the validation and test set results for the LI

models trained with different ground truths (GT1, GT5, GT10) and

the validation set results for the HI models.

Frontiers inNeurology 07 frontiersin.org

https://doi.org/10.3389/fneur.2023.1200727
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org


Huysmans et al. 10.3389/fneur.2023.1200727

TABLE 3 LI group test set results for the LI ensemble model applied to

images of the same subjects with di�erent FOV (V1, V2, V3) evaluated in

corresponding regions defined in V1 (entire volume and distal, central,

and proximal parts).

n #
slices

V1 V2 V3

All 9 140 95.05± 0.60+ 94.84± 0.61 95.84± 0.98

Distal 9 40 95.28± 1.09 95.21± 1.03 95.38± 3.42

Central 9 40 95.33± 0.62 94.04± 0.83+ 96.09± 0.60

Proximal 9 40 94.46± 0.97+ 94.29± 1.18+ 95.75± 0.70

The + sign indicates a significant difference with V3.

None of the 5 individually trained LI models performed

significantly differently on the test set than all others trained with

the same ground truth, while their ensemble model performed

better than any individual model. The difference in performance

was statistically significant between the GT10 and GT1 ensemble

models, but no significant difference was found between GT5 and

GT1. The performance of the GT1 ensemble model was on average

slightly better for the control subjects (mean DSC = 95.39 ± 0.68)

than for the early-stage patients (mean DSC= 94.90± 0.89).

When applying the LI model that performed best on the LI test

set (i.e., the model obtained for fold 5 in Table 2, DSC = 94.94)

directly on the cases of the HI group, a mean DSC of 80.41± 20.54

and 49.13±18.88 were obtained for the intermediate- and end-stage

scans, respectively. A significant improvement in performance was

observed for the fine-tuned HI models, with an average DSC of

90.03±3.75 for the intermediate-stage patients and 87.83±2.28 for

the end-stage patients. Figure 7 shows the segmentation generated

by the LI model (fold 5 LI GT1 in Table 2) and the segmentation

generated by the HI model (fold 2 HI GT1 in Table 2) for an

end-stage patient.

Table 3 summarizes the accuracy of the LI GT1 ensemble model

evaluated in the same distal, central and proximal regions of the

consecutive V1, V2, and V3 scans of the same subject. While no

significant difference in segmentation performance was observed

in the distal region, the accuracy was significantly better in the

proximal region for the V3 scan with the largest FOV than for the

V1 and V2 scans with smaller FOV.

Table 4 summarizes the mean DSC and ASSD per muscle for

the LI group and the HI group separately, obtained by averaging

over the LI test cases and the HI validation cases, respectively. Only

the V2 and V3 scans were considered in this analysis: the V1 scans

were omitted because of their small FOV, as several muscles were

only for a small part or not at all included in these images. Figure 8

plots the DSC and ASSD per muscle for both groups.

Figure 9 shows the Bland-Altman analysis for the quantification

of FF% and muscle volume on these LI and HI cases. The FF%

per muscle obtained using the automated segmentation agrees well

with the FF% obtained using the manual ground truth delineation.

TABLE 4 DSC and ASSD per muscle for the LI group (ensemble model applied to the test set) and the HI group (validation set results) (n = number of

cases, mean ± std).

Muscles LI group HI group

Test set Validation set

n DSC (%) ASSD (mm) n DSC (%) ASSD (mm)

RF 26 96.14± 0.97 1.02± 0.32 25 89.30± 7.46 2.26± 1.30

VL 26 96.18± 1.05 1.34± 0.70 25 90.83± 4.03 2.79± 1.20

VM 26 96.39± 0.81 1.24± 0.25 25 89.43± 4.54 3.02± 1.16

VI 26 94.36± 1.24 1.46± 0.28 25 88.18± 3.57 3.03± 0.94

PC 26 91.19± 2.25. 1.39± 0.27 25 79.15± 15.63 3.54± 3.75

AB 26 90.50± 2.14 1.88± 0.35 25 80.31± 10.56 3.96± 2.47

AL 26 94.12± 1.61 1.46± 0.28 25 82.11± 9.74 3.47± 2.27

AM 26 95.28± 1.53 1.73± 0.55 25 83.83± 8.35 4.63± 2.19

BFL 26 95.41± 1.24 1.23± 0.33 25 86.12± 8.48 4.15± 4.41

BFB 26 91.66± 2.68 1.65± 0.87 25 86.38± 7.66 2.75± 1.48

ST 26 94.64± 2.73 1.23± 0.33 25 86.01± 10.37 3.64± 2.57

SM 26 95.05± 1.40 1.39± 0.40 25 85.15± 7.80 4.05± 1.81

SR 26 92.24± 4.41 1.80± 3.85 25 88.54± 5.95 3.33± 5.00

TFL 26 92.67± 2.25 1.14± 0.27 25 84.60± 7.35 2.83± 1.28

GC 26 91.08± 5.75 1.33± 1.37 25 85.58± 10.35 2.50± 2.03

Gma 26 97.37± 0.74 1.13± 0.34 25 94.49± 2.42 2.63± 1.15

Gme 26 94.59± 1.50 1.54± 0.35 25 89.23± 8.97 3.51± 3.45

Gmi 26 84.44± 5.10 2.44± 0.63 25 70.84± 10.88 4.64± 2.67
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FIGURE 8

Boxplot of DSC (A) and ASSD (B) per muscle for the LI group (blue) and the HI group (orange).

For the LI group, the difference is mostly smaller than 1%, except

for few outliers which are mainly due to the Gmi muscle, which

was also an outlier for segmentation accuracy in Table 4. For

the HI group, the difference shows a larger spread and more

outliers, but the offset is still mostly limited to less than 5%.

The difference in muscle volume between the manual and the

automated segmentation tends to increase with larger muscle

volume.

3.2. BMD dataset

An average per-image DSC of 98.31±2.13 for LI cases (99.35±

0.55 for healthy control cases and 95.18 ± 2.05 for early-stage

BMD patients) and 86.96 ± 21.24 for HI cases was obtained

between the original and corrected segmentations. Figure 10 shows

segmentation results for images of a BMD control case and an early-

stage BMD patient obtained with the LI model, and of an end-stage

BMD patient obtained with the HI model.

4. Discussion

The results in this paper show that a well trained U-Net can

produce state-of-the-art results in the 3D segmentation of all 18

muscles individually in the proximal leg, knee to hip, for both

healthy subjects and patients with muscle fat replacement. Bland-

Altman analysis shows that the fat fraction per muscle derived

from the automated segmentationmatches well with the fat fraction

calculated using the ground truth manual segmentations. The

automatic segmentation approach is tested for robustness and the

performance is found to be largely invariant with respect to the axial

extent of the images, covering the entire proximal leg or only its

central part and it generalizes well to new unseen data of patients

with another muscular dystophy (Becker Muscular Dystrophy).

Lastly the manual delineation effort to create the training set can

be reduced by delineating every 5th slice (10 mm slice spacing)

instead of every slice (2 mm slice spacing) without significant

loss of segmentation quality. These AI-models for 3D muscle

segmentation are thus instrumental toward the development and

deployment of effective clinical tools for volumetric fat fraction

quantification for the assessment of MD progression, which is

increasingly important in natural history studies and clinical trials

with novel treatments.

Rohm et al. (10) trained a U-Net to segment muscle groups in

both healthy subjects and patients with a variety of neuromuscular

disorders that show fatty infiltration in the muscles and succeeded

in obtaining an average DSC of 85% for the healthy subjects and

80% for a dataset containing both healthy subjects and patients.

Although our solution segments individual muscles instead of

muscle groups, it outperforms the results obtained by Rohm et al.

In both (9) and (11) DSC scores per muscle are reported. In (11)

patients with fatty infiltrated muscles are included but with an

average FF%much lower than the patients included in the HI group

in our study. The DSC scores and ASSD values reported in (12)

are similar compared to the ones obtained in this study for the LI

group but their method uses a separately trained U-Net for every

muscle. Our study succeeded in obtaining similar performance

using a single U-Net in healthy subjects while segmenting entire

muscles from knee to hip (FOV of 71.5 cm), and also reporting

segmentation accuracy for mild to heavily infiltrated patients.

The DSC per muscle (Table 4 and Figure 8) shows a larger

spread in segmentation performance and more outliers for the

HI group than for the LI group, which makes sense because the

muscle borders are less visible due to more fat infiltration. The

muscles that on average had the largest FF% (SM, BFL, AM, AL,

and Gmi) are also the muscles for which the largest differences

in segmentation performance were observed between LI and HI

models. Most of the outliers in the Bland-Altman analysis of FF%

per muscle in the HI group (Figure 9E) originate from the scans

of the 2 subjects with the largest mean FF% in our study (82

and 76%, respectively). The segmentation performance of Gmi in

particular is significantly lower compared to the other muscles.

The Gmi is a muscle in the hip region; therefore it was not
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FIGURE 9

Bland-Altman analysis of the FF% per muscle (A, C, E) and muscle volume (B, D, F) for the LI group (blue) and the HI group (orange).

present in the V1 images in our study, resulting in less training

data for this muscle. If present in the images, it was located

more at the periphery of the acquired MRI stack, where there are

typically more artifacts. Certain parts of the Gmi are also easily

infiltrated with fat and are hard to differentiate from subcutaneous

fat, which could have lead to more variability in the ground

truth segmentations.

A limitation is that due to the limited amount of scans available

for severely affected LGMD patients no separate test set for the HI

group was considered. When more training data would be available

for this group it would be interesting to investigate whether similar

performance can be obtained for severely fat infiltrated cases as

for healthy subjects and whether a single U-Net CNN could be

trained to handle both LI and HI cases. The HI model shows good
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FIGURE 10

Out-of-phase image (A) with the U-Net prediction (B) and the manual corrected segmentation (C) of 2 BMD patients and one BMD control case.

performance for the independent BMD HI cases (average DSC of

86.96%), but as no a priori ground truth data is available for these

cases, DSC may be positively biased as it is based on a correction of

the model output.

Manual delineation as used in this work to generate the ground

truth segmentations may be subject to inter-observer variability.

Due to the time-consuming nature of manually delineating the

individual muscles in the MRI stacks, it was not possible to have

a second expert delineate all cases to generate a stronger ground

truth. However, the same dataset was used in the study of De

Wel et al. (1) where inter-observer variability was tested on a

small subset of 3 images that were delineated independently by 2

observers, showing excellent manual segmentation reproducibility

as quantified by the intra-class correlation coefficient.

The DSC scores for the HI BMD cases were slightly lower than

the DSC scores obtained for the HI LGMD cases, mainly because

of two outliers (DSC of 31 and 45%). We noted that both outliers

in the BMD dataset suffered from severe atrophy in some of the

muscles, especially in the quadriceps group. The model did not

encounter this to such an extent within the LGMD dataset used

for training and thus had more trouble with detecting the correct

muscle borders for those two cases.

Postprocessing was applied to the initial model prediction to

remove isolated blobs of segmented voxels and fill holes with

unsegmented voxels. This resulted in an overall small average

improvement in DSC of 0.02% for the LGMD LI test set and 0.1%

for the HI validation set. Hence, the postprocessing does not result

in a considerable improvement in segmentation performance, but

reduces the time needed to correct the segmentations by removing

small floating blobs and closing small holes.

As all scans were acquired using the same protocol on the same

MRI scanner, no intensity normalization was applied between scans

of different subjects. All models were thus trained using the original

image intensity values without normalization. The drawback of

using models that are trained on non-normalized MRI data is that

they will not generalize well to images acquired with another MRI

scanner or another scan protocol. Applying normalization during

stitching of the separate stacks or to the stitched image using, e.g., z-

score normalization, bias field correction or histogram equalization

could be subject for future research.
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