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The idea that eye movements can reflect certain aspects of brain function and 
inform on the presence of neurodegeneration is not a new one. Indeed, a growing 
body of research has shown that several neurodegenerative disorders, such 
as Alzheimer’s and Parkinson’s Disease, present characteristic eye movement 
anomalies and that specific gaze and eye movement parameters correlate with 
disease severity. The use of detailed eye movement recordings in research and 
clinical settings, however, has been limited due to the expensive nature and limited 
scalability of the required equipment. Here we test a novel technology that can 
track and measure eye movement parameters using the embedded camera of 
a mobile tablet. We show that using this technology can replicate several well-
known findings regarding oculomotor anomalies in Parkinson’s disease (PD), and 
furthermore show that several parameters significantly correlate with disease 
severity as assessed with the MDS-UPDRS motor subscale. A logistic regression 
classifier was able to accurately distinguish PD patients from healthy controls on 
the basis of six eye movement parameters with a sensitivity of 0.93 and specificity 
of 0.86. This tablet-based tool has the potential to accelerate eye movement 
research via affordable and scalable eye-tracking and aid with the identification of 
disease status and monitoring of disease progression in clinical settings.
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Introduction

While we have long known that the eyes are our windows to the world, a growing body of 
research suggests a bi-directional relationship whereby the eyes –and particularly how they 
move– can also serve as a window into the brain. Although eye movements have previously been 
linked to certain cognitive processes like attention and decision-making, recent work has 
unequivocally shown that eye movements can reflect certain aspects of brain function and 
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inform on the presence of neurodegeneration and cognitive 
impairment (1–5). The link between eye movements and brain health 
should not be too surprising given that eye movements are controlled 
by a diverse network of cortical and subcortical structures (4, 6) that 
are susceptible to a variety of degenerative processes (1, 7, 8). 
Moreover, the analysis of gaze patterns and visual tasks that measure 
cognitive inhibition can provide insights into the integrity of various 
cognitive processes (2, 9, 10).

For instance, two consistent impairments have emerged from 
Alzheimer’s disease (AD) oculomotor research: a high frequency of 
saccadic intrusions during attempted fixation and visual capture by 
the target in the anti-saccade paradigm (11, 12). Furthermore, 
microsaccades, tiny horizontal rapid eye movements that interrupt 
periods of fixation tend to be uniquely obliquely oriented (13) and 
occur at an elevated rate in Alzheimer’s (14). Parkinson’s Disease (PD) 
is generally associated with hypometric and multi-step saccades in all 
types of oculomotor tasks (15, 16), in addition to a high rate of 
saccadic intrusions during smooth pursuit (17). Multiple sclerosis 
(MS) is particularly associated with internuclear ophthalmoparesis 
(INO)—a slowing of the adducting eye during horizontal saccades—
and saccadic intrusions during fixation (8). Furthermore, smooth 
pursuit metrics (low pursuit gain and increased saccadic amplitudes) 
have been proposed as a marker of early MS (18).

Not only do these oculomotor anomalies characterize these 
neurodegenerative disorders, but a growing body of research shows that 
they can serve as markers of disease severity and cognitive impairment. 
In AD, oculomotor signatures of disease severity have been identified via 
correlations between specific eye movement characteristics and the Mini-
Mental State Examination (MMSE) (19–22). Similarly, in PD, several 
oculomotor metrics have been shown to correlate with the Unified 
Parkinson’s Disease Rating Scale (UPDRS) or some of its subscales (23–
26), or with measures of general cognition such as the MMSE (27, 28) or 
the MoCA (29,  30). In MS similar relationships have been observed 
between such metrics and the Expanded Disability Status Scale (EDSS) 
or the Symbol Digit Modalities Test (SDMT) (31–35).

Although a clinical oculomotor examination is usually sufficient 
to aid clinicians in the differential diagnosis of advanced neurological 
disorders, these exams do not typically capture subtle changes such as 
those highlighted in the aforementioned studies. Indeed, many have 
proposed that laboratory eye movement recordings can be extremely 
useful for objective and precise identification of disease status and 
monitoring of disease progression (1) and assist with differential 
diagnoses (36–38) though there is hope that the precise quantification 
of eye movements could also eventually lead to early diagnoses in 
individuals with less pronounced oculomotor symptoms. 
Unfortunately, the use of detailed eye movement recordings in clinical 
settings has been limited due to the expensive nature and limited 
scalability of the required equipment, such as infrared eye-tracking 
cameras. Although several mobile tablet-based (or smartphone-based) 
gaze-tracking systems have been developed to provide more accessible 
and affordable solutions (39–42), to our knowledge, they have not 
been used to capture precise oculomotor parameters on a millisecond 
timescale such as those evoked during saccade and anti-saccade tasks. 
They have instead been primarily used to analyze gross eye 
movements, such as those required to study gaze search patterns or to 
determine the on-screen location of an individual’s fixation point.

Eye-Tracking Neurological Assessment (ETNA™) is a recently 
developed technology that can reliably and accurately track eye 

movements without the need for infrared cameras, using the iPad Pro 
embedded camera. This technology allows for the precise 
quantification of several eye movement parameters currently only 
available with specialized and costly research-grade infrared eye 
tracking devices, such as the latency, velocity, and amplitude of 
saccades, and the presence of saccadic intrusions during fixation. In 
this paper, we show using the ETNA™ with a standard tablet mobile 
camera that we can measure and replicate eye movement anomalies 
and replicate findings from the literature on PD and eye movement, 
further demonstrating how eye movement parameters can reflect 
disease status and severity.

Methods

Study design and subject population

This cross-sectional study included 121 participants and was 
approved by both the Veritas and the Montreal University Health 
Center (MUHC) research ethics boards. Fifty-nine (59) PD 
participants (age 63.76 ± 8.23, range 45–79, 32.2% females) took part 
in this study. All were recruited by the Quebec Parkinson Network. 
Inclusion criteria were confirmed diagnosis of PD and sufficient 
corrected visual acuity to allow for the accurate reading of the 
on-screen visual task instructions. Exclusion criteria were the presence 
of comorbid neurological or psychiatric conditions to avoid eye 
movement anomaly confounds. To assess clinical status, all PD 
patients underwent the motor subscale (part III) of the MDS-UPDRS 
(43, 44), which was developed to evaluate various aspects of 
Parkinson’s Disease. Note that because the MDS-UPDRS was 
performed in a research setting with time constraints and not as part 
of the standard of care, not all patients underwent the full 
MDS-UPDRS evaluation. As a result, only part III scores were used in 
analyses presented herein.

Sixty-two (62) healthy control (HC) participants (age 56.64 ± 8.56, 
range 45–77, 46.7% females) took part in this study. All were 
recruited from the Montreal community. The inclusion criterion was 
sufficient visual acuity to perform the tablet-based visual tasks. 
Exclusion criteria were evidence or history of other significant 
neurological or psychiatric disorders. Summary patient demographics 
are shown in Table 1.

Gaze-tracking experimental setup

All tests were performed using a 12.9-inch iPad Pro tablet with the 
ETNA™ software installed, which enables simultaneous video 
recordings of the eyes at 60 frames per second using the embedded 
front-facing camera and the presentation of visual stimuli on the 

TABLE 1 Group demographics.

PD patients Healthy controls

n 59 62

Age mean ± sd 

(median, range)

63.76 ± 8.23 (64, 45–79) 56.64 ± 8.56 (55; 45–77)

UPDRS part III 27.56 ± 13.8 (7–65)
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screen. All participants performed three oculomotor tasks (fixation 
task, pro-saccade task, and anti-saccade task; see Figure 1), which was 
preceded by a calibration step, where participants were instructed to 
follow a slowly moving target across the screen. All tablet-based 
oculomotor tasks were completed in under 6 min.

All tasks were performed with the tablets placed vertically, camera 
side up, and secured at eye level using a tablet pole mount. Participants 
were positioned approximately 45 cm from the tablet screen and were 
allowed to use their best-spectacle correction (proportion of 
participants wearing glasses: PD = 39%, HC = 29%, X2(1) = 1.33, 
p = 0.24). Safeguards within the gaze-tracking software ensured the 
participant’s head was properly positioned and visible, at an acceptable 
angle and distance from the screen.

Fixation task: Participants had to fixate a stationary target for 7 s, 
at five different locations (one central and 4 eccentric locations). The 
eccentric positions were located 10 degrees of visual angle left and 
right from the center and 14 degrees of visual angle up and down from 
the center (Figure 1A).

Pro-saccade task: Participants had to initially fixate a central 
fixation point, which disappeared after a random period of 1.0–3.5 s, 
after which a different target reappeared at an eccentric location for 
1.5 s either to the left or right, above, or below the central fixation 
point. Participants were instructed to move their gaze as quickly as 
possible to the new target location. Both short (5o horizontal, 6o 
vertical) and large (10o horizontal, 12o vertical) eccentric target 
distances were used, and each target location was sampled 3 times, for 
a total of 24 trials (Figure 1B).

Anti-saccade task: Participants had to initially fixate a central 
fixation target, which disappeared after a random period of 1.0–3.5 s, 
after which a different target reappeared at an eccentric location (10o) 
to the left or right from the center. Participants were instructed to 
move their gaze as quickly as possible in the opposite direction to the 
new target location. After being displayed for only 100 ms, the target 
disappeared and the screen was left blank for a predetermined 
duration of time. Following the blank screen, a symbol appeared in 
the opposite location of where the initial stimulus appeared (i.e., 
where the participant should be looking). This symbol consisted of a 
white square with an arrow inside oriented in one of 4 random 
directions: either left, right, up, or down. The blank screen period 
lasted 1,200 ms and the arrow symbol duration of 400 ms. After each 
trial, a screen was displayed for 5 s prompting the user to answer 
which symbol they saw by directing their gaze towards the arrow 
orientation corresponding to what they believe is the correct answer 
(Figure 1C). This task was inspired by an anti-saccade task used in a 
previous study (45), whereby participants could only identify the 
second symbol had they performed the anti-saccade task correctly 
(i.e., looked in the opposite direction of the initial target).

Parameter extraction and analysis

Offline analysis was performed using ETNA™‘s proprietary 
analysis pipeline to automatically extract the eye movement 
parameters reported for each task. Before parameter extraction, all 

FIGURE 1

Eye-tracking tasks. (A) Fixation: participants fixated a stationary target for 7 s, at one of 5 locations. (B) Pro-saccades: participants initially fixated a 
central fixation point, which disappeared after 1.0–3.5 s, after which a different target appeared at one of 8 eccentric locations for 1.5 s. (C) Anti-
saccades: participants initially fixated a central fixation point, which disappeared after 1.0–3.5 s, after which a round target appeared at 10° to the left or 
right from the center. Participants were instructed to move their gaze in the opposite direction to the round target, where after 1,200 ms they were 
shown a square with an arrow inside that pointed in one of 4 random directions (left, right, up, or down; shown during 400 ms). The users then had to 
direct their gaze towards the arrow orientation corresponding to the arrow they saw in the preceding step.
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gaze signals were denoised and non-saccadic artifacts (e.g., blinks) 
were removed by the software’s analysis pipeline.

The following parameters were extracted from the fixation task 
gaze recordings (parameters were averaged across the five fixation 
trials): (1) 68% bivariate contour ellipse area (BCEA) of fixation – a 
measure of fixation stability which encompasses an ellipse that covers 
the 68% of fixation points that are closest to target, (2) 95% BCEA, (3) 
Horizontal gaze SD – standard deviation of the horizontal gaze 
position, (4) Vertical gaze SD – standard deviation of the vertical gaze 
position, and (5) the rate of saccadic intrusions (at least 0.5 deg. in 
amplitude) during fixation.

The following parameters were extracted from the pro-saccade 
task gaze recordings (averaged across all short-eccentricity targets and 
all large-eccentricity targets): (1) average saccade latency, (2) average 
total time to reach the target, (3) average mean saccade velocity, (4) 
average peak saccade velocity, (5) average saccade amplitude gain 
(amplitude of the saccade relative to the eccentricity of the target; a 
measure of saccade accuracy), (6) average saccade amplitude error 
(average distance separating the saccade from the target; a measure of 
saccade precision), and (7) the average number of saccades required 
to reach the target.

The following parameters were extracted from the anti-saccade 
task gaze recordings: (1) direction error rate, (2) direction corrected 
rate (proportion of trials where participants directed their gaze in the 
correct direction following an initial saccade in the wrong direction), 
(3) target (arrow) recognition rate, (4) correct direction latency, and 
(5) incorrect direction latency.

Group comparisons were performed using multivariate analysis 
of covariance to simultaneously test statistical differences for multiple 
response variables (eye-tracking parameters) by one grouping variable 
(PD or HC). As age and sex were significantly different between study 
groups (t(1) = 4.66, p < 0.001), these grouping variables were used as 
covariates for between-group comparisons. F-statistics with degrees 
of freedom and p-values are reported. For correlation analyses with 
MDS-UPDRS-part III (motor) scores, data normality was assessed 
with the Shapiro–Wilk test to determine the appropriate correlation 
coefficient for each eye-movement parameter (i.e., Pearson’s R or 
Spearman’s ρ). Data analyses and visualization were conducted using 
R 4.2.1  in RStudio (build 554), packages dplyr, tidyverse, ggplot2, 
ggpubr, and rstatix. Although the main purpose of the present paper 
is to replicate well-known findings in the literature using a novel 
device, and not to make novel scientific claims, we  opted for 
transparency to present corrected p-values for correlations and 

post-hoc between-group comparisons to adjust for the false discovery 
rate using the Benjamini-Hochberg procedure evaluated at an alpha 
level of 0.05 (46).

Finally, a logistic regression with ridge regularization and random 
subsampling (1,000 samples) is used to assess the strength of six 
eye-tracking parameters [the fixation saccadic intrusion rate (1), for 
short amplitude pro-saccades: the first gain (2), mean velocity (3), 
mean latency (4) and the average number of saccades (5), and the first 
gain error for large amplitude pro-saccades (6)] as predictors of PD 
diagnosis (PD vs. HC). Receiver Operating Characteristics (ROC) 
analysis and a confusion matrix were used to assess the performance 
of the classifier. Training, classification and visualization of the logistic 
regression classifier was conducted using scikit-learn 1.2.2 and 
matplotlib 3.7.1 in Python 3.9.6.

Results

Correlations with MDS-UPDRS – part III

No fixation parameters were found to correlate with the UPDRS 
motor score (all ρ ≤ 0.187, p ≥ 0.542; see Table 2). In contrast, most 
pro-saccade parameters were found to correlate with it, particularly 
for large eccentricity targets (see Table 3; Figures 2A–E), six of which 
survived the value of p correction for multiple comparisons 
(|R| = 0.315–0.419, |ρ| = 0.334–377, p ≤ 0.028). A single anti-saccade 
parameter, correct direction latency, was found to correlate with the 
UPDRS motor score (ρ = 0.331, Figure 2F), however, the corrected 
value of p was greater than 0.05.

Group comparisons

For the fixation task, the group effect was significant but the effects 
of age and sex were not (group: F(5) = 5.34, p < 0.001; age and sex: both 
F(5) ≤ 1.40, p ≥ 0.22, MANCOVA). Only one significant group 
difference was observed among the fixation parameters, where PD 
patients displayed a higher saccadic intrusion rate (88.7% average 
increase in PD, F(1) = 20.87, p < 0.001; see also Table 2 and Figure 3A).

The effects of age and group were both significant for the pro-saccade 
task (F(5) ≥ 1.90, p ≤ 0.034; sex: F(5) = 0.62, p = 0.84, MANCOVA). 
Post-hoc analyses yielded several significant group differences (Table 3), 
particularly those relating to the number of saccades required to reach 

TABLE 2 Fixation task.

UPDRS part III correlations PD/HC comparisons

Eye-tracking 
parameter

Correlation coefficient p (corrected) F-statistic p (corrected)

BCEA 68 ρ = 0.107 0.425 (0.708) 3.075 0.082 (0.137)

BCEA 95 ρ = 0.165 0.217 (0.542) 2.143 0.146 (0.182)

Horizontal gaze SD ρ = 0.187 0.161 (0.542) 3.704 0.056 (0.137)

Vertical gaze SD ρ = 0.02 0.882 (0.978) 0.002 0.964 (0.964)

Saccadic intrusion rate ρ = 0.004 0.978 (0.978) 20.878 1.32 × 10−5 (6.6 × 10−5)

For each eye-tracking parameter, parameter-UPDRS motor score correlations are shown on the left side of the table (UPDRS part III correlations). Between-group (PD vs. HC) comparisons 
are shown on the right side of the table (PD/HC comparisons). ρ, Spearman’s rho. F-statistic and p-values for post-hoc analyses are reported. Raw p-values are presented, followed by their 
corrected value in parentheses (Benjamini-Hochberg procedure, α = 0.05).
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the target (14.8 and 23% increase in PD, for short and long eccentricities, 
respectively; Figure 3B), latency (9.7 and 7.2% average decrease in PD, 
for short and long eccentricities, respectively), saccade precision (13.1 
and 9.1% average gain decrease in PD, short and long eccentricities, 
respectively; Figures 3C,D), and mean saccade velocity (20.6% increase 
in PD, short eccentricity only; Figure 3E) (all F(1) ≥ 6.84, p ≤ 0.015).

Finally, we found no significant effects for group, age, or sex for 
anti-saccade parameters (all F(5) ≤ 2.13, p ≥ 0.072, MANCOVA; e.g., 
Figure 3F). Between-group comparisons are reported in Table 4 for 
transparency, although correcting for multiple comparisons was not 
deemed necessary in the absence of potential false positives (Type 
I errors).

Logistic regression classification

The average receiver operating characteristic (ROC) curve for the 
logistic regression classifier was computed and had an area under the 
curve (AUC) of 0.89 (95% CI [0.78,0.98]; Figure 4A). The classifier has 
a sensitivity of 0.93 (95% CI [0.78, 1.00]) and specificity of 0.86 (95% 
CI [0.63–1.00]; Figure  4B). Adding age to the logistic regression 
classifier as an additional parameter did not improve the sensitivity 
(0.93) or specificity (0.86) of the classifier.

Discussion

The purpose of the present paper was to demonstrate the potential 
and usefulness of a novel tablet-based software (currently designed for 
use with iPad Pros) for the assessment of gaze and eye-movement 
parameters both in research and clinical practice settings. Not only are 

our oculomotor findings in line with those previously reported 
(discussed in greater detail below), but by performing a logistic 
regression classification, we  were able to reliably differentiate 
individuals with PD from healthy participants based on a subset of the 
collected eye movement data for which there were statistically 
significant differences between groups. The AUC (0.89), sensitivity 
(0.93), and specificity (0.86) metrics obtained are highly comparable 
to previously published studies on oculomotor anomalies in PD using 
eye movement parameters extracted with conventional eye-tracking 
equipment (25, 28, 47, 48). These findings highlight the potential for 
broader application of eye-movement-based monitoring and early 
diagnosis technologies.

Individual oculomotor findings are very much in line with those 
previously reported in the scientific literature on oculomotor 
anomalies specific to PD. Our finding of an increased rate of saccadic 
intrusions during fixation confirms previous reports (26, 28, 49, 50). 
With regards to measures of gaze stability, to our knowledge, only one 
study reported BCEA and horizontal/vertical gaze SD measures in PD 
patients and found no significant differences with healthy 
controls (28).

Pro-saccades have been more extensively studied in PD than 
measures of fixation instability. Findings regarding saccade latency 
have been mixed to date, with several studies finding either no 
differences between PD patients and controls (47, 51–53), shorter 
latencies in PD (54) and longer latencies in PD (25, 26, 55). It’s unclear 
why this discrepancy across studies exists, but it may have to do with 
the type of eye-tracking technology used; the majority of the studies 
cited above that found either no difference or shorter latencies in PD 
used infrared eye-trackers from manufacturers such as Eyelink and 
Tobii, whereas the majority of studies cited above finding increased 
latencies used devices from other manufacturers such as Micromedical 

TABLE 3 Prosaccade task.

UPDRS part III correlations PD/HC comparisons

Eye-
tracking 
parameter

Short amplitude Large amplitude Short amplitude Large amplitude

Correlation 
coefficient

p 
(corrected)

Correlation 
coefficient

p 
(corrected)

F-
statistic

p (corrected) F-
statistic

p 
(corrected)

Latency (mean) R = 0.263 0.048 (0.061) R = 0.251 0.059 (0.068) 25.308 1.83 × 10−6, (8.5 × 

10−6)

9.35 0.002 (0.005)

Time to target 

(mean)

R = 0.269 0.042 (0.058) R = 0.341 0.009 (0.02) 6.843 0.01 (0.015) 0.002 0.962 (0.962)

Saccades to 

target (mean)

ρ = 0.153 0.253 (0.253) ρ = 0.196 0.142 (0.152) 28.834 4.21 × 10−7 (2.94 × 

10−6)

  45.519 6.54 × 10−10 

(9.23 × 10−9)

First gain 

(mean)

R = −0.416 0.001 (0.007) R = −0.419 0.001 (0.007) 19.278 2.53 × 10−5 (8.88 × 

10−5)

9.829 0.002 (0.005)

First gain 

(mean error)

ρ = 0.371 0.004 (0.014) ρ = 0.377 0.003 (0.014) 2.619 0.108 (0.142) 7.987 0.005 (0.009)

Velocity 

(mean)

ρ = −0.339 0.01 (0.02) ρ = −0.334 0.01 (0.02) 11.376 0.001 (0.002) 0.009 0.924 (0.962)

Peak velocity 

(mean)

R = −0.271 0.04 (0.058) R = −0.315 0.016 (0.028) 2.565 0.112 (0.142) 0.056 0.813 (0.948)

For each eye-tracking parameter, parameter-UPDRS motor score correlations are shown on the left side of the table (UPDRS part III correlations). Between-group (PD vs. HC) comparisons 
are shown on the right side of the table (PD/HC comparisons). ρ, Spearman’s rho. R, Pearson’s R. F-statistic and p-values for post-hoc analyses are reported. Raw p-values are presented, 
followed by their corrected value in parentheses (Benjamini-Hochberg procedure, α = 0.05).
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Technologies and Interacoustics, and EyeBrain. To make a more 
definite statement as to why this would be the case, however, would 
require a more in-depth investigation that is beyond the scope of 
the paper.

Similarly, findings regarding peak velocity have been mixed, with 
a few studies finding faster velocities in PD (24, 56), whereas most 
other studies found no differences between PD and healthy control 
(47, 51, 54, 57, 58). In the present study, we find peak and mean 
velocities to be significantly increased in PD patients (only uncorrected 
value of p for peak velocity) for short eccentricity targets only. 
Combined with the available literature, this finding suggests that peak 
velocity might normalize in PD with increasing eccentricity.

In contrast to latency and velocity parameters, the literature is 
quite rich with strong evidence of PD patients requiring multi-step 
saccades to reach the target (47, 54, 57, 59), which is in line with the 
present findings reported here, where the largest group difference 
amongst all parameters investigated concerned the average number 
of saccades required to reach the pro-saccade targets. In addition, 
our findings here indicate that the first saccade towards the target 
(for both short and large eccentricity targets) was closer to the 
target in HC.

With regards to anti-saccade parameters, although several studies 
report a reduced proportion of correct initial direction (or an increase 
in error rate) in PD patients (25, 52, 60–62), several other studies 

found no such difference (63–65). Similarly, while several studies have 
identified slower latencies for correct (52, 61, 63), others found no 
group differences (60,  62, 66).

Taking a closer look at the reported findings in the literature, it 
can be observed that many of those studies that identified a difference 
in the correction direction rate found no differences regarding latency 
(60,  62, 66), and vice-versa (25, 63, 65), indicating either variability in 
the PD population or that the differences measured could be specific 
to the anti-saccadic task parameters (e.g., eccentricity of the targets or 
inter-trial interval). A recent meta-analysis on antisaccade parameters 
in PD confirmed that, although both antisaccade latency and error 
rate are significantly increased in PD, these effects are strongly 
moderated by disease duration and disease severity – as assessed by 
UPDRS score and H&Y stages (67). This likely explains the absence of 
significant findings regarding the antisaccade latency and error rate in 
the present study, as the majority of our PD participants would fall in 
the mild or moderate category based on their MDS-UPDRS score part 
III (68).

Few studies to date, to our knowledge, have investigated the 
relationship between disease severity in PD, such as measured by the 
MDS-UPDRS motor score and the magnitude of gaze and eye 
movement parameters. These have primarily observed a relationship 
between the motor score and pro-saccade latency (26, 48), prosaccade 
gain (25), anti-saccade latency (24) and anti-saccade direction rate 

FIGURE 2

Correlations between select eye-tracking parameters and UPDRS Part III scores. (A,B) Pro-Saccades: first gain, (C) first gain error, (D) mean velocity, 
(E) peak velocity. (F) Anti-Saccades: correct direction latency. (C,D,F) depict Spearman’s rho values; trend lines are shown for reference only. Large, 
large amplitude pro-saccades; short, short amplitude pro-saccades. *p < 0.05, **p < 0.01 (corrected for multiple comparisons), †p = 0.039 (0.19 corrected).
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(23). However, (65) found no significant correlation between anti-
saccade latency or pro-saccade latency and the UPDRS motor score.

In the present study, we only found a significant UPDRS motor 
score correlation with pro-saccade gain (large eccentricities) and the 
number of saccades to reach the target (large eccentricities). We also 
found a significant correlation between the UPDRS motor score and 
the pro-saccade time-to-target parameter (large eccentricities), which 
in many ways represents a composite measure of the latency and the 
mean velocity of the saccade. With regards to the anti-saccade task 
parameters, it is unclear why the discrepancies between the cited 
literature and our study exist. One obvious difference between our PD 
patient sample is that the error rate was significantly larger in our 
study [61% vs. 15% in (23)] despite anti-saccade targets being 

positioned at a similar eccentricity. Finally, a limitation of the present 
study, however, is the absence of cognitive measures (e.g., MMSE of 
MoCA) that could have allowed us to further quantify disease severity 
and investigate associated oculomotor anomalies such as previously 
done (27–30).

Despite the promise of eye tracking for both research and clinical 
settings, applications have been limited by the high cost of eye trackers 
and their inability to scale due to the use of specialized hardware. 
Being able to make use of the embedded cameras of mobile devices 
allows us to overcome these cost and scalability barriers by 
democratizing access to eye-tracking assessment tools. In particular, 
we believe tablet-based tools have the potential to aid with disease 
progression monitoring via the assessment of the integrity of the 

FIGURE 3

Group differences in eye-tracking parameters between patients with Parkinson’s Disease (PD) and Healthy Controls (HC). (A) Fixation: saccadic 
intrusion rate. (B) Pro-Saccades: saccades to target, (C) first gain, (D) first gain error, (E) mean velocity, and (F) Anti-Saccades: target recognition rate. 
Large, large amplitude pro-saccades; short, short amplitude pro-saccades. *p < 0.05, ***p < 0.001 (corrected for multiple comparisons).
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oculomotor system, as demonstrated by the strong relationships found 
between various eye-movement parameters and clinical status. Such 
tools could help clinicians monitor changes to disease status, disease 
progress, or response to treatment remotely without the need for an 
in-clinic visit until a change in associated eye movement parameters 
is detected by the software. This approach would be akin to current 
alternative strategies being developed to remotely monitor motor 
function & dysfunction with gyroscope/accelerometer-based wearable 
technologies (69, 70) and speech analysis using machine learning 
techniques (71, 72).

An advantage of eye-movement-based monitoring technologies, 
as opposed to wearable technologies, for example, is that they could 
potentially be more easily scaled to other neurodegenerative disorders. 
Indeed, as highlighted earlier, several eye-movement anomalies have 
been tied to AD (11, 14) and MS (8, 18), for instance, and several 
measured parameters have been shown to highly correlate with their 
respective cognitive (20–22) or clinical disease scales (31–35).

To conclude, in this study we  show that a novel tablet-based 
eye-tracking technology can reliably identify differences in subtle eye 
movement abnormalities in PD, and that specific oculomotor 
parameters were found to significantly correlate with the disease 
severity stage. Moreover, we  were able to reliably differentiate 
individuals with PD from healthy participants based on a subset of the 
collected eye movement data. These findings suggest the potential for 

broader application of eye-movement-based monitoring technologies 
in neurodegenerative disorders, such as MS and AD, holding promise 
for their future role in facilitating early diagnosis and monitoring of 
disease progression. Next steps include validating the technology 
within a distinct neurodegenerative disorder with known oculomotor 
impairments and to establish links between oculomotor parameters 
and clinical measures of cognition. This tablet-based tool has the 
potential to rapidly scale eye-tracking use and usefulness in both 
research and clinical settings.
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TABLE 4 Anti-saccade task.

UPDRS part III correlations PD/HC comparisons

Eye-tracking parameter Correlation coefficient p (corrected) F-statistic p

Correct saccade (%) ρ = −0.083 0.537 (0.621) 2.448 0.124

Corrected saccade (%) ρ = 0.07 0.621 (0.621) 1.254 0.267

Target recognition rate ρ = −0.189 0.158 (0.365) 2.195 0.145

Correct direction latency (mean) ρ = 0.331 0.039 (0.195) 0.045 0.832

Incorrect direction latency (mean) ρ = 0.173 0.219 (0.365) 0.521 0.47

For each eye-tracking parameter, parameter-UPDRS motor score correlations are shown on the left side of the table (UPDRS part III correlations). Between-group (PD vs. HC) comparisons 
are shown on the right side of the table (PD/HC comparisons). ρ, Spearman’s rho. F-statistic and p-values for post-hoc analyses are reported.

FIGURE 4

Performance of the logistic regression classifier. (A) Mean ROC curve for the logistic regression classifier across random subsamples with 95% 
confidence interval. (B) Confusion matrix for classification of eye tracking parameters as Parkinson’s Disease (PD) and Healthy Controls (HC).
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